
UAV Toolbox
Reference

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

UAV Toolbox Reference
© COPYRIGHT 2020–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2020 Online only New for Version 1.0 (R2020b)
March 2021 Online only Revised for Version 1.1 (R2021a)
September 2021 Online only Revised for Version 1.2 (R2021b)
March 2022 Online only Revised for Version 1.3 (R2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Classes
1

Methods
2

Functions
3

Blocks
4

Apps
5

Scenes
6

Vehicles
7

iii

Contents

Classes

1

extendedObjectMesh
Mesh representation of extended object

Description
The extendedObjectMesh represents the 3-D geometry of an object. The 3-D geometry is
represented by faces and vertices. Use these object meshes to specify the geometry of an
uavPlatform for simulating lidar sensor data using uavLidarPointCloudGenerator.

Creation

Syntax
mesh = extendedObjectMesh('cuboid')
mesh = extendedObjectMesh('cylinder')
mesh = extendedObjectMesh('cylinder',n)
mesh = extendedObjectMesh('sphere')
mesh = extendedObjectMesh('sphere',n)
mesh = extendedObjectMesh(vertices,faces)

Description

mesh = extendedObjectMesh('cuboid') returns an extendedObjectMesh object, that defines
a cuboid with unit dimensions. The origin of the cuboid is located at its geometric center.

mesh = extendedObjectMesh('cylinder') returns a hollow cylinder mesh with unit
dimensions. The cylinder mesh has 20 equally spaced vertices around its circumference. The origin of
the cylinder is located at its geometric center. The height is aligned with the z-axis.

mesh = extendedObjectMesh('cylinder',n) returns a cylinder mesh with n equally spaced
vertices around its circumference.

mesh = extendedObjectMesh('sphere') returns a sphere mesh with unit dimensions. The
sphere mesh has 119 vertices and 180 faces. The origin of the sphere is located at its center.

mesh = extendedObjectMesh('sphere',n) additionally allows you to specify the resolution, n,
of the spherical mesh. The sphere mesh has (n + 1)2 - 2 vertices and 2n(n - 1) faces.

mesh = extendedObjectMesh(vertices,faces) returns a mesh from faces and vertices.
vertices and faces set the Vertices and Faces properties respectively.

Properties
Vertices — Vertices of defined object
N-by-3 matrix of real scalar

1 Classes

1-2

Vertices of the defined object, specified as an N-by-3 matrix of real scalars. N is the number of
vertices. The first, second, and third element of each row represents the x-, y-, and z-position of each
vertex, respectively.

Faces — Faces of defined object
M-by-3 matrix of positive integer

Faces of the defined object, specified as a M-by-3 array of positive integers. M is the number of faces.
The three elements in each row are the vertex IDs of the three vertices forming the triangle face. The
ID of the vertex is its corresponding row number specified in the Vertices property.

Object Functions
Use the object functions to develop new meshes.
translate Translate mesh along coordinate axes
rotate Rotate mesh about coordinate axes
scale Scale mesh in each dimension
applyTransform Apply forward transformation to mesh vertices
join Join two object meshes
scaleToFit Auto-scale object mesh to match specified cuboid dimensions
show Display the mesh as a patch on the current axes

Examples

Create and Translate Cuboid Mesh

Create an extendedObjectMesh object and translate the object.

Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Translate the mesh by 5 units along the negative y axis.

mesh = translate(mesh,[0 -5 0]);

Visualize the mesh.

ax = show(mesh);
ax.YLim = [-6 0];

 extendedObjectMesh

1-3

Create and Visualize Cylinder Mesh

Create an extendedObjectMesh object and visualize the object.

Construct a cylinder mesh.

mesh = extendedObjectMesh('cylinder');

Visualize the mesh.

ax = show(mesh);

1 Classes

1-4

Create and Auto-Scale Sphere Mesh

Create an extendedObjectMesh object and auto-scale the object to the required dimensions.

Construct a sphere mesh of unit dimensions.

sph = extendedObjectMesh('sphere');

Auto-scale the mesh to the dimensions in dims.

dims = struct('Length',5,'Width',10,'Height',3,'OriginOffset',[0 0 -3]);
sph = scaleToFit(sph,dims);

Visualize the mesh.

show(sph);

 extendedObjectMesh

1-5

See Also
Objects
uavPlatform | uavLidarPointCloudGenerator

Functions
translate | rotate | scale | applyTransform | join | scaleToFit | show

Introduced in R2020b

1 Classes

1-6

fixedwing
Guidance model for fixed-wing UAVs

Description
A fixedwing object represents a reduced-order guidance model for an unmanned aerial vehicle
(UAV). The model approximates the behavior of a closed-loop system consisting of an autopilot
controller and a fixed-wing kinematic model for 3-D motion.

For multirotor UAVs, see multirotor.

Creation
model = fixedwing creates a fixed-wing motion model with double precision values for inputs,
outputs, and configuration parameters of the guidance model.

model = fixedwing(DataType) specifies the data type precision (DataType property) for the
inputs, outputs, and configurations parameters of the guidance model.

Properties
Name — Name of UAV
"Unnamed" (default) | string scalar

Name of the UAV, used to differentiate it from other models in the workspace, specified as a string
scalar.
Example: "myUAV1"
Data Types: string

Configuration — UAV controller configuration
structure

UAV controller configuration, specified as a structure of parameters. Specify these parameters to
tune the internal control behavior of the UAV. Specify the proportional (P) and derivative (D) gains for
the dynamic model and other UAV parameters. The structure for fixed-wing UAVs contains these
fields with defaults listed:

• 'PDRoll' - [3402.97 116.67]
• 'PHeight' - 3.9
• 'PFlightPathAngle' - 39
• 'PAirspeed' - 0.39
• 'FlightPathAngleLimits' - [-pi/2 pi/2] ([min max] angle in radians)

Example: struct('PDRoll',
[3402.97,116.67],'PHeight',3.9,'PFlightPathAngle',39,'PAirSpeed',0.39,'Flight
PathAngleLimits',[-pi/2 pi/2])

 fixedwing

1-7

Data Types: struct

ModelType — UAV guidance model type
'FixedWingGuidance' (default)

This property is read-only.

UAV guidance model type, specified as 'FixedWingGuidance'.

DataType — Input and output numeric data types
'double' (default) | 'single'

Input and output numeric data types, specified as either 'double' or 'single'. Choose the data
type based on possible software or hardware limitations.

Object Functions
control Control commands for UAV
derivative Time derivative of UAV states
environment Environmental inputs for UAV
state UAV state vector

Examples

Simulate A Fixed-Wing Control Command

This example shows how to use the fixedwing guidance model to simulate the change in state of a
UAV due to a command input.

Create the fixed-wing guidance model.

model = fixedwing;

Set the air speed of the vehicle by modifying the structure from the state function.

s = state(model);
s(4) = 5; % 5 m/s

Specify a control command, u, that maintains the air speed and gives a roll angle of pi/12.

u = control(model);
u.RollAngle = pi/12;
u.AirSpeed = 5;

Create a default environment without wind.

e = environment(model);

Compute the time derivative of the state given the current state, control command, and environment.

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the fixed-wing UAV states based
on this simulation.

1 Classes

1-8

simOut = ode45(@(~,x)derivative(model,x,u,e), [0 50], s);
size(simOut.y)

ans = 1×2

 8 904

Plot the change in roll angle based on the simulation output. The roll angle is the 7th row of the
simOut.y output.

plot(simOut.y(7,:))

You can also plot the fixed-wing trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 30th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
fixedwing.stl file and the positive Z-direction as "down". The displayed view shows the UAV
making a constant turn based on the constant roll angle.

downsample = 1:30:size(simOut.y,2);
translations = simOut.y(1:3,downsample)'; % xyz-position
rotations = eul2quat([simOut.y(5,downsample)',simOut.y(6,downsample)',simOut.y(7,downsample)']); % ZYX Euler
plotTransforms(translations,rotations,...
 'MeshFilePath','fixedwing.stl','InertialZDirection',"down")
hold on
plot3(simOut.y(1,:),-simOut.y(2,:),simOut.y(3,:),'--b') % full path
xlim([-10.0 10.0])

 fixedwing

1-9

ylim([-20.0 5.0])
zlim([-0.5 4.00])
view([-45 90])
hold off

More About
UAV Coordinate Systems

The UAV Toolbox uses the North-East-Down (NED) coordinate system convention, which is also
sometimes called the local tangent plane (LTP). The UAV position vector consists of three numbers for
position along the northern-axis, eastern-axis, and vertical position. The down element complies with
the right-hand rule and results in negative values for altitude gain.

The ground plane, or earth frame (NE plane, D = 0), is assumed to be an inertial plane that is flat
based on the operation region for small UAV control. The earth frame coordinates are [xe,ye,ze]. The
body frame of the UAV is attached to the center of mass with coordinates [xb,yb,zb]. xb is the preferred
forward direction of the UAV, and zb is perpendicular to the plane that points downwards when the
UAV travels during perfect horizontal flight.

The orientation of the UAV (body frame) is specified in ZYX Euler angles. To convert from the earth
frame to the body frame, we first rotate about the ze-axis by the yaw angle, ψ. Then, rotate about the
intermediate y-axis by the pitch angle, ϕ. Then, rotate about the intermediate x-axis by the roll angle,
ϴ.

1 Classes

1-10

The angular velocity of the UAV is represented by [p,q,r] with respect to the body axes, [xb,yb,zb].

UAV Fixed-Wing Guidance Model Equations

For fixed-wing UAVs, the following equations are used to define the guidance model of the UAV. Use
the derivative function to calculate the time-derivative of the UAV state using these governing
equations. Specify the inputs using the state, control, and environment functions.

The UAV position in the earth frame is [xe, ye, h] with orientation as heading angle, flight path angle,
and roll angle, [χ, γ, ϕ] in radians.

The model assumes that the UAV is flying under a coordinated-turn condition, with zero side-slip. The
autopilot controls airspeed, altitude, and roll angle. The corresponding equations of motion are:

Va and Vg denote the UAV air and ground speeds.

The wind speed is specified as [Vwn
,Vwe

,Vwd
] for the north, east, and down directions. To generate the

structure for these inputs, use the environment function.

k* are controller gains. To specify these gains, use the Configuration property of the fixedwing
object.

From these governing equations, the model gives the following variables:

These variables match the output of the state function.

 fixedwing

1-11

References
[1] Randal W. Beard and Timothy W. McLain. "Chapter 9." Small Unmanned Aircraft Theory and

Practice, NJ: Princeton University Press, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ode45 | control | derivative | environment | state | plotTransforms

Objects
multirotor | uavWaypointFollower

Blocks
UAV Guidance Model | Waypoint Follower

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

1 Classes

1-12

flightLogSignalMapping
Visualize UAV flight logs

Description
The flightLogSignalMapping provides visualization tools to analyze flight logs. To inspect UAV
logs, first load your file using a file or log reader like mavlinktlog or ulogreader. Use
preconfigured signal mapping and plots from ULOG or TLOG log files, or define your own signal
mapping using mapSignal. Update or add new plots with updatePlot. Then, call show with a
structure of data to display the list of configured plots defined in the AvailablePlots property.

For ease of use, specific Predefined Signals on page 1-14 and Predefined Plots on page 1-15 are
provided. Details are listed below or can be viewed by calling info for your specific object.

Creation
Description

mapper = flightLogSignalMapping creates a flight log signal mapping object with no preset
signal mapping. Before you can visualize signals, map signals using mapSignal.

mapper = flightLogSignalMapping("tlog") creates a flight log signal mapping object for the
imported MAVLink TLOG message tables.

mapper = flightLogSignalMapping("ulog") creates a flight log signal mapping object for
imported PX4 ULOG files.

Properties
MappedSignals — Names of all mapped signals
string array

Names of all mapped signals, specified as a string array.
Example: ["Accel" "Gyro" "Mag" "Barometer" "Gyro2"]
Data Types: string

AvailablePlots — Names of plots that are available
string array

Names of plots that are available based on the mapped signals, specified as a string array. To add
plots to this list, either map signals for the PreDefined Plots on page 1-15 or call updatePlot.
Example: ["Accel" "Gyro" "Mag" "Barometer" "Gyro2"]
Data Types: string

 flightLogSignalMapping

1-13

Object Functions
checkSignal Check mapped signal
copy Create deep copy of flight log signal mapping object
extract Extract UAV flight log signals as timetables
info Signal mapping and plot information for UAV log signal mapping
mapSignal Map UAV flight log signal
show Display plots for inspection of UAV logs
updatePlot Update UAV flight log plot functions

More About
Predefined Signals

A set of predefined signals and plots are configured in the flightLogSignalMapping object.
Depending on your log file type, you can map specific signals to the provided signal names using
mapSignal. You can also call info to view the table for your log type and see whether you have
already mapped a signal to that plot type.

Specify the SignalName as the input to mapSignal. Signals with the format SignalName# support
mapping multiple signals of the same type. Replace # with incremental integers for each signal name
when calling mapSignal.

The predefined signals have specific names and required fields when mapping the signal.

1 Classes

1-14

Predefined Signals

Signal Name Description Fields Units
Accel# Raw magnetometer reading from

IMU sensor
[ax ay az] m/s2

Airspeed# Airspeed reading of pressure
differential, indicated air speed, and
temperature

[PressDiff, AirSpeed, Temp] Pa, m/s, ℃

AttitudeEuler Attitude of UAV in Euler (ZYX) form [Roll, Pitch, Yaw] radians
AttitudeRate Angular velocity along each body axis [xRotRate, yRotRate, zRotRate] rad/s
AttitudeTargetEule
r

Target attitude of UAV in Euler (ZYX)
form

[TargetRoll, TargetPitch,
TargetYaw]

radians

Barometer# Barometer readings for absolute
pressure, relative pressure, and
temperature

[PressAbs, PressAltitude, Temp] Pa, m, ℃

Battery Voltage readings for battery and
remaining battery capacity (%)

[Volt1,Volt2, ... Volt16,
RemainingCapacity

V, %

GPS# GPS readings for latitude, longitude,
altitude, ground speed, course angle,
and number of satellites visible

[lat, long, alt, groundspeed,
courseAngle, satellites]

degree, degree, m, m/s,
degree, n/a

Gyro# Raw body angular velocity readings
from IMU sensor

[GyroX, GyroY, GyroZ] rad/s

LocalNED Local NED coordinates estimated by
the UAV

[xNED, yNED, zNED] meters

LocalNEDTarget Target location in local NED
coordinates

[xTarget, yTarget, zTarget] meters

LocalNEDVel Local NED velocity estimated by the
UAV

[vx vy vz] m/s

LocalNEDVelTarget Target velocity in NED in local NED [vxTarget, vyTarget, vzTarget] m/s
Mag# Raw magnetometer reading from

IMU sensor
[x y z] Gs

Predefined Plots

After mapping signals to the list of predefined signals using mapSignal, specific plots are made
available when calling show. To view a list of available plots and their associated signals for your
specific object, call info(mapper,"Plot"). If you want to define custom plots based on signals, use
updatePlot.

Each predefined plot has a set of required signals that must be mapped.

 flightLogSignalMapping

1-15

Predefined Plots

Plot Description Signals
Attitude Stacked plot of roll, pitch, yaw angles and

body rotation rates
AttitudeEuler,
AttitudeRate, Gyro#

1 Classes

1-16

Plot Description Signals
AttitudeControl Estimated attitude of UAV and the attitude

target set point
AttitudeEuler,
AttitudeTargetEuler

Battery Battery consumption plot Battery

 flightLogSignalMapping

1-17

Plot Description Signals
Compass Estimated yaw and magnetometer

readings
AttitudeEuler, Mag#,
GPS#

1 Classes

1-18

Plot Description Signals
GPS2D Raw Lat-Lon plot for GPS sensor readings. GPS#

 flightLogSignalMapping

1-19

Plot Description Signals
Height Stacked plots of barometer reading, GPS

altitude reading, and fused height estimate
Barometer#, GPS#,
LocalNED

1 Classes

1-20

Plot Description Signals
Speed Stacked plot of ground velocity and air

speed
GPS#, Airspeed#

 flightLogSignalMapping

1-21

Plot Description Signals
Trajectory Trajectory in local coordinates versus

target set points
LocalNED,
LocalNEDTarget

1 Classes

1-22

Plot Description Signals
TrajectoryTracking Error between desired and actual position

in NED coordinates
LocalNED,
LocalNEDTarget

 flightLogSignalMapping

1-23

Plot Description Signals
TrajectoryVelTracking Error between desired and actual velocity

in NED coordinates
LocalNEDVel,
LocalNEDVelTarget

See Also
mavlinktlog

Introduced in R2020b

1 Classes

1-24

gpsSensor

GPS receiver simulation model

Description
The gpsSensor System object™ models data output from a Global Positioning System (GPS) receiver.

To model a GPS receiver:

1 Create the gpsSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
GPS = gpsSensor
GPS = gpsSensor('ReferenceFrame',RF)
GPS = gpsSensor(___ ,Name,Value)

Description

GPS = gpsSensor returns a gpsSensor System object that computes a Global Positioning System
receiver reading based on a local position and velocity input signal. The default reference position in
geodetic coordinates is

• latitude: 0o N
• longitude: 0o E
• altitude: 0 m

GPS = gpsSensor('ReferenceFrame',RF) returns a gpsSensor System object that computes a
global positioning system receiver reading relative to the reference frame RF. Specify RF as 'NED'
(North-East-Down) or 'ENU' (East-North-Up). The default value is 'NED'.

GPS = gpsSensor(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

 gpsSensor

1-25

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Update rate of receiver (Hz)
1 (default) | positive real scalar

Update rate of the receiver in Hz, specified as a positive real scalar.
Data Types: single | double

ReferenceLocation — Origin of local navigation reference frame
[0 0 0] (default) | [latitude longitude altitude]

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude, longitude,
and altitude). Altitude is the height above the reference ellipsoid model, WGS84. The reference
location is in [degrees degrees meters]. The degree format is decimal degrees (DD).
Data Types: single | double

PositionInputFormat — Position coordinate input format
'Local' (default) | 'Geodetic'

Position coordinate input format, specified as 'Local' or 'Geodetic'.

• If you set the property as 'Local', then you need to specify the truePosition input as
Cartesian coordinates with respect to the local navigation frame whose origin is fixed and defined
by the ReferenceLcation property. Additionally, when you specify the trueVelocity input,
you need to specify it with respect to this local navigation frame.

• If you set the property as 'Geodetic', then you need to specify the truePosition input as
geodetic coordinates in latitude, longitude, and altitude. Additionally, when you specify the
trueVelocity input, you need to specify it with respect to the navigation frame (NED or ENU)
whose origin corresponds to the truePosition input. When setting the property as
'Geodetic', the gpsSensor object neglects the ReferenceLocation property.

Data Types: character vector

HorizontalPositionAccuracy — Horizontal position accuracy (m)
1.6 (default) | nonnegative real scalar

Horizontal position accuracy in meters, specified as a nonnegative real scalar. The horizontal position
accuracy specifies the standard deviation of the noise in the horizontal position measurement.

Tunable: Yes
Data Types: single | double

VerticalPositionAccuracy — Vertical position accuracy (m)
3 (default) | nonnegative real scalar

Vertical position accuracy in meters, specified as a nonnegative real scalar. The vertical position
accuracy specifies the standard deviation of the noise in the vertical position measurement.

Tunable: Yes
Data Types: single | double

1 Classes

1-26

VelocityAccuracy — Velocity accuracy (m/s)
0.1 (default) | nonnegative real scalar

Velocity accuracy in meters per second, specified as a nonnegative real scalar. The velocity accuracy
specifies the standard deviation of the noise in the velocity measurement.

Tunable: Yes
Data Types: single | double

DecayFactor — Global position noise decay factor
0.999 (default) | scalar in the range [0,1]

Global position noise decay factor, specified as a scalar in the range [0,1].

A decay factor of 0 models the global position noise as a white noise process. A decay factor of 1
models the global position noise as a random walk process.

Tunable: Yes
Data Types: single | double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

• 'Global stream' –– Random numbers are generated using the current global random number
stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer scalar

Initial seed of an mt19937ar random number generator algorithm, specified as a nonnegative integer
scalar.
Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
[position,velocity,groundspeed,course] = GPS(truePosition,trueVelocity)

Description

[position,velocity,groundspeed,course] = GPS(truePosition,trueVelocity)
computes global navigation satellite system receiver readings from the position and velocity inputs.

 gpsSensor

1-27

Input Arguments

truePosition — Position of GPS receiver in navigation coordinate system
N-by-3 matrix

Position of the GPS receiver in the navigation coordinate system, specified as a real finite N-by-3
matrix. N is the number of samples in the current frame.

• When the PositionInputFormat property is specified as 'Local', specify truePosition as
Cartesian coordinates with respect to the local navigation frame whose origin is fixed at
ReferenceLocation.

• When the PositionInputFormat property is specified as 'Geodetic', specify truePosition
as geodetic coordinates in [latitude longitude altitude]. Latitude and longitude are
in meters. altitude is the height above the WGS84 ellipsoid model in meters.

Data Types: single | double

trueVelocity — Velocity of GPS receiver in navigation coordinate system (m/s)
N-by-3 matrix

Velocity of GPS receiver in the navigation coordinate system in meters per second, specified as a real
finite N-by-3 matrix. N is the number of samples in the current frame.

• When the PositionInputFormat property is specified as 'Local', specify trueVelocity with
respect to the local navigation frame (NED or ENU) whose origin is fixed at
ReferenceLocation.

• When the PositionInputFormat property is specified as 'Geodetic', specify trueVelocity
with respect to the navigation frame (NED or ENU) whose origin corresponds to the
truePosition input.

Data Types: single | double

Output Arguments

position — Position in LLA coordinate system
N-by-3 matrix

Position of the GPS receiver in the geodetic latitude, longitude, and altitude (LLA) coordinate system,
returned as a real finite N-by-3 array. Latitude and longitude are in degrees with North and East
being positive. Altitude is in meters.

N is the number of samples in the current frame.
Data Types: single | double

velocity — Velocity in local navigation coordinate system (m/s)
N-by-3 matrix

Velocity of the GPS receiver in the local navigation coordinate system in meters per second, returned
as a real finite N-by-3 array. N is the number of samples in the current frame.

• When the PositionInputFormat property is specified as 'Local', the returned velocity is with
respect to the local navigation frame whose origin is fixed at ReferenceLocation.

1 Classes

1-28

• When the PositionInputFormat property is specified as 'Geodetic', the returned velocity is
with respect to the navigation frame (NED or ENU) whose origin corresponds to the position
output.

Data Types: single | double

groundspeed — Magnitude of horizontal velocity in local navigation coordinate system
(m/s)
N-by-1 column vector

Magnitude of the horizontal velocity of the GPS receiver in the local navigation coordinate system in
meters per second, returned as a real finite N-by-1 column vector.

N is the number of samples in the current frame.
Data Types: single | double

course — Direction of horizontal velocity in local navigation coordinate system (°)
N-by-1 column vector

Direction of the horizontal velocity of the GPS receiver in the local navigation coordinate system in
degrees, returned as a real finite N-by-1 column of values between 0 and 360. North corresponds to
360 degrees and East corresponds to 90 degrees.

N is the number of samples in the current frame.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate GPS Position Measurements From Stationary Input

Create a gpsSensor System object™ to model GPS receiver data. Assume a typical one Hz sample
rate and a 1000-second simulation time. Define the reference location in terms of latitude, longitude,
and altitude (LLA) of Natick, MA (USA). Define the sensor as stationary by specifying the true
position and velocity with zeros.

fs = 1;
duration = 1000;
numSamples = duration*fs;

 gpsSensor

1-29

refLoc = [42.2825 -71.343 53.0352];

truePosition = zeros(numSamples,3);
trueVelocity = zeros(numSamples,3);

gps = gpsSensor('SampleRate',fs,'ReferenceLocation',refLoc);

Call gps with the specified truePosition and trueVelocity to simulate receiving GPS data for a
stationary platform.

position = gps(truePosition,trueVelocity);

Plot the true position and the GPS sensor readings for position.

t = (0:(numSamples-1))/fs;

subplot(3, 1, 1)
plot(t, position(:,1), ...
 t, ones(numSamples)*refLoc(1))
title('GPS Sensor Readings')
ylabel('Latitude (degrees)')

subplot(3, 1, 2)
plot(t, position(:,2), ...
 t, ones(numSamples)*refLoc(2))
ylabel('Longitude (degrees)')

subplot(3, 1, 3)
plot(t, position(:,3), ...
 t, ones(numSamples)*refLoc(3))
ylabel('Altitude (m)')
xlabel('Time (s)')

1 Classes

1-30

The position readings have noise controlled by HorizontalPositionAccuracy,
VerticalPositionAccuracy, VelocityAccuracy, and DecayFactor. The DecayFactor
property controls the drift in the noise model. By default, DecayFactor is set to 0.999, which
approaches a random walk process. To observe the effect of the DecayFactor property:

1 Reset the gps object.
2 Set DecayFactor to 0.5.
3 Call gps with variables specifying a stationary position.
4 Plot the results.

The GPS position readings now oscillate around the true position.

reset(gps)
gps.DecayFactor = 0.5;
position = gps(truePosition,trueVelocity);

subplot(3, 1, 1)
plot(t, position(:,1), ...
 t, ones(numSamples)*refLoc(1))
title('GPS Sensor Readings - Decay Factor = 0.5')
ylabel('Latitude (degrees)')

subplot(3, 1, 2)
plot(t, position(:,2), ...
 t, ones(numSamples)*refLoc(2))
ylabel('Longitude (degrees)')

 gpsSensor

1-31

subplot(3, 1, 3)
plot(t, position(:,3), ...
 t, ones(numSamples)*refLoc(3))
ylabel('Altitude (m)')
xlabel('Time (s)')

Relationship Between Groundspeed and Course Accuracy

GPS receivers achieve greater course accuracy as groundspeed increases. In this example, you create
a GPS receiver simulation object and simulate the data received from a platform that is accelerating
from a stationary position.

Create a default gpsSensor System object™ to model data returned by a GPS receiver.

GPS = gpsSensor

GPS =
 gpsSensor with properties:

 SampleRate: 1 Hz
 PositionInputFormat: 'Local'
 ReferenceLocation: [0 0 0] [deg deg m]
 HorizontalPositionAccuracy: 1.6 m
 VerticalPositionAccuracy: 3 m

1 Classes

1-32

 VelocityAccuracy: 0.1 m/s
 RandomStream: 'Global stream'
 DecayFactor: 0.999

Create matrices to describe the position and velocity of a platform in the NED coordinate system. The
platform begins from a stationary position and accelerates to 60 m/s North-East over 60 seconds,
then has a vertical acceleration to 2 m/s over 2 seconds, followed by a 2 m/s rate of climb for another
8 seconds. Assume a constant velocity, such that the velocity is the simple derivative of the position.

duration = 70;
numSamples = duration*GPS.SampleRate;

course = 45*ones(duration,1);
groundspeed = [(1:60)';60*ones(10,1)];

Nvelocity = groundspeed.*sind(course);
Evelocity = groundspeed.*cosd(course);
Dvelocity = [zeros(60,1);-1;-2*ones(9,1)];
NEDvelocity = [Nvelocity,Evelocity,Dvelocity];

Ndistance = cumsum(Nvelocity);
Edistance = cumsum(Evelocity);
Ddistance = cumsum(Dvelocity);
NEDposition = [Ndistance,Edistance,Ddistance];

Model GPS measurement data by calling the GPS object with your velocity and position matrices.

[~,~,groundspeedMeasurement,courseMeasurement] = GPS(NEDposition,NEDvelocity);

Plot the groundspeed and the difference between the true course and the course returned by the GPS
simulator.

As groundspeed increases, the accuracy of the course increases. Note that the velocity increase
during the last ten seconds has no effect, because the additional velocity is not in the ground plane.

t = (0:numSamples-1)/GPS.SampleRate;

subplot(2,1,1)
plot(t,groundspeed);
ylabel('Speed (m/s)')
title('Relationship Between Groundspeed and Course Accuracy')

subplot(2,1,2)
courseAccuracy = courseMeasurement - course;
plot(t,courseAccuracy)
xlabel('Time (s)');
ylabel('Course Accuracy (degrees)')

 gpsSensor

1-33

Model GPS Receiver Data

Simulate GPS data received during a trajectory from the city of Natick, MA, to Boston, MA.

Define the decimal degree latitude and longitude for the city of Natick, MA USA, and Boston, MA
USA. For simplicity, set the altitude for both locations to zero.

NatickLLA = [42.27752809999999, -71.34680909999997, 0];
BostonLLA = [42.3600825, -71.05888010000001, 0];

Define a motion that can take a platform from Natick to Boston in 20 minutes. Set the origin of the
local NED coordinate system as Natick. Create a waypointTrajectory object to output the
trajectory 10 samples at a time.

fs = 1;
duration = 60*20;

bearing = 68; % degrees
distance = 25.39e3; % meters
distanceEast = distance*sind(bearing);
distanceNorth = distance*cosd(bearing);

NatickNED = [0,0,0];
BostonNED = [distanceNorth,distanceEast,0];

1 Classes

1-34

trajectory = waypointTrajectory(...
 'Waypoints', [NatickNED;BostonNED], ...
 'TimeOfArrival',[0;duration], ...
 'SamplesPerFrame',10, ...
 'SampleRate',fs);

Create a gpsSensor object to model receiving GPS data for the platform. Set the
HorizontalPositionalAccuracy to 25 and the DecayFactor to 0.25 to emphasize the noise.
Set the ReferenceLocation to the Natick coordinates in LLA.

GPS = gpsSensor(...
 'HorizontalPositionAccuracy',25, ...
 'DecayFactor',0.25, ...
 'SampleRate',fs, ...
 'ReferenceLocation',NatickLLA);

Open a figure and plot the position of Natick and Boston in LLA. Ignore altitude for simplicity.

In a loop, call the gpsSensor object with the ground-truth trajectory to simulate the received GPS
data. Plot the ground-truth trajectory and the model of received GPS data.

figure(1)
plot(NatickLLA(1),NatickLLA(2),'ko', ...
 BostonLLA(1),BostonLLA(2),'kx')
xlabel('Latitude (degrees)')
ylabel('Longitude (degrees)')
title('GPS Sensor Data for Natick to Boston Trajectory')
hold on

while ~isDone(trajectory)
 [truePositionNED,~,trueVelocityNED] = trajectory();
 reportedPositionLLA = GPS(truePositionNED,trueVelocityNED);

 figure(1)
 plot(reportedPositionLLA(:,1),reportedPositionLLA(:,2),'r.')
end

 gpsSensor

1-35

As a best practice, release System objects when complete.

release(GPS)
release(trajectory)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
insSensor | uavSensor

Introduced in R2020b

1 Classes

1-36

insSensor
Inertial navigation system and GNSS/GPS simulation model

Description
The insSensor System object models a device that fuses measurements from an inertial navigation
system (INS) and global navigation satellite system (GNSS) such as a GPS, and outputs the fused
measurements.

To output fused INS and GNSS measurements:

1 Create the insSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
INS = insSensor
INS = insSensor(Name,Value)

Description

INS = insSensor returns a System object, INS, that models a device that outputs measurements
from an INS and GNSS.

INS = insSensor(Name,Value) sets properties on page 1-37 using one or more name-value
pairs. Unspecified properties have default values. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

MountingLocation — Location of sensor on platform (m)
[0 0 0] (default) | three-element real-valued vector of form [x y z]

Location of the sensor on the platform, in meters, specified as a three-element real-valued vector of
the form [x y z]. The vector defines the offset of the sensor origin from the origin of the platform.

Tunable: Yes

 insSensor

1-37

Data Types: single | double

RollAccuracy — Accuracy of roll measurement (deg)
0.2 (default) | nonnegative real scalar

Accuracy of the roll measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Roll is the rotation around the x-axis of the sensor body. Roll noise is modeled as a white noise
process. RollAccuracy sets the standard deviation of the roll measurement noise.

Tunable: Yes
Data Types: single | double

PitchAccuracy — Accuracy of pitch measurement (deg)
0.2 (default) | nonnegative real scalar

Accuracy of the pitch measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Pitch is the rotation around the y-axis of the sensor body. Pitch noise is modeled as a white noise
process. PitchAccuracy defines the standard deviation of the pitch measurement noise.

Tunable: Yes
Data Types: single | double

YawAccuracy — Accuracy of yaw measurement (deg)
1 (default) | nonnegative real scalar

Accuracy of the yaw measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Yaw is the rotation around the z-axis of the sensor body. Yaw noise is modeled as a white noise
process. YawAccuracy defines the standard deviation of the yaw measurement noise.

Tunable: Yes
Data Types: single | double

PositionAccuracy — Accuracy of position measurement (m)
[1 1 1] (default) | nonnegative real scalar | three-element real-valued vector

Accuracy of the position measurement of the sensor body, in meters, specified as a nonnegative real
scalar or a three-element real-valued vector. The elements of the vector set the accuracy of the x-, y-,
and z-position measurements, respectively. If you specify PositionAccuracy as a scalar value, then
the object sets the accuracy of all three positions to this value.

Position noise is modeled as a white noise process. PositionAccuracy defines the standard
deviation of the position measurement noise.

Tunable: Yes
Data Types: single | double

VelocityAccuracy — Accuracy of velocity measurement (m/s)
0.05 (default) | nonnegative real scalar

1 Classes

1-38

Accuracy of the velocity measurement of the sensor body, in meters per second, specified as a
nonnegative real scalar.

Velocity noise is modeled as a white noise process. VelocityAccuracy defines the standard
deviation of the velocity measurement noise.

Tunable: Yes
Data Types: single | double

AccelerationAccuracy — Accuracy of acceleration measurement (m/s2)
0 (default) | nonnegative real scalar

Accuracy of the acceleration measurement of the sensor body, in meters per second, specified as a
nonnegative real scalar.

Acceleration noise is modeled as a white noise process. AccelerationAccuracy defines the
standard deviation of the acceleration measurement noise.

Tunable: Yes
Data Types: single | double

AngularVelocityAccuracy — Accuracy of angular velocity measurement (deg/s)
0 (default) | nonnegative real scalar

Accuracy of the angular velocity measurement of the sensor body, in meters per second, specified as
a nonnegative real scalar.

Angular velocity is modeled as a white noise process. AngularVelocityAccuracy defines the
standard deviation of the acceleration measurement noise.

Tunable: Yes
Data Types: single | double

TimeInput — Enable input of simulation time
false or 0 (default) | true or 1

Enable input of simulation time, specified as a logical 0 (false) or 1 (true). Set this property to
true to input the simulation time by using the simTime argument.

Tunable: No
Data Types: logical

HasGNSSFix — Enable GNSS fix
true or 1 (default) | false or 0

Enable GNSS fix, specified as a logical 1 (true) or 0 (false). Set this property to false to simulate
the loss of a GNSS receiver fix. When a GNSS receiver fix is lost, position measurements drift at a
rate specified by the PositionErrorFactor property.

Tunable: Yes
Dependencies

To enable this property, set TimeInput to true.

 insSensor

1-39

Data Types: logical

PositionErrorFactor — Position error factor without GNSS fix
[0 0 0] (default) | nonnegative scalar | 1-by-3 vector of scalars

Position error factor without GNSS fix, specified as a scalar or a 1-by-3 vector of scalars.

When the HasGNSSFix property is set to false, the position error grows at a quadratic rate due to
constant bias in the accelerometer. The position error for a position component E(t) can be expressed
as E(t) = 1/2αt2, where α is the position error factor for the corresponding component and t is the
time since the GNSS fix is lost. While running, the object computes t based on the simTime input.
The computed E(t) values for the x, y, and z components are added to the corresponding position
components of the gTruth input.

Tunable: Yes

Dependencies

To enable this property, set TimeInput to true and HasGNSSFix to false.
Data Types: single | double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as one of these options:

• 'Global stream' –– Generate random numbers using the current global random number
stream.

• 'mt19937ar with seed' –– Generate random numbers using the mt19937ar algorithm, with
the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer

Initial seed of the mt19937ar random number generator algorithm, specified as a nonnegative
integer.

Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
measurement = INS(gTruth)
measurement = INS(gTruth,simTime)

1 Classes

1-40

Description

measurement = INS(gTruth) models the data received from an INS sensor reading and GNSS
sensor reading. The output measurement is based on the inertial ground-truth state of the sensor
body, gTruth.

measurement = INS(gTruth,simTime) additionally specifies the time of simulation, simTime. To
enable this syntax, set the TimeInput property to true.

Input Arguments

gTruth — Inertial ground-truth state of sensor body
structure

Inertial ground-truth state of sensor body, in local Cartesian coordinates, specified as a structure
containing these fields:

Field Description
'Position' Position, in meters, specified as a real, finite N-

by-3 matrix of [x y z] vectors. N is the number of
samples in the current frame.

'Velocity' Velocity (v), in meters per second, specified as a
real, finite N-by-3 matrix of [vx vy vz] vector. N is
the number of samples in the current frame.

'Orientation' Orientation with respect to the local Cartesian
coordinate system, specified as one of these
options:

• N-element column vector of quaternion
objects

• 3-by-3-by-N array of rotation matrices
• N-by-3 matrix of [xroll ypitch zyaw] angles in

degrees

Each quaternion or rotation matrix is a frame
rotation from the local Cartesian coordinate
system to the current sensor body coordinate
system. N is the number of samples in the current
frame.

'Acceleration' Acceleration (a), in meters per second squared,
specified as a real, finite N-by-3 matrix of [ax ay
az] vectors. N is the number of samples in the
current frame.

'AngularVelocity' Angular velocity (ω), in degrees per second
squared, specified as a real, finite N-by-3 matrix
of [ωx ωy ωz] vectors. N is the number of samples
in the current frame.

The field values must be of type double or single.

The Position, Velocity, and Orientation fields are required. The other fields are optional.

 insSensor

1-41

Example: struct('Position',[0 0 0],'Velocity',[0 0
0],'Orientation',quaternion([1 0 0 0]))

simTime — Simulation time
nonnegative real scalar

Simulation time, in seconds, specified as a nonnegative real scalar.
Data Types: single | double

Output Arguments

measurement — Measurement of sensor body motion
structure

Measurement of the sensor body motion, in local Cartesian coordinates, returned as a structure
containing these fields:

Field Description
'Position' Position, in meters, specified as a real, finite N-

by-3 matrix of [x y z] vectors. N is the number of
samples in the current frame.

'Velocity' Velocity (v), in meters per second, specified as a
real, finite N-by-3 matrix of [vx vy vz] vector. N is
the number of samples in the current frame.

'Orientation' Orientation with respect to the local Cartesian
coordinate system, specified as one of these
options:

• N-element column vector of quaternion
objects

• 3-by-3-by-N array of rotation matrices
• N-by-3 matrix of [xroll ypitch zyaw] angles in

degrees

Each quaternion or rotation matrix is a frame
rotation from the local Cartesian coordinate
system to the current sensor body coordinate
system. N is the number of samples in the current
frame.

'Acceleration' Acceleration (a), in meters per second squared,
specified as a real, finite N-by-3 matrix of [ax ay
az] vectors. N is the number of samples in the
current frame.

'AngularVelocity' Angular velocity (ω), in degrees per second
squared, specified as a real, finite N-by-3 matrix
of [ωx ωy ωz] vectors. N is the number of samples
in the current frame.

The returned field values are of type double or single and are of the same type as the
corresponding field values in the gTruth input.

1 Classes

1-42

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to insSensor
perturbations Perturbation defined on object
perturb Apply perturbations to object

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object
release Release resources and allow changes to System object property values and input

characteristics

Examples

Generate INS Measurements from Stationary Input

Create a motion structure that defines a stationary position at the local north-east-down (NED) origin.
Because the platform is stationary, you need to define only a single sample. Assume the ground-truth
motion is sampled for 10 seconds with a 100 Hz sample rate. Create a default insSensor System
object™. Preallocate variables to hold output from the insSensor object.

Fs = 100;
duration = 10;
numSamples = Fs*duration;

motion = struct(...
 'Position',zeros(1,3), ...
 'Velocity',zeros(1,3), ...
 'Orientation',ones(1,1,'quaternion'));

INS = insSensor;

positionMeasurements = zeros(numSamples,3);
velocityMeasurements = zeros(numSamples,3);
orientationMeasurements = zeros(numSamples,1,'quaternion');

In a loop, call INS with the stationary motion structure to return the position, velocity, and orientation
measurements in the local NED coordinate system. Log the position, velocity, and orientation
measurements.

for i = 1:numSamples

 measurements = INS(motion);

 positionMeasurements(i,:) = measurements.Position;
 velocityMeasurements(i,:) = measurements.Velocity;

 insSensor

1-43

 orientationMeasurements(i) = measurements.Orientation;

end

Convert the orientation from quaternions to Euler angles for visualization purposes. Plot the position,
velocity, and orientation measurements over time.

orientationMeasurements = eulerd(orientationMeasurements,'ZYX','frame');

t = (0:(numSamples-1))/Fs;

subplot(3,1,1)
plot(t,positionMeasurements)
title('Position')
xlabel('Time (s)')
ylabel('Position (m)')
legend('North','East','Down')

subplot(3,1,2)
plot(t,velocityMeasurements)
title('Velocity')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
legend('North','East','Down')

subplot(3,1,3)
plot(t,orientationMeasurements)
title('Orientation')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
legend('Roll', 'Pitch', 'Yaw')

1 Classes

1-44

Generate INS Measurements for a Turning Platform

Generate INS measurements using the insSensor System object™. Use waypointTrajectory to
generate the ground-truth path.

Specify a ground-truth orientation that begins with the sensor body x-axis aligned with North and
ends with the sensor body x-axis aligned with East. Specify waypoints for an arc trajectory and a
time-of-arrival vector for the corresponding waypoints. Use a 100 Hz sample rate. Create a
waypointTrajectory System object with the waypoint constraints, and set SamplesPerFrame so
that the entire trajectory is output with one call.

eulerAngles = [0,0,0; ...
 0,0,0; ...
 90,0,0; ...
 90,0,0];
orientation = quaternion(eulerAngles,'eulerd','ZYX','frame');

r = 20;
waypoints = [0,0,0; ...
 100,0,0; ...
 100+r,r,0; ...
 100+r,100+r,0];

toa = [0,10,10+(2*pi*r/4),20+(2*pi*r/4)];

 insSensor

1-45

Fs = 100;
numSamples = floor(Fs*toa(end));

path = waypointTrajectory('Waypoints',waypoints, ...
 'TimeOfArrival',toa, ...
 'Orientation',orientation, ...
 'SampleRate',Fs, ...
 'SamplesPerFrame',numSamples);

Create an insSensor System object to model receiving INS data. Set the PositionAccuracy to
0.1.

ins = insSensor('PositionAccuracy',0.1);

Call the waypoint trajectory object, path, to generate the ground-truth motion. Call the INS
simulator, ins, with the ground-truth motion to generate INS measurements.

[motion.Position,motion.Orientation,motion.Velocity] = path();
insMeas = ins(motion);

Convert the orientation returned by ins to Euler angles in degrees for visualization purposes. Plot
the full path and orientation over time.

orientationMeasurementEuler = eulerd(insMeas.Orientation,'ZYX','frame');

subplot(2,1,1)
plot(insMeas.Position(:,1),insMeas.Position(:,2));
title('Path')
xlabel('North (m)')
ylabel('East (m)')

subplot(2,1,2)
t = (0:(numSamples-1)).'/Fs;
plot(t,orientationMeasurementEuler(:,1), ...
 t,orientationMeasurementEuler(:,2), ...
 t,orientationMeasurementEuler(:,3));
title('Orientation')
legend('Yaw','Pitch','Roll')
xlabel('Time (s)')
ylabel('Rotation (degrees)')

1 Classes

1-46

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object functions, perturbations and perturb, do not support code generation.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
gpsSensor | uavSensor

Objects

Introduced in R2020b

 insSensor

1-47

mavlinkdialect
Parse and store MAVLink dialect XML

Description
The mavlinkdialect object parses and stores message and enum definitions extracted from a
MAVLink message definition file (.xml). The message definition files define the messages supported
for this specific dialect. The structure of the message definitions is defined by the MAVLink message
protocol.

Creation

Syntax
dialect = mavlinkdialect("common.xml")
dialect = mavlinkdialect(dialectXML)
dialect = mavlinkdialect(dialectXML,version)

Description

dialect = mavlinkdialect("common.xml") creates a MAVLink dialect using the common.xml
file for standard MAVLink messages.

dialect = mavlinkdialect(dialectXML) specifies the XML file for parsing the message
definitions. The input sets the DialectXML property.

dialect = mavlinkdialect(dialectXML,version) additionally specifies the MAVLink protocol
version. The inputs set the DialectXML and Version properties, respectively.

Properties
DialectXML — MAVLink dialect name
string

MAVLink dialect name, specified as a string. This name is based on the XML file name.
Example: "ardupilotmega"
Data Types: char | string

Version — MAVLink protocol version
2 (default) | 1

MAVLink protocol version, specified as either 1 or 2.
Data Types: double

1 Classes

1-48

Object Functions
createcmd Create MAVLink command message
createmsg Create MAVLink message
deserializemsg Deserialize MAVLink message from binary buffer
msginfo Message definition for message ID
enuminfo Enum definition for enum ID
enum2num Enum value for given entry
num2enum Enum entry for given value

Examples

Parse and Use MAVLink Dialect

This example shows how to parse a MAVLink XML file and create messages and commands from the
definitions.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

Parse and store the MAVLink dialect XML. Specify the XML path. The default "common.xml" dialect
is provided. This XML file contains all the message and enum definitions.

dialect = mavlinkdialect("common.xml");

Create a MAVLink command from the MAV_CMD enum, which is an enum of MAVLink commands to
send to the UAV. Specify the setting as "int" or "long", and the type as an integer or string.

cmdMsg = createcmd(dialect,"long",22)

cmdMsg = struct with fields:
 MsgID: 76
 Payload: [1x1 struct]

Verify the command name using num2enum. Command 22 is a take-off command for the UAV. You can
convert back to an ID using enum2num. Your dialect can contain many different enums with different
names and IDs.

cmdName = num2enum(dialect,"MAV_CMD",22)

cmdName =
"MAV_CMD_NAV_TAKEOFF"

cmdID = enum2num(dialect,"MAV_CMD",cmdName)

cmdID = 22

Use enuminfo to view the table of the MAV_CMD enum entries.

info = enuminfo(dialect,"MAV_CMD");
info.Entries{:}

ans=148×3 table
 Name Value Description
 _____________________________________ _____ ___

 mavlinkdialect

1-49

 "MAV_CMD_NAV_WAYPOINT" 16 "Navigate to waypoint."
 "MAV_CMD_NAV_LOITER_UNLIM" 17 "Loiter around this waypoint an unlimited amount of time"
 "MAV_CMD_NAV_LOITER_TURNS" 18 "Loiter around this waypoint for X turns"
 "MAV_CMD_NAV_LOITER_TIME" 19 "Loiter at the specified latitude, longitude and altitude for a certain amount of time. Multicopter vehicles stop at the point (within a vehicle-specific acceptance radius). Forward-only moving vehicles (e.g. fixed-wing) circle the point with the specified radius/direction. If the Heading Required parameter (2) is non-zero forward moving aircraft will only leave the loiter circle once heading towards the next waypoint."
 "MAV_CMD_NAV_RETURN_TO_LAUNCH" 20 "Return to launch location"
 "MAV_CMD_NAV_LAND" 21 "Land at location."
 "MAV_CMD_NAV_TAKEOFF" 22 "Takeoff from ground / hand. Vehicles that support multiple takeoff modes (e.g. VTOL quadplane) should take off using the currently configured mode."
 "MAV_CMD_NAV_LAND_LOCAL" 23 "Land at local position (local frame only)"
 "MAV_CMD_NAV_TAKEOFF_LOCAL" 24 "Takeoff from local position (local frame only)"
 "MAV_CMD_NAV_FOLLOW" 25 "Vehicle following, i.e. this waypoint represents the position of a moving vehicle"
 "MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT" 30 "Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached."
 "MAV_CMD_NAV_LOITER_TO_ALT" 31 "Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint."
 "MAV_CMD_DO_FOLLOW" 32 "Begin following a target"
 "MAV_CMD_DO_FOLLOW_REPOSITION" 33 "Reposition the MAV after a follow target command has been sent"
 "MAV_CMD_DO_ORBIT" 34 "Start orbiting on the circumference of a circle defined by the parameters. Setting any value NaN results in using defaults."
 "MAV_CMD_NAV_ROI" 80 "Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicle's control system to control the vehicle attitude and the attitude of various sensors such as cameras."
 ⋮

Query the dialect for a specific message ID. Create a blank MAVLink message using the message ID.

info = msginfo(dialect,"HEARTBEAT")

info=1×4 table
 MessageID MessageName Description Fields
 _________ ___________ ___ ___________

 0 "HEARTBEAT" "The heartbeat message shows that a system or component is present and responding. The type and autopilot fields (along with the message component id), allow the receiving system to treat further messages from this system appropriately (e.g. by laying out the user interface based on the autopilot). This microservice is documented at https://mavlink.io/en/services/heartbeat.html" {6x6 table}

msg = createmsg(dialect,info.MessageID);

See Also
mavlinkio | mavlinkclient | mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

External Websites
MAVLink Developer Guide

Introduced in R2019a

1 Classes

1-50

https://mavlink.io

mavlinkclient
MAVLink client information

Description
The mavlinkclient object stores MAVLink client information for connecting to UAVs (unmanned
aerial vehicles) that utilize the MAVLink communication protocol. Connect with a MAVLink client
using mavlinkio and use this object for saving the component and system information.

Creation
Syntax
client = mavlinkclient(mavlink,sysID,compID)

Description

client = mavlinkclient(mavlink,sysID,compID) creates a MAVLink client interface for a
MAVLink component. Connect to a MAVLink client using mavlinkio and specify the object in
mavlink. When a heartbeat is received by the client, the ComponentType and AutoPilotType
properties are updated automatically. Specify the SystemID and ComponentID as integers.

Properties
SystemID — MAVLink system ID
positive integer between 1 and 255

MAVLink system ID, specified as a positive integer between 1 and 255. MAVLink protocol only
supports up to 255 systems. Usually, each UAV has its own system ID, but multiple UAVs could be
considered one system.
Example: 1
Data Types: uint8

ComponentID — MAVLink component ID
positive integer between 1 and 255

MAVLink component ID, specified as a positive integer between 1 and 255.
Example: 2
Data Types: uint8

ComponentType — MAVLink component type
"Unknown" (default) | string

MAVLink component type, specified as a string. This value is automatically updated to the correct
type if a heartbeat message is received by the client with the matching system ID and component ID.
You must be connected to a client using mavlinkio.

 mavlinkclient

1-51

Example: "MAV_TYPE_GCS"
Data Types: string

AutoPilot — Autopilot type for UAV
"Unknown" (default) | string

Autopilot type for UAV, specified as a string. This value is automatically updated to the correct type if
a heartbeat message is received by the client with the matching system ID and component ID. You
must be connected to a client using mavlinkio.
Example: "MAV_AUTOPILOT_INVALID"
Data Types: string

Examples

Store MAVLink Client Information

Connect to a MAVLink client.

mavlink = mavlinkio("common.xml");
connect(mavlink,"UDP");

Create the object for storing the client information. Specify the system and component ID.

client = mavlinkclient(mavlink,1,1)

client =
 mavlinkclient with properties:

 SystemID: 1
 ComponentID: 1
 ComponentType: "Unknown"
 AutopilotType: "Unknown"

Disconnect from client.

disconnect(mavlink)

See Also
mavlinkio | mavlinkdialect | mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

External Websites
MAVLink Developer Guide

Introduced in R2019a

1 Classes

1-52

https://mavlink.io

mavlinkio
Connect with MAVLink clients to exchange messages

Description
The mavlinkio object connects with MAVLink clients through UDP ports to exchange messages with
UAVs (unmanned aerial vehicles) using the MAVLink communication protocols.

Creation
Syntax
mavlink = mavlinkio(msgDefinitions)
mavlink = mavlinkio(dialectXML)
mavlink = mavlinkio(dialectXML,version)
mavlink = mavlinkio(___ ,Name,Value)

Description

mavlink = mavlinkio(msgDefinitions) creates an interface to connect with MAVLink clients
using the input mavlinkdialect object, which defines the message definitions. This dialect object is
set directly to the Dialect property.

mavlink = mavlinkio(dialectXML) directly specifies the XML file for the message definitions as
a file name. A mavlinkdialect is created using this XML file and set to the Dialect property

mavlink = mavlinkio(dialectXML,version) additionally specifies the MAVLink protocol
version as either 1 or 2.

mavlink = mavlinkio(___ ,Name,Value) additionally specifies arguments using the following
name-value pairs.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

The name-value pairs directly set the MAVLink client information in the LocalClient property. See
LocalClient for more info on what values can be set.

Properties
Dialect — MAVLink dialect
mavlinkdialect object

MAVLink dialect, specified as a mavlinkdialect object. The dialect specifies the message structure
for the MAVLink protocol.

 mavlinkio

1-53

LocalClient — Local client information
structure

This property is read-only.

Local client information, specified as a structure. The local client is setup in MATLAB® to
communicate with other MAVLink clients. The structure contains the following fields:

• SystemID
• ComponentID
• ComponentType
• AutopilotType

To set these values when creating the mavlinkio object, use name-value pairs. For example:

mavlink = mavlinkio("common.xml","SystemID",1,"ComponentID",1)

This property is nontunable when you are connected to a MAVLink client. For more information, see
mavlinkclient.
Data Types: struct

Object Functions
connect Connect to MAVLink clients through UDP port
disconnect Disconnect from MAVLink clients
sendmsg Send MAVLink message
sendudpmsg Send MAVLink message to UDP port
serializemsg Serialize MAVLink message to binary buffer
listConnections List all active MAVLink connections
listClients List all connected MAVLink clients
listTopics List all topics received by MAVLink client

Examples

Store MAVLink Client Information

Connect to a MAVLink client.

mavlink = mavlinkio("common.xml");
connect(mavlink,"UDP");

Create the object for storing the client information. Specify the system and component ID.

client = mavlinkclient(mavlink,1,1)

client =
 mavlinkclient with properties:

 SystemID: 1
 ComponentID: 1
 ComponentType: "Unknown"
 AutopilotType: "Unknown"

1 Classes

1-54

Disconnect from client.

disconnect(mavlink)

Work with MAVLink Connection

This example shows how to connect to MAVLink clients, inspect the list of topics, connections, and
clients, and send messages through UDP ports using the MAVLink communication protocol.

Connect to a MAVLink client using the "common.xml" dialect. This local client communicates with
any other clients through a UDP port.

dialect = mavlinkdialect("common.xml");
mavlink = mavlinkio(dialect);
connect(mavlink,"UDP")

ans =
"Connection1"

You can list all the active clients, connections, and topics for the MAVLink connection. Currently,
there is only one client connection and no topics have received messages.

listClients(mavlink)

ans=1×4 table
 SystemID ComponentID ComponentType AutopilotType
 ________ ___________ ______________ _______________________

 255 1 "MAV_TYPE_GCS" "MAV_AUTOPILOT_INVALID"

listConnections(mavlink)

ans=1×2 table
 ConnectionName ConnectionInfo
 ______________ ___________________

 "Connection1" "UDP@0.0.0.0:64030"

listTopics(mavlink)

ans =

 0x5 empty table

Create a subscriber for receiving messages on the client. This subscriber listens for the
"HEARTBEAT" message topic with ID equal to 0.

sub = mavlinksub(mavlink,0);

Create a "HEARTBEAT" message using the mavlinkdialect object. Specify payload information and
send the message over the MAVLink client.

msg = createmsg(dialect,"HEARTBEAT");
msg.Payload.type(:) = enum2num(dialect,'MAV_TYPE','MAV_TYPE_QUADROTOR');
sendmsg(mavlink,msg)

 mavlinkio

1-55

Disconnect from the client.

disconnect(mavlink)

See Also
connect | mavlinkdialect | mavlinkclient | mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

External Websites
MAVLink Developer Guide

Introduced in R2019a

1 Classes

1-56

https://mavlink.io

mavlinksub
Receive MAVLink messages

Description
The mavlinksub object subscribes to topics from the connected MAVLink clients using a mavlinkio
object. Use the mavlinksub object to obtain the most recently received messages and call functions
to process newly received messages.

Creation
Syntax
sub = mavlinksub(mavlink)
sub = mavlinksub(mavlink,topic)
sub = mavlinksub(mavlink,client)
sub = mavlinksub(mavlink,client,topic)
sub = mavlinksub(___ ,Name,Value)

Description

sub = mavlinksub(mavlink) subscribes to all topics from all clients connected via the
mavlinkio object. This syntax sets the Client property to "Any".

sub = mavlinksub(mavlink,topic) subscribes to a specific topic, specified as a string or
integer, from all clients connected via the mavlinkio object. The function sets the topic input to
the Topic property.

sub = mavlinksub(mavlink,client) subscribes to all topics from the client specified as a
mavlinkclient object. The function sets the Client property to this input client.

sub = mavlinksub(mavlink,client,topic) subscribes to a specific topic on a specific client.
The function sets the Client and Topic properties.

sub = mavlinksub(___ ,Name,Value) additionally specifies the BuffferSize or
NewMessageFcn properties using name-value pairs and the previous syntaxes. The Name input is one
of the property names.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Properties
Client — Client information of received message
"Any" (default) | mavlinkclient object

 mavlinksub

1-57

Client information of the received message, specified as a mavlinkclient object. The default value
of "Any" means the subscriber is listening to all clients connected via the mavlinkio object.

Topic — Topic name
"Any" (default) | string

Topic name the subscriber listens to, specified as a string. The default value of "Any" means the
subscriber is listening to all topics on the client.
Example: "HEARTBEAT"
Data Types: char | string

BufferSize — Length of message buffer
1 (default) | positive integer

Length of message buffer, specified as a positive integer. This value is the maximum number of
messages that can be stored in this subscriber.
Data Types: double

NewMessageFcn — Callback function for new messages
[] (default) | function handle

Callback function for new messages, specified as a function handle. This function is called when a
new message is received by the client. The function handle has the following syntax:

callback(sub,msg)

sub is a structure with fields for the Client, Topic, and BufferSize properties of the
mavlinksub object. msg is the message received as a structure with the fields:

• MsgID –– Positive integer for message ID.
• SystemID –– System ID of MAVLink client that sent message.
• ComponentID–– Component ID of MAVLink client that sent message.
• Payload –– Structure containing fields based on the message definition.
• Seq –– Positive integer for sequence of message.

The Payload is a structure defined by the message definition for the MAVLink dialect.
Data Types: function_handle

Object Functions
latestmsgs Received messages from MAVLink subscriber

Examples

Subscribe to MAVLink Topic

Connect to a MAVLink client.

mavlink = mavlinkio("common.xml")

mavlink =
 mavlinkio with properties:

1 Classes

1-58

 Dialect: [1x1 mavlinkdialect]
 LocalClient: [1x1 struct]

connect(mavlink,"UDP")

ans =
"Connection1"

Get the client information.

client = mavlinkclient(mavlink,1,1);

Subscribe to the "HEARTBEAT" topic.

heartbeat = mavlinksub(mavlink,client,'HEARTBEAT');

Get the latest message. You must wait for a message to be received. Currently, no heartbeat message
has been received on the mavlink object.

latestmsgs(heartbeat,1)

ans =

 1x0 empty struct array with fields:

 MsgID
 SystemID
 ComponentID
 Payload
 Seq

Disconnect from client.

disconnect(mavlink)

See Also
latestmsgs | mavlinkclient | mavlinkio | mavlinkdialect

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

External Websites
MAVLink Developer Guide

Introduced in R2019a

 mavlinksub

1-59

https://mavlink.io

mavlinktlog
Read MAVLink message from TLOG file

Description
The mavlinktlog object reads all messages from a telemetry log or TLOG file (.tlog). The object
gives you information about the file, including the start and end time, number of messages, available
topics, and packet loss percentage. You can specify a MAVLink dialect for parsing the messages or
use the common.xml dialect.

Creation

Syntax
tlogReader = mavlinktlog(filePath)
tlogReader = mavlinktlog(filePath,dialect)

Description

tlogReader = mavlinktlog(filePath) reads all messages from the tlog file at the given file
path and returns an object summarizing the file. This syntax uses the common.xml dialect for the
MAVLink protocol (Version 2.0) for parsing the messages. The information in filePath is used to set
the FileName property.

tlogReader = mavlinktlog(filePath,dialect) reads the MAVLink messages based on the
dialect specified as a mavlinkdialect object or string scalar specifying the XML file path. dialect
sets the Dialect property.

Properties
FileName — Name of TLOG file
string scalar | character vector

This property is read-only.

Name of the TLOG file, specified as a string scalar or character vector. The name is the last part of
the path given in the filePath input.
Example: 'flightlog.tlog'
Data Types: string | char

Dialect — MAVLink dialect
'common.xml' (default) | mavlinkdialect object

This property is read-only.

MAVLink dialect used for parsing the message data, specified as a mavlinkdialect object.

1 Classes

1-60

StartTime — Time of first message recorded
datetime object

This property is read-only.

Time of the first message recorded in the TLOG file, specified as a datetime object.
Data Types: datetime

EndTime — Time of last message recorded
datetime object

This property is read-only.

Time of the last message recorded in the TLOG file, specified as a datetime object.
Data Types: datetime

NumMessages — Number of MAVLink messages in TLOG file
numeric scalar

This property is read-only.

Number of MAVLink messages in the TLOG file, specified as a numeric scalar.
Data Types: double

AvailableTopics — List of different message types
table

This property is read-only.

List of different messages, specified as a table that contains:

• MessageID
• MessageName
• SystemID
• ComponentID
• NumMessages

Data Types: table

NumPacketsLost — Percentage of packets lost
numeric scalar from 0 through 100

This property is read-only.

Percentage of packets lost, specified as a numeric scalar from 0 through 100.
Data Types: double

Object Functions
readmsg Read specific messages from TLOG file

 mavlinktlog

1-61

Examples

Read Messages from MAVLink TLOG File

Load the TLOG file. Specify the relative path of the file name.

tlogReader = mavlinktlog('flight.tlog');

Read the 'REQUEST_DATA_STREAM' messages from the file.

msgData = readmsg(result,'MessageName','REQUEST_DATA_STREAM');

See Also
readmsg | mavlinkdialect | mavlinkclient | mavlinkio

Topics
“Visualize and Playback MAVLink Flight Log”

Introduced in R2019a

1 Classes

1-62

multirotor
Guidance model for multirotor UAVs

Description
A multirotor object represents a reduced-order guidance model for an unmanned aerial vehicle
(UAV). The model approximates the behavior of a closed-loop system consisting of an autopilot
controller and a multirotor kinematic model for 3-D motion.

For fixed-wing UAVs, see fixedwing.

Creation
model = multirotor creates a multirotor motion model with double precision values for inputs,
outputs, and configuration parameters of the guidance model.

model = multirotor(DataType) specifies the data type precision (DataType property) for the
inputs, outputs, and configurations parameters of the guidance model.

Properties
Name — Name of UAV
"Unnamed" (default) | string scalar

Name of the UAV, used to differentiate it from other models in the workspace, specified as a string
scalar.
Example: "myUAV1"
Data Types: string

Configuration — UAV controller configuration
structure

UAV controller configuration, specified as a structure of parameters. Specify these parameters to
tune the internal control behaviour of the UAV. Specify the proportional (P) and derivative (D) gains
for the dynamic model and other UAV parameters. For multirotor UAVs, the structure contains these
fields with defaults listed:

• 'PDRoll'- [3402.97 116.67]
• 'PDPitch' - [3402.97 116.67]
• 'PYawRate' - 1950
• 'PThrust' - 3900
• 'Mass' - 0.1 (measured in kg)

Example: struct('PDRoll',[3402.97,116.67],'PDPitch',[3402.97,
116.67],'PYawRate',1950,'PThrust',3900,'Mass',0.1)

 multirotor

1-63

Data Types: struct

ModelType — UAV guidance model type
'MultirotorGuidance' (default)

This property is read-only.

UAV guidance model type, specified as 'MultirotorGuidance'.

DataType — Input and output numeric data types
'double' (default) | 'single'

Input and output numeric data types, specified as either 'double' or 'single'. Choose the data
type based on possible software or hardware limitations. Specify DataType when first creating the
object.

Object Functions
control Control commands for UAV
derivative Time derivative of UAV states
environment Environmental inputs for UAV
state UAV state vector

Examples

Simulate A Multirotor Control Command

This example shows how to use the multirotor guidance model to simulate the change in state of a
UAV due to a command input.

Create the multirotor guidance model.

model = multirotor;

Create a state structure. Specify the location in world coordinates.

s = state(model);
s(1:3) = [3;2;1];

Specify a control command, u, that specified the roll and thrust of the multirotor.

u = control(model);
u.Roll = pi/12;
u.Thrust = 1;

Create a default environment without wind.

e = environment(model);

Compute the time derivative of the state given the current state, control command, and environment.

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the multirotor UAV states as a
13-by-n matrix.

1 Classes

1-64

simOut = ode45(@(~,x)derivative(model,x,u,e), [0 3], s);
size(simOut.y)

ans = 1×2

 13 3536

Plot the change in roll angle based on the simulation output. The roll angle (the X Euler angle) is the
9th row of the simOut.y output.

plot(simOut.y(9,:))

Plot the change in the Y and Z positions. With the specified thrust and roll angle, the multirotor
should fly over and lose some altitude. A positive value for Z is expected as positive Z is down.

figure
plot(simOut.y(2,:));
hold on
plot(simOut.y(3,:));
legend('Y-position','Z-position')
hold off

 multirotor

1-65

You can also plot the multirotor trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 300th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
multirotor.stl file and the positive Z-direction as "down". The displayed view shows the UAV
translating in the Y-direction and losing altitude.

translations = simOut.y(1:3,1:300:end)'; % xyz position
rotations = eul2quat(simOut.y(7:9,1:300:end)'); % ZYX Euler
plotTransforms(translations,rotations,...
 'MeshFilePath','multirotor.stl','InertialZDirection',"down")
view([90.00 -0.60])

1 Classes

1-66

More About
UAV Coordinate Systems

The UAV Toolbox uses the North-East-Down (NED) coordinate system convention, which is also
sometimes called the local tangent plane (LTP). The UAV position vector consists of three numbers for
position along the northern-axis, eastern-axis, and vertical position. The down element complies with
the right-hand rule and results in negative values for altitude gain.

The ground plane, or earth frame (NE plane, D = 0), is assumed to be an inertial plane that is flat
based on the operation region for small UAV control. The earth frame coordinates are [xe,ye,ze]. The
body frame of the UAV is attached to the center of mass with coordinates [xb,yb,zb]. xb is the preferred
forward direction of the UAV, and zb is perpendicular to the plane that points downwards when the
UAV travels during perfect horizontal flight.

The orientation of the UAV (body frame) is specified in ZYX Euler angles. To convert from the earth
frame to the body frame, we first rotate about the ze-axis by the yaw angle, ψ. Then, rotate about the
intermediate y-axis by the pitch angle, ϕ. Then, rotate about the intermediate x-axis by the roll angle,
ϴ.

The angular velocity of the UAV is represented by [p,q,r] with respect to the body axes, [xb,yb,zb].

 multirotor

1-67

UAV Multirotor Guidance Model Equations

For multirotors, the following equations are used to define the guidance model of the UAV. To
calculate the time-derivative of the UAV state using these governing equations, use the derivative
function. Specify the inputs using state, control, and environment.

The UAV position in the earth frame is [xe, ye, ze] with orientation as ZYX Euler angles, [ψ, ϴ, ϕ] in
radians. Angular velocities are [p, q, r] in radians per second.

The UAV body frame uses coordinates as [xb, yb, zb].

The rotation matrix that rotates vector from body frame to world frame is:

The cos(x) and sin(x) are abbreviated as cx and sx.

The acceleration of the UAV center of mass in earth coordinates is governed by:

m is the UAV mass, g is gravity, and Fthrust is the total force created by the propellers applied to the
multirotor along the –zb axis (points upwards in a horizontal pose).

The closed-loop roll-pitch attitude controller is approximated by the behavior of 2 independent PD
controllers for the two rotation angles, and 2 independent P controllers for the yaw rate and thrust.
The angular velocity, angular acceleration, and thrust are governed by:

1 Classes

1-68

This model assumes the autopilot takes in commanded roll, pitch, yaw rate, and a commanded
total thrust force, Fc

thrust. The structure to specify these inputs is generated from control.

The P and D gains for the control inputs are specified as KPα and KDα, where α is either the rotation
angle or thrust. These gains along with the UAV mass, m, are specified in the Configuration
property of the multirotor object.

From these governing equations, the model gives the following variables:

These variables match the output of the state function.

References
[1] Mellinger, Daniel, and Nathan Michael. "Trajectory Generation and Control for Precise Aggressive

Maneuvers with Quadrotors." The International Journal of Robotics Research. 2012, pp.
664-74.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 multirotor

1-69

See Also
Functions
ode45 | control | derivative | environment | state | plotTransforms

Objects
fixedwing | uavWaypointFollower

Blocks
UAV Guidance Model | Waypoint Follower

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

1 Classes

1-70

quaternion
Create a quaternion array

Description
A quaternion is a four-part hyper-complex number used in three-dimensional rotations and
orientations.

A quaternion number is represented in the form a + bi + c j + dk, where a, b, c, and d parts are real
numbers, and i, j, and k are the basis elements, satisfying the equation: i2 = j2 = k2 = ijk = −1.

The set of quaternions, denoted by H, is defined within a four-dimensional vector space over the real
numbers, R4. Every element of H has a unique representation based on a linear combination of the
basis elements, i, j, and k.

All rotations in 3-D can be described by an axis of rotation and angle about that axis. An advantage of
quaternions over rotation matrices is that the axis and angle of rotation is easy to interpret. For
example, consider a point in R3. To rotate the point, you define an axis of rotation and an angle of
rotation.

The quaternion representation of the rotation may be expressed as
q = cos θ 2 + sin θ 2 ubi + uc j + udk , where θ is the angle of rotation and [ub, uc, and ud] is the axis
of rotation.

Creation
Syntax
quat = quaternion()
quat = quaternion(A,B,C,D)
quat = quaternion(matrix)
quat = quaternion(RV,'rotvec')

 quaternion

1-71

quat = quaternion(RV,'rotvecd')
quat = quaternion(RM,'rotmat',PF)
quat = quaternion(E,'euler',RS,PF)
quat = quaternion(E,'eulerd',RS,PF)

Description

quat = quaternion() creates an empty quaternion.

quat = quaternion(A,B,C,D) creates a quaternion array where the four quaternion parts are
taken from the arrays A, B, C, and D. All the inputs must have the same size and be of the same data
type.

quat = quaternion(matrix) creates an N-by-1 quaternion array from an N-by-4 matrix, where
each column becomes one part of the quaternion.

quat = quaternion(RV,'rotvec') creates an N-by-1 quaternion array from an N-by-3 matrix of
rotation vectors, RV. Each row of RV represents a rotation vector in radians.

quat = quaternion(RV,'rotvecd') creates an N-by-1 quaternion array from an N-by-3 matrix of
rotation vectors, RV. Each row of RV represents a rotation vector in degrees.

quat = quaternion(RM,'rotmat',PF) creates an N-by-1 quaternion array from the 3-by-3-by-N
array of rotation matrices, RM. PF can be either 'point' if the Euler angles represent point rotations
or 'frame' for frame rotations.

quat = quaternion(E,'euler',RS,PF) creates an N-by-1 quaternion array from the N-by-3
matrix, E. Each row of E represents a set of Euler angles in radians. The angles in E are rotations
about the axes in sequence RS.

quat = quaternion(E,'eulerd',RS,PF) creates an N-by-1 quaternion array from the N-by-3
matrix, E. Each row of E represents a set of Euler angles in degrees. The angles in E are rotations
about the axes in sequence RS.

Input Arguments

A,B,C,D — Quaternion parts
comma-separated arrays of the same size

Parts of a quaternion, specified as four comma-separated scalars, matrices, or multi-dimensional
arrays of the same size.
Example: quat = quaternion(1,2,3,4) creates a quaternion of the form 1 + 2i + 3j + 4k.
Example: quat = quaternion([1,5],[2,6],[3,7],[4,8]) creates a 1-by-2 quaternion array
where quat(1,1) = 1 + 2i + 3j + 4k and quat(1,2) = 5 + 6i + 7j + 8k
Data Types: single | double

matrix — Matrix of quaternion parts
N-by-4 matrix

Matrix of quaternion parts, specified as an N-by-4 matrix. Each row represents a separate quaternion.
Each column represents a separate quaternion part.
Example: quat = quaternion(rand(10,4)) creates a 10-by-1 quaternion array.

1 Classes

1-72

Data Types: single | double

RV — Matrix of rotation vectors
N-by-3 matrix

Matrix of rotation vectors, specified as an N-by-3 matrix. Each row of RV represents the [X Y Z]
elements of a rotation vector. A rotation vector is a unit vector representing the axis of rotation scaled
by the angle of rotation in radians or degrees.

To use this syntax, specify the first argument as a matrix of rotation vectors and the second argument
as the 'rotvec' or 'rotvecd'.
Example: quat = quaternion(rand(10,3),'rotvec') creates a 10-by-1 quaternion array.
Data Types: single | double

RM — Rotation matrices
3-by-3 matrix | 3-by-3-by-N array

Array of rotation matrices, specified by a 3-by-3 matrix or 3-by-3-by-N array. Each page of the array
represents a separate rotation matrix.
Example: quat = quaternion(rand(3),'rotmat','point')
Example: quat = quaternion(rand(3),'rotmat','frame')
Data Types: single | double

PF — Type of rotation matrix
'point' | 'frame'

Type of rotation matrix, specified by 'point' or 'frame'.
Example: quat = quaternion(rand(3),'rotmat','point')
Example: quat = quaternion(rand(3),'rotmat','frame')
Data Types: char | string

E — Matrix of Euler angles
N-by-3 matrix

Matrix of Euler angles, specified by an N-by-3 matrix. If using the 'euler' syntax, specify E in
radians. If using the 'eulerd' syntax, specify E in degrees.
Example: quat = quaternion(E,'euler','YZY','point')
Example: quat = quaternion(E,'euler','XYZ','frame')
Data Types: single | double

RS — Rotation sequence
character vector | scalar string

Rotation sequence, specified as a three-element character vector:

• 'YZY'
• 'YXY'
• 'ZYZ'

 quaternion

1-73

• 'ZXZ'
• 'XYX'
• 'XZX'
• 'XYZ'
• 'YZX'
• 'ZXY'
• 'XZY'
• 'ZYX'
• 'YXZ'

Assume you want to determine the new coordinates of a point when its coordinate system is rotated
using frame rotation. The point is defined in the original coordinate system as:

point = [sqrt(2)/2,sqrt(2)/2,0];

In this representation, the first column represents the x-axis, the second column represents the y-
axis, and the third column represents the z-axis.

You want to rotate the point using the Euler angle representation [45,45,0]. Rotate the point using
two different rotation sequences:

• If you create a quaternion rotator and specify the 'ZYX' sequence, the frame is first rotated 45°
around the z-axis, then 45° around the new y-axis.

quatRotator = quaternion([45,45,0],'eulerd','ZYX','frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

 0.7071 -0.0000 0.7071

• If you create a quaternion rotator and specify the 'YZX' sequence, the frame is first rotated 45°
around the y-axis, then 45° around the new z-axis.

quatRotator = quaternion([45,45,0],'eulerd','YZX','frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

 0.8536 0.1464 0.5000

1 Classes

1-74

Data Types: char | string

Object Functions
angvel Angular velocity from quaternion array
classUnderlying Class of parts within quaternion
compact Convert quaternion array to N-by-4 matrix
conj Complex conjugate of quaternion
' Complex conjugate transpose of quaternion array
dist Angular distance in radians
euler Convert quaternion to Euler angles (radians)
eulerd Convert quaternion to Euler angles (degrees)
exp Exponential of quaternion array
.\,ldivide Element-wise quaternion left division
log Natural logarithm of quaternion array
meanrot Quaternion mean rotation
- Quaternion subtraction
* Quaternion multiplication
norm Quaternion norm
normalize Quaternion normalization
ones Create quaternion array with real parts set to one and imaginary parts set to zero
parts Extract quaternion parts
.^,power Element-wise quaternion power
prod Product of a quaternion array
randrot Uniformly distributed random rotations
./,rdivide Element-wise quaternion right division
rotateframe Quaternion frame rotation
rotatepoint Quaternion point rotation
rotmat Convert quaternion to rotation matrix
rotvec Convert quaternion to rotation vector (radians)
rotvecd Convert quaternion to rotation vector (degrees)
slerp Spherical linear interpolation
.*,times Element-wise quaternion multiplication
' Transpose a quaternion array
- Quaternion unary minus
zeros Create quaternion array with all parts set to zero

Examples

Create Empty Quaternion
quat = quaternion()

 quaternion

1-75

quat =

 0x0 empty quaternion array

By default, the underlying class of the quaternion is a double.

classUnderlying(quat)

ans =
'double'

Create Quaternion by Specifying Individual Quaternion Parts

You can create a quaternion array by specifying the four parts as comma-separated scalars, matrices,
or multidimensional arrays of the same size.

Define quaternion parts as scalars.

A = 1.1;
B = 2.1;
C = 3.1;
D = 4.1;
quatScalar = quaternion(A,B,C,D)

quatScalar = quaternion
 1.1 + 2.1i + 3.1j + 4.1k

Define quaternion parts as column vectors.

A = [1.1;1.2];
B = [2.1;2.2];
C = [3.1;3.2];
D = [4.1;4.2];
quatVector = quaternion(A,B,C,D)

quatVector = 2x1 quaternion array
 1.1 + 2.1i + 3.1j + 4.1k
 1.2 + 2.2i + 3.2j + 4.2k

Define quaternion parts as matrices.

A = [1.1,1.3; ...
 1.2,1.4];
B = [2.1,2.3; ...
 2.2,2.4];
C = [3.1,3.3; ...
 3.2,3.4];
D = [4.1,4.3; ...
 4.2,4.4];
quatMatrix = quaternion(A,B,C,D)

quatMatrix = 2x2 quaternion array
 1.1 + 2.1i + 3.1j + 4.1k 1.3 + 2.3i + 3.3j + 4.3k
 1.2 + 2.2i + 3.2j + 4.2k 1.4 + 2.4i + 3.4j + 4.4k

1 Classes

1-76

Define quaternion parts as three dimensional arrays.
A = randn(2,2,2);
B = zeros(2,2,2);
C = zeros(2,2,2);
D = zeros(2,2,2);
quatMultiDimArray = quaternion(A,B,C,D)

quatMultiDimArray = 2x2x2 quaternion array
quatMultiDimArray(:,:,1) =

 0.53767 + 0i + 0j + 0k -2.2588 + 0i + 0j + 0k
 1.8339 + 0i + 0j + 0k 0.86217 + 0i + 0j + 0k

quatMultiDimArray(:,:,2) =

 0.31877 + 0i + 0j + 0k -0.43359 + 0i + 0j + 0k
 -1.3077 + 0i + 0j + 0k 0.34262 + 0i + 0j + 0k

Create Quaternion by Specifying Quaternion Parts Matrix

You can create a scalar or column vector of quaternions by specify an N-by-4 matrix of quaternion
parts, where columns correspond to the quaternion parts A, B, C, and D.

Create a column vector of random quaternions.

quatParts = rand(3,4)

quatParts = 3×4

 0.8147 0.9134 0.2785 0.9649
 0.9058 0.6324 0.5469 0.1576
 0.1270 0.0975 0.9575 0.9706

quat = quaternion(quatParts)

quat = 3x1 quaternion array
 0.81472 + 0.91338i + 0.2785j + 0.96489k
 0.90579 + 0.63236i + 0.54688j + 0.15761k
 0.12699 + 0.09754i + 0.95751j + 0.97059k

To retrieve the quatParts matrix from quaternion representation, use compact.

retrievedquatParts = compact(quat)

retrievedquatParts = 3×4

 0.8147 0.9134 0.2785 0.9649
 0.9058 0.6324 0.5469 0.1576
 0.1270 0.0975 0.9575 0.9706

 quaternion

1-77

Create Quaternion by Specifying Rotation Vectors

You can create an N-by-1 quaternion array by specifying an N-by-3 matrix of rotation vectors in
radians or degrees. Rotation vectors are compact spatial representations that have a one-to-one
relationship with normalized quaternions.

Rotation Vectors in Radians

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is normalized.

rotationVector = [0.3491,0.6283,0.3491];
quat = quaternion(rotationVector,'rotvec')

quat = quaternion
 0.92124 + 0.16994i + 0.30586j + 0.16994k

norm(quat)

ans = 1.0000

You can convert from quaternions to rotation vectors in radians using the rotvec function. Recover
the rotationVector from the quaternion, quat.

rotvec(quat)

ans = 1×3

 0.3491 0.6283 0.3491

Rotation Vectors in Degrees

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is normalized.

rotationVector = [20,36,20];
quat = quaternion(rotationVector,'rotvecd')

quat = quaternion
 0.92125 + 0.16993i + 0.30587j + 0.16993k

norm(quat)

ans = 1

You can convert from quaternions to rotation vectors in degrees using the rotvecd function. Recover
the rotationVector from the quaternion, quat.

rotvecd(quat)

ans = 1×3

 20.0000 36.0000 20.0000

1 Classes

1-78

Create Quaternion by Specifying Rotation Matrices

You can create an N-by-1 quaternion array by specifying a 3-by-3-by-N array of rotation matrices.
Each page of the rotation matrix array corresponds to one element of the quaternion array.

Create a scalar quaternion using a 3-by-3 rotation matrix. Specify whether the rotation matrix should
be interpreted as a frame or point rotation.

rotationMatrix = [1 0 0; ...
 0 sqrt(3)/2 0.5; ...
 0 -0.5 sqrt(3)/2];
quat = quaternion(rotationMatrix,'rotmat','frame')

quat = quaternion
 0.96593 + 0.25882i + 0j + 0k

You can convert from quaternions to rotation matrices using the rotmat function. Recover the
rotationMatrix from the quaternion, quat.

rotmat(quat,'frame')

ans = 3×3

 1.0000 0 0
 0 0.8660 0.5000
 0 -0.5000 0.8660

Create Quaternion by Specifying Euler Angles

You can create an N-by-1 quaternion array by specifying an N-by-3 array of Euler angles in radians or
degrees.

Euler Angles in Radians

Use the euler syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles in radians.
Specify the rotation sequence of the Euler angles and whether the angles represent a frame or point
rotation.

E = [pi/2,0,pi/4];
quat = quaternion(E,'euler','ZYX','frame')

quat = quaternion
 0.65328 + 0.2706i + 0.2706j + 0.65328k

You can convert from quaternions to Euler angles using the euler function. Recover the Euler
angles, E, from the quaternion, quat.

euler(quat,'ZYX','frame')

ans = 1×3

 1.5708 0 0.7854

 quaternion

1-79

Euler Angles in Degrees

Use the eulerd syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles in degrees.
Specify the rotation sequence of the Euler angles and whether the angles represent a frame or point
rotation.

E = [90,0,45];
quat = quaternion(E,'eulerd','ZYX','frame')

quat = quaternion
 0.65328 + 0.2706i + 0.2706j + 0.65328k

You can convert from quaternions to Euler angles in degrees using the eulerd function. Recover the
Euler angles, E, from the quaternion, quat.

eulerd(quat,'ZYX','frame')

ans = 1×3

 90.0000 0 45.0000

Quaternion Algebra

Quaternions form a noncommutative associative algebra over the real numbers. This example
illustrates the rules of quaternion algebra.

Addition and Subtraction

Quaternion addition and subtraction occur part-by-part, and are commutative:

Q1 = quaternion(1,2,3,4)

Q1 = quaternion
 1 + 2i + 3j + 4k

Q2 = quaternion(9,8,7,6)

Q2 = quaternion
 9 + 8i + 7j + 6k

Q1plusQ2 = Q1 + Q2

Q1plusQ2 = quaternion
 10 + 10i + 10j + 10k

Q2plusQ1 = Q2 + Q1

Q2plusQ1 = quaternion
 10 + 10i + 10j + 10k

Q1minusQ2 = Q1 - Q2

1 Classes

1-80

Q1minusQ2 = quaternion
 -8 - 6i - 4j - 2k

Q2minusQ1 = Q2 - Q1

Q2minusQ1 = quaternion
 8 + 6i + 4j + 2k

You can also perform addition and subtraction of real numbers and quaternions. The first part of a
quaternion is referred to as the real part, while the second, third, and fourth parts are referred to as
the vector. Addition and subtraction with real numbers affect only the real part of the quaternion.

Q1plusRealNumber = Q1 + 5

Q1plusRealNumber = quaternion
 6 + 2i + 3j + 4k

Q1minusRealNumber = Q1 - 5

Q1minusRealNumber = quaternion
 -4 + 2i + 3j + 4k

Multiplication

Quaternion multiplication is determined by the products of the basis elements and the distributive
law. Recall that multiplication of the basis elements, i, j, and k, are not commutative, and therefore
quaternion multiplication is not commutative.

Q1timesQ2 = Q1 * Q2

Q1timesQ2 = quaternion
 -52 + 16i + 54j + 32k

Q2timesQ1 = Q2 * Q1

Q2timesQ1 = quaternion
 -52 + 36i + 14j + 52k

isequal(Q1timesQ2,Q2timesQ1)

ans = logical
 0

You can also multiply a quaternion by a real number. If you multiply a quaternion by a real number,
each part of the quaternion is multiplied by the real number individually:

Q1times5 = Q1*5

Q1times5 = quaternion
 5 + 10i + 15j + 20k

Multiplying a quaternion by a real number is commutative.

 quaternion

1-81

isequal(Q1*5,5*Q1)

ans = logical
 1

Conjugation

The complex conjugate of a quaternion is defined such that each element of the vector portion of the
quaternion is negated.

Q1

Q1 = quaternion
 1 + 2i + 3j + 4k

conj(Q1)

ans = quaternion
 1 - 2i - 3j - 4k

Multiplication between a quaternion and its conjugate is commutative:

isequal(Q1*conj(Q1),conj(Q1)*Q1)

ans = logical
 1

Quaternion Array Manipulation

You can organize quaternions into vectors, matrices, and multidimensional arrays. Built-in MATLAB®
functions have been enhanced to work with quaternions.

Concatenate

Quaternions are treated as individual objects during concatenation and follow MATLAB rules for
array manipulation.

Q1 = quaternion(1,2,3,4);
Q2 = quaternion(9,8,7,6);

qVector = [Q1,Q2]

qVector = 1x2 quaternion array
 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k

Q3 = quaternion(-1,-2,-3,-4);
Q4 = quaternion(-9,-8,-7,-6);

qMatrix = [qVector;Q3,Q4]

qMatrix = 2x2 quaternion array
 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k

1 Classes

1-82

 -1 - 2i - 3j - 4k -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,1) = qMatrix;
qMultiDimensionalArray(:,:,2) = qMatrix

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) =

 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k
 -1 - 2i - 3j - 4k -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) =

 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k
 -1 - 2i - 3j - 4k -9 - 8i - 7j - 6k

Indexing

To access or assign elements in a quaternion array, use indexing.

qLoc2 = qMultiDimensionalArray(2)

qLoc2 = quaternion
 -1 - 2i - 3j - 4k

Replace the quaternion at index two with a quaternion one.

qMultiDimensionalArray(2) = ones('quaternion')

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) =

 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k
 1 + 0i + 0j + 0k -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) =

 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k
 -1 - 2i - 3j - 4k -9 - 8i - 7j - 6k

Reshape

To reshape quaternion arrays, use the reshape function.

qMatReshaped = reshape(qMatrix,4,1)

qMatReshaped = 4x1 quaternion array
 1 + 2i + 3j + 4k
 -1 - 2i - 3j - 4k
 9 + 8i + 7j + 6k
 -9 - 8i - 7j - 6k

 quaternion

1-83

Transpose

To transpose quaternion vectors and matrices, use the transpose function.

qMatTransposed = transpose(qMatrix)

qMatTransposed = 2x2 quaternion array
 1 + 2i + 3j + 4k -1 - 2i - 3j - 4k
 9 + 8i + 7j + 6k -9 - 8i - 7j - 6k

Permute

To permute quaternion vectors, matrices, and multidimensional arrays, use the permute function.

qMultiDimensionalArray

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) =

 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k
 1 + 0i + 0j + 0k -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) =

 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k
 -1 - 2i - 3j - 4k -9 - 8i - 7j - 6k

qMatPermute = permute(qMultiDimensionalArray,[3,1,2])

qMatPermute = 2x2x2 quaternion array
qMatPermute(:,:,1) =

 1 + 2i + 3j + 4k 1 + 0i + 0j + 0k
 1 + 2i + 3j + 4k -1 - 2i - 3j - 4k

qMatPermute(:,:,2) =

 9 + 8i + 7j + 6k -9 - 8i - 7j - 6k
 9 + 8i + 7j + 6k -9 - 8i - 7j - 6k

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Introduced in R2020b

1 Classes

1-84

sim3d.Editor
Interface to the Unreal Engine project

Description
Use the sim3d.Editor class to interface with the Unreal® Editor.

To develop scenes with the Unreal Editor and co-simulate with Simulink®, you need the UAV Toolbox
Interface for Unreal Engine Projects support package. The support package contains an Unreal
Engine project that allows you to customize the UAV Toolbox scenes. For information about the
support package, see “Customize Unreal Engine Scenes for UAVs”.

Creation

Syntax
sim3d.Editor(project)

Description

MATLAB creates an sim3d.Editor object for the Unreal Editor project specified in sim3d.Editor(
project).

Input Arguments

project — Project path and name
string array

Project path and name.
Example: "C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"
Data Types: string

Properties
Uproject — Project path and name
string array

This property is read-only.

Project path and name with Unreal Engine project file extension.
Example: "C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"
Data Types: string

 sim3d.Editor

1-85

https://www.mathworks.com/matlabcentral/fileexchange/80275-uav-toolbox-interface-for-unreal-engine-projects
https://www.mathworks.com/matlabcentral/fileexchange/80275-uav-toolbox-interface-for-unreal-engine-projects

Object Functions
open Open the Unreal Editor

Examples

Open Project in Unreal Editor

Open an Unreal Engine project in the Unreal Editor.

Create an instance of the sim3d.Editor class for the Unreal Engine project located in C:\Local
\AutoVrtlEnv\AutoVrtlEnv.uproject.
editor=sim3d.Editor(fullfile("C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"))

Open the project in the Unreal Editor.
editor.open();

See Also
Topics
“Customize Unreal Engine Scenes for UAVs”

Introduced in R2020b

1 Classes

1-86

transformTree
Define coordinate frames and relative transformations

Description
The transformTree object contains an organized tree structure for coordinate frames and their
relative transformations over time. The object stores the relative transformations between children
frames and their parents. You can specify a timestamped transform for frames and query the relative
transformations between different frames in the tree. The object interpolates intermediate
timestamps using a constant velocity assumption for linear motion, and spherical linear interpolation
(SLERP) for angular motion. Otherwise, the relative transformations are kept constant past the range
of the timestamps specified. Times prior to the first timestamp return NaN.

Use the updateTransform function to add timestamps to the tree by defining the parent-to-child
relationships. Query specific transformations at given timestamps using getTransform and display
the frame relationships using show.

Creation

Syntax
frames = transformTree
frames = transformTree(baseName)
frames = transformTree(baseName,numFrames)
frames = transformTree(baseName,numFrames,numTransforms)
frames = transformTree(baseName,numFrames,numTransforms,rootTime)

Description

frames = transformTree creates a transformation tree data structure with a single frame,
"root", with the maximum number of frames and timestamped transforms per frame, set to 10.

frames = transformTree(baseName) specifies the name of the root frame as a string or
character vector.

frames = transformTree(baseName,numFrames) additionally sets the MaxNumFrames
property, which defines the max number of named frames in the object.

frames = transformTree(baseName,numFrames,numTransforms) additionally sets the
MaxNumTransforms property, which defines the max number of timestamped transforms per frame
name.

frames = transformTree(baseName,numFrames,numTransforms,rootTime) additionally
specifies the timestamp of the initial baseName frame as a scalar time in seconds.

 transformTree

1-87

Properties
MaxNumFrames — Maximum number of frames in tree
10 (default) | positive integer

Maximum number of frames in the tree, specified as a positive integer. Each frame has associated
timestamped transforms that define the state of the frame at those specific times.
Data Types: double

MaxNumTransforms — Maximum number of timestamped transforms per frame
10 (default) | positive integer

Maximum number of timestamped transforms per frame, specified as a positive integer. This property
sets an upper limit on the number of timestamped transforms the object can store for each frame
named in the structure. A transformTree object with MaxNumFrames and MaxNumTransforms set
to 10 can store a maximum of 100 transformations with 10 for each frame.
Data Types: double

NumFrames — Current number of coordinate frames stored
1 (default) | positive integer

Current number of coordinate frames stored, specified as a positive integer. The object starts with a
single root frame, and new frames and specific timestamps are added using updateTransform
function.
Data Types: double

Object Functions
getGraph Graph object representing tree structure
getTransform Get relative transform between frames
info List all frame names and stored timestamps
removeTransform Remove frame transform relative to its parent
show Show transform tree
updateTransform Update frame transform relative to its parent

See Also
Objects
uavScenario | fixedwing | multirotor | uavDubinsPathSegment

Functions
getGraph | getTransform | info | removeTransform | show | updateTransform

Introduced in R2020b

1 Classes

1-88

uavDubinsConnection
Dubins path connection for UAV

Description
The uavDubinsConnection object holds information for computing a uavDubinsPathSegment
path segment to connect start and goal poses of a UAV.

A UAV Dubins path segment connects two poses as a sequence of motions in the north-east-down
coordinate system.

The motion options are:

• Straight
• Left turn (counterclockwise)
• Right turn (clockwise)
• Helix left turn (counterclockwise)
• Helix right turn (clockwise)
• No motion

The turn direction is defined as viewed from the top of the UAV. Helical motions are used to ascend or
descend.

Use this connection object to define parameters for a UAV motion model, including the minimum
turning radius and options for path types. To generate a path segment between poses using this
connection type, call the connect function.

Creation

Syntax
connectionObj = uavDubinsConnection
connectionObj = uavDubinsConnection(Name,Value)

Description

connectionObj = uavDubinsConnection creates an object using default property values.

connectionObj = uavDubinsConnection(Name,Value) specifies property values using name-
value pairs. To set multiple properties, specify multiple name-value pairs.

Properties
AirSpeed — Airspeed of UAV
10 (default) | positive numeric scalar

 uavDubinsConnection

1-89

Airspeed of the UAV, specified as a positive numeric scalar in m/s.
Data Types: double

MaxRollAngle — Maximum roll angle
0.5 (default) | positive numeric scalar

Maximum roll angle to make the UAV turn left or right, specified as a positive numeric scalar in
radians.

Note The minimum and maximum values for MaxRollAngle are greater than 0 and less than pi/2,
respectively.

Data Types: double

FlightPathAngleLimit — Minimum and maximum flight path angles
[-0.5 0.5] (default) | two-element numeric vector

Flight path angle limits, specified as a two-element numeric vector [min max] in radians.

min is the minimum flight path angle the UAV takes to lose altitude, and max is the maximum flight
path angle to gain altitude.

Note The minimum and maximum values for FlightPathAngleLimit are greater than -pi/2 and
less than pi/2, respectively.

Data Types: double

DisabledPathTypes — Path types to disable
{} (default) | cell array of four-element character vectors | vector of four-element string scalars

UAV Dubins path types to disable, specified as a cell array of four-element character vectors or vector
of string scalars. The cell array defines the four prohibited sequences of motions.

Motion Type Description
"S" Straight
"L" Left turn (counterclockwise)
"R" Right turn (clockwise)
"Hl" Helix left turn (counterclockwise)
"Hr" Helix right turn (clockwise)
"N" No motion

Note The no motion segment "N" is used as a filler at the end when only three path segments are
needed.

To see all available path types, see the AllPathTypes property.
Example: {'RLRN'}

1 Classes

1-90

Data Types: string | cell

MinTurningRadius — Minimum turning radius
positive numeric scalar

This property is read-only.

Minimum turning radius of the UAV, specified as a positive numeric scalar in meters. This value
corresponds to the radius of the circle at the maximum roll angle and a constant airspeed of the UAV.
Data Types: double

AllPathTypes — All possible path types
cell array of character vectors

This property is read-only.

All possible path types, returned as a cell array of character vectors. This property lists all types. To
disable certain types, specify types from this list in the DisabledPathTypes property.

For UAV Dubins connections, the available path types are: {'LSLN'} {'LSRN'} {'RSLN'}
{'RSRN'} {'RLRN'} {'LRLN'} {'HlLSL'} {'HlLSR'} {'HrRSL'} {'HrRSR'} {'HrRLR'}
{'HlLRL'} {'LSLHl'} {'LSRHr'} {'RSLHl'} {'RSRHr'} {'RLRHr'} {'LRLHl'}
{'LRSL'} {'LRSR'} {'LRLR'} {'RLSR'} {'RLRL'} {'RLSL'} {'LSRL'} {'RSRL'}
{'LSLR'} {'RSLR'}.
Data Types: cell

Object Functions
connect Connect poses with UAV Dubins connection path

Examples

Connect Poses Using UAV Dubins Connection Path

This example shows how to calculate a UAV Dubins path segment and connect poses using the
uavDubinsConnection object.

Create a uavDubinsConnection object.

connectionObj = uavDubinsConnection;

Define start and goal poses as [x, y, z, headingAngle] vectors.

startPose = [0 0 0 0]; % [meters, meters, meters, radians]
goalPose = [0 0 20 pi];

Calculate a valid path segment and connect the poses. Returns a path segment object with the lowest
path cost.

[pathSegObj,pathCosts] = connect(connectionObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})

 uavDubinsConnection

1-91

Display the motion type and the path cost of the generated path.

fprintf('Motion Type: %s\nPath Cost: %f\n',strjoin(pathSegObj{1}.MotionTypes),pathCosts);

Motion Type: R L R N
Path Cost: 138.373157

Modify Connection Types for UAV Dubins Connection Path

This example shows how to modify an existing uavDubinsPathSegmentobject.

Connect Poses Using UAV Dubins Connection Path

Create a uavDubinsConnection object.

connectionObj = uavDubinsConnection;

Define start and goal poses as [x, y, z, headingAngle] vectors.

startPose = [0 0 0 0]; % [meters, meters, meters, radians]
goalPose = [0 0 20 pi];

Calculate a valid path segment and connect the poses. Returns a path segment object with the lowest
path cost.

[pathSegObj,pathCosts] = connect(connectionObj,startPose,goalPose);

1 Classes

1-92

Show the generated path.

show(pathSegObj{1})

Verify the motion type and the path cost of the returned path segment.

fprintf('Motion Type: %s\nPath Cost: %f\n',strjoin(pathSegObj{1}.MotionTypes),pathCosts);

Motion Type: R L R N
Path Cost: 138.373157

Modify Connection Type and Properties

Disable this specific motion sequence in a new connection object. Specify the AirSpeed,
MaxRollAngle, and FlightPathAngleLimit properties of the connection object.

connectionObj = uavDubinsConnection('DisabledPathTypes',{'RLRN'});
connectionObj.AirSpeed = 15;
connectionObj.MaxRollAngle = 0.8;
connectionObj.FlightPathAngleLimit = [-1.47 1.47];

Connect the poses again to get a different path. Returns a path segment object with the next lowest
path cost.

[pathSegObj,pathCosts] = connect(connectionObj,startPose,goalPose);

Show the modified path.

show(pathSegObj{1})

 uavDubinsConnection

1-93

Verify the motion type and the path cost of the modified path segment.

fprintf('Motion Type: %s\nPath Cost: %f\n',strjoin(pathSegObj{1}.MotionTypes),pathCosts);

Motion Type: L R L N
Path Cost: 164.674067

References
[1] Owen, Mark, Randal W. Beard, and Timothy W. McLain. "Implementing Dubins Airplane Paths on

Fixed-Wing UAVs." Handbook of Unmanned Aerial Vehicles, 2015, pp. 1677–1701.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
uavDubinsPathSegment

Introduced in R2019b

1 Classes

1-94

uavDubinsPathSegment
Dubins path segment connecting two poses of UAV

Description
The uavDubinsPathSegment object holds information for a Dubins path segment that connects start
and goal poses of a UAV as a sequence of motions in the north-east-down coordinate system.

The motion options are:

• Straight
• Left turn (counterclockwise)
• Right turn (clockwise)
• Helix left turn (counterclockwise)
• Helix right turn (clockwise)
• No motion

The turn direction is defined as viewed from the top of the UAV. Helical motions are used to ascend or
descend.

Creation

Syntax
pathSegObj = connect(connectionObj,start,goal)

pathSegObj = uavDubinsPathSegment(connectionObj,start,goal)
pathSegObj = uavDubinsPathSegment(connectionObj,start,goal,motionTypes)
pathSegObj = uavDubinsPathSegment(start,goal,flightPathAngle,airSpeed,
minTurningRadius,helixRadius,motionTypes,motionLengths)

Description

To generate a uavDubinsPathSegment object, use the connect function with a
uavDubinsConnection object:

pathSegObj = connect(connectionObj,start,goal) connects the start and goal poses using
the specified uavDubinsConnection object. The start and goal inputs set the value of the
properties StartPose and GoalPose, respectively.

To specifically define a path segment:

pathSegObj = uavDubinsPathSegment(connectionObj,start,goal) creates a Dubins path
segment to connect start and goal poses of a UAV. The uavDubinsConnection object provides the
minimum turning radius and flight path angle. It internally computes the optimal path and assigns it
to pathSegObj.

 uavDubinsPathSegment

1-95

pathSegObj = uavDubinsPathSegment(connectionObj,start,goal,motionTypes) creates
a Dubins path segment to connect start and goal poses of a UAV with the given motionTypes. The
motionTypes input sets the value of the MotionTypes property.

pathSegObj = uavDubinsPathSegment(start,goal,flightPathAngle,airSpeed,
minTurningRadius,helixRadius,motionTypes,motionLengths) creates a Dubins path
segment to connect start and goal poses of a UAV by explicitly specifying all the parameters. The
input values are set to their corresponding properties in the object.

Properties
StartPose — Initial pose of UAV
four-element numeric vector

This property is read-only.

Initial pose of the UAV at the start of the path segment, specified as a four-element numeric vector [x,
y, z, headingAngle].

x, y, and z specify the position in meters. headingAngle specifies the heading angle in radians.
Data Types: double

GoalPose — Goal pose of UAV
four-element numeric vector

This property is read-only.

Goal pose of the UAV at the end of the path segment, specified as a four-element numeric vector [x, y,
z, headingAngle].

x, y, and z specify the position in meters. headingAngle specifies the heading angle in radians.
Data Types: double

MinTurningRadius — Minimum turning radius
positive numeric scalar

This property is read-only.

Minimum turning radius of the UAV, specified as a positive numeric scalar in meters. This value
corresponds to the radius of the circle at the maximum roll angle and a constant airspeed of the UAV.
Data Types: double

HelixRadius — Helical path radius
positive numeric scalar

This property is read-only.

Helical path radius of the UAV, specified as a positive numeric scalar in meters.
Data Types: double

FlightPathAngle — Flight path angle
positive numeric scalar

1 Classes

1-96

This property is read-only.

Flight path angle of the UAV to reach the goal altitude, specified as a positive numeric scalar in
radians.
Data Types: double

AirSpeed — Airspeed of UAV
positive numeric scalar

This property is read-only.

Airspeed of the UAV, specified as a positive numeric scalar in m/s.
Data Types: double

MotionLengths — Length of each motion
four-element numeric vector

This property is read-only.

Length of each motion in the path segment, specified as a four-element numeric vector in meters.
Each motion length corresponds to a motion type specified in the MotionTypes property.
Data Types: double

MotionTypes — Type of each motion
four-element string cell array

This property is read-only.

Type of each motion in the path segment, specified as a three-element string cell array.

Motion Type Description
"S" Straight
"L" Left turn (counterclockwise)
"R" Right turn (clockwise)
"Hl" Helix left turn (counterclockwise)
"Hr" Helix right turn (clockwise)
"N" No motion

Note The no motion segment "N" is used as a filler at the end when only three path segments are
needed.

Each motion type corresponds to a motion length specified in the MotionLengths property.

For UAV Dubins connections, the available path types are: {'LSLN'} {'LSRN'} {'RSLN'}
{'RSRN'} {'RLRN'} {'LRLN'} {'HlLSL'} {'HlLSR'} {'HrRSL'} {'HrRSR'} {'HrRLR'}
{'HlLRL'} {'LSLHl'} {'LSRHr'} {'RSLHl'} {'RSRHr'} {'RLRHr'} {'LRLHl'}
{'LRSL'} {'LRSR'} {'LRLR'} {'RLSR'} {'RLRL'} {'RLSL'} {'LSRL'} {'RSRL'}
{'LSLR'} {'RSLR'}.

 uavDubinsPathSegment

1-97

Example: {'L','R','L','N'}
Data Types: cell

Length — Length of path segment
positive numeric scalar

This property is read-only.

Length of the path segment or the flight path, specified as a positive numeric scalar in meters. This
length is the sum of the elements in the MotionLengths vector.
Data Types: double

Object Functions
interpolate Interpolate poses along UAV Dubins path segment
show Visualize UAV Dubins path segment

Examples

Specify Motion Type for UAV Dubins Path

This example shows how to calculate a UAV Dubins path segment and connect poses using the
uavDubinsConnection object for a specified motion type.

Create a uavDubinsConnection object.

connectionObj = uavDubinsConnection;

Define start and goal poses as [x, y, z, headingAngle] vectors.

startPose = [0 0 0 0]; % [meters, meters, meters, radians]
goalPose = [0 0 20 pi];

Calculate a valid path segment and connect the poses for a specified motion type.

pathSegObj = uavDubinsPathSegment(connectionObj,startPose,goalPose,{'L','S','L','N'});

Show the generated path.

show(pathSegObj)

1 Classes

1-98

Verify the motion type of the returned path segment.

fprintf('Motion Type: %s\n',strjoin(pathSegObj.MotionTypes));

Motion Type: L S L N

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
interpolate | show

Introduced in R2019b

 uavDubinsPathSegment

1-99

uavLidarPointCloudGenerator
Generate point clouds from meshes

Description
The uavLidarPointCloudGenerator System object generates detections from a statistical
simulated lidar sensor. The system object uses a statistical sensor model to simulate lidar detections
with added random noise. All detections are with respect to the coordinate frame of the vehicle-
mounted sensor. You can use the uavLidarPointCloudGenerator object in a scenario, created
using a uavSensor, containing static meshes, UAV platforms, and sensors.

To generate lidar point clouds:

1 Create the uavLidarPointCloudGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
lidar = uavLidarPointCloudGenerator
lidar = uavLidarPointCloudGenerator(Name,Value)

Description

lidar = uavLidarPointCloudGenerator creates a statistical sensor model to generate point
cloud for a lidar. This sensor model will have default properties.

lidar = uavLidarPointCloudGenerator(Name,Value) sets properties using one or more
name-value pairs. For example,
uavLidarPointCloudGenerator('UpdateRate',100,'HasNoise',0) creates a lidar point
cloud generator that reports detections at an update rate of 100 Hz without noise.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

UpdateRate — Update rate of the lidar sensor
10 (default) | positive real scalar

1 Classes

1-100

Update rate of the lidar sensor, specified as a positive real scalar in Hz. This property sets the
frequency at which new detections happen.
Example: 20
Data Types: double

MaxRange — Maximum detection range
120 (default) | positive real scalar

Maximum detection range of the sensor, specified as a positive real scalar. The sensor does not detect
objects beyond this range. The units are in meters.
Example: 120
Data Types: double

RangeAccuracy — Accuracy of range measurements
0.0020 (default) | positive real scalar

Accuracy of the range measurements, specified as a positive real scalar in meters. This property sets
the one-standard-deviation accuracy of the sensor range measurements.
Example: 0.001
Data Types: single | double

AzimuthResolution — Azimuthal resolution of lidar sensor
0.1600 (default) | positive real scalar

Azimuthal resolution of lidar sensor, specified as a positive real scalar in degrees. The azimuthal
resolution defines the minimum separation in azimuth angle at which the lidar sensor can distinguish
two targets.
Example: 0.6000
Data Types: single | double

ElevationResolution — Elevation resolution of lidar sensor
1.2500 (default) | positive real scalar

Elevation resolution of lidar sensor, specified as a positive real scalar with units in degrees. The
elevation resolution defines the minimum separation in elevation angle at which the lidar can
distinguish two targets.
Example: 0.6000
Data Types: single | double

AzimuthLimits — Azimuthal limits of lidar sensor
[-180 180] (default) | two-element vector

Azimuth limits of the lidar, specified as a two-element vector of the form [min max]. Units are in
degrees.
Example: [-60 100]
Data Types: single | double

ElevationLimits — Elevation limits of lidar sensor
[-20 20] (default) | two-element vector

 uavLidarPointCloudGenerator

1-101

Elevation limits of the lidar, specified as a two-element vector of the form [min max]. Units are in
degrees.
Example: [-60 100]
Data Types: single | double

HasNoise — Add noise to lidar sensor measurements
true or 1 (default) | false or 0

Add noise to lidar sensor measurements, specified as true or false. Set this property to true to
add noise to the sensor measurements. Otherwise, the measurements have no noise.
Example: false
Data Types: logical

HasOrganizedOutput — Output generated data as organized point cloud
true or 1 (default) | false or 0

Output generated data as organized point cloud, specified as true or false. Set this property to
true to output an organized point cloud. Otherwise, the output is unorganized.
Example: false
Data Types: logical

Usage

Syntax
ptCloud = lidar(tgts,simTime)
[ptCloud,isValidTime] = lidar(tgts,simTime)

Description

ptCloud = lidar(tgts,simTime) generates a lidar point cloud object ptCloud from the
specified target object, tgts, at the specified simulation time simTime.

[ptCloud,isValidTime] = lidar(tgts,simTime) additionally returns isValidTime which
specifies if the specified simTime is a multiple of the sensor's update interval (1/UpdateRate).

Input Arguments

tgts — Target object data
structure | structure array

Target object data, specified as a structure or structure array. Each structure corresponds to a mesh.
The table shows the properties that the object uses to generate detections.

1 Classes

1-102

Target Object Data

Field Description
Mesh An extendedObjectMesh object representing

the geometry of the target object in its own
coordinate frame.

Position A three-element vector defining the coordinate
position of the target with respect to the sensor
frame.

Orientation A quaternion object or a 3-by-3 matrix,
containing Euler angles, defining the orientation
of the target with respect to the sensor frame.

simTime — Current simulation time
positive real scalar

Current simulation time, specified as a positive real scalar. The lidar object calls the lidar point
cloud generator at regular intervals to generate new point clouds at a frequency defined by the
updateRate property. The value of the UpdateRate property must be an integer multiple of the
simulation time interval. Updates requested from the sensor between update intervals do not
generate a point cloud. Units are in seconds.

Output Arguments

ptCloud — Point cloud data
pointCloud object

Point cloud data, returned as a pointCloud object.

isValidTime — Valid time to generate point cloud
false or 0 | true or 1

Valid time to generate point cloud, returned as logical 0 (false) or 1 (false). isValidTime is 0
when the requested update time is not a multiple of the updateRate property value.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

 uavLidarPointCloudGenerator

1-103

Generate Point Clouds from Mesh

This example shows how to use a statistical lidar sensor model to generate point clouds from a mesh.

Create Sensor Model

Create a statistical sensor model, lidar, using the uavLidarPointCloudGenerator System
object.

lidar = uavLidarPointCloudGenerator('HasOrganizedOutput',false);

Create Floor

Use the extendedObjectMesh object to create mesh for the target object.

tgts.Mesh = scale(extendedObjectMesh('cuboid'),[100 100 2]);

Define the position of the target object with respect to the sensor frame.

tgts.Position = [0 0 -10];

Define the orientation of the target with respect to the sensor frame.

 tgts.Orientation = quaternion([1 0 0 0]);

Generate Point Clouds from Floor

 ptCloud = lidar(tgts,0);

Visualize

Use the translate function to translate the object mesh to its specified location and use the show
function to visualize it. Use the scatter3 function to plot the point clouds stored in ptCloud.

figure
show(translate(tgts.Mesh,tgts.Position));
hold on
scatter3(ptCloud.Location(:,1),ptCloud.Location(:,2), ...
 ptCloud.Location(:,3));

1 Classes

1-104

See Also
uavScenario

Topics
“UAV Scenario Tutorial”

Introduced in R2020b

 uavLidarPointCloudGenerator

1-105

uavOrbitFollower
Orbit location of interest using a UAV

Description
The uavOrbitFollower object is a 3-D path follower for unmanned aerial vehicles (UAVs) to follow
circular paths that is based on a lookahead distance. Given the circle center, radius, and the pose, the
orbit follower computes a desired yaw and course to follow a lookahead point on the path. The object
also computes the cross-track error from the UAV pose to the path and tracks how many times the
circular orbit has been completed.

Tune the lookaheadDistance input to help improve path tracking. Decreasing the distance can
improve tracking, but may lead to oscillations in the path.

To orbit a location using a UAV:

1 Create the uavOrbitFollower object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
orbit = uavOrbitFollower
orbit = uavOrbitFollower(Name,Value)

Description

orbit = uavOrbitFollower returns an orbit follower object with default property values.

orbit = uavOrbitFollower(Name,Value) creates an orbit follower with additional options
specified by one or more Name,Value pair arguments.

Name is a property name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

1 Classes

1-106

UAV type — Type of UAV
'fixed-wing' (default) | 'multirotor'

Type of UAV, specified as either 'fixed-wing' or 'multirotor'.

OrbitCenter — Center of orbit
[x y z] vector

Center of orbit, specified as an [x y z] vector. [x y z] is the orbit center position in NED-
coordinates (north-east-down) specified in meters.
Example: [5,5,-10]
Data Types: single | double

OrbitRadius — Radius of orbit
positive scalar

Radius of orbit, specified as a positive scalar in meters.
Example: 5
Data Types: single | double

TurnDirection — Direction of orbit
scalar

Direction of orbit, specified as a scalar. Positive values indicate a clockwise turn as viewed from
above. Negative values indicate a counter-clockwise turn. A value of 0 automatically determines the
value based on the input Pose.
Example: -1
Data Types: single | double

MinOrbitRadius — Minimum orbit radius
1 (default) | positive numeric scalar

Minimum orbit radius, specified as a positive numeric scalar in meters.
Data Types: single | double

MinLookaheadDistance — Minimum lookahead distance
0.1 (default) | positive numeric scalar

Minimum lookahead distance, specified as a positive numeric scalar in meters.
Data Types: single | double

Usage

Syntax
[lookaheadPoint,desiredCourse,desiredYaw,orbitRadiusFlag,lookaheadDistFlag,
crossTrackError,numTurns] = orbit(currentPose,lookaheadDistance)

 uavOrbitFollower

1-107

Description

[lookaheadPoint,desiredCourse,desiredYaw,orbitRadiusFlag,lookaheadDistFlag,
crossTrackError,numTurns] = orbit(currentPose,lookaheadDistance) follows the set of
waypoints specified in the waypoint follower object. The object takes the current position and
lookahead distance to compute the lookahead point on the path. The desired course, yaw, and cross
track error are also based on this lookahead point compared to the current position. status returns
zero until the UAV has navigated all the waypoints.

Input Arguments

currentPose — Current UAV pose
[x y z course] vector

Current UAV pose, specified as a [x y z course] vector. This pose is used to calculate the
lookahead point based on the input LookaheadDistance. [x y z] is the current position in meters.
course is the current course in radians. The UAV course is the angle of direction of the velocity
vector relative to north measured in radians.
Data Types: single | double

lookaheadDistance — Lookahead distance
positive numeric scalar

Lookahead distance along the path, specified as a positive numeric scalar in meters.
Data Types: single | double

Output Arguments

lookaheadPoint — Lookahead point on path
[x y z] position vector

Lookahead point on path, returned as an [x y z] position vector in meters.
Data Types: double

desiredCourse — Desired course
numeric scalar

Desired course, returned as numeric scalar in radians in the range of [-pi, pi]. The UAV course is
the angle of direction of the velocity vector relative to north measured in radians. For fixed-wing type
UAV, the values of desired course and desired yaw are equal.
Data Types: double

desiredYaw — Desired yaw
numeric scalar

Desired yaw, returned as numeric scalar in radians in the range of [-pi, pi]. The UAV yaw is the
forward direction of the UAV regardless of the velocity vector relative to north measured in radians.
For fixed-wing type UAV, the values of desired course and desired yaw are equal.
Data Types: double

orbitRadiusFlag — Orbit radius flag
0 (default) | 1

1 Classes

1-108

Orbit radius flag, returned as 0 or 1. 0 indicates orbit radius is not saturated, 1 indicates orbit radius
is saturated to minimum orbit radius value specified.
Data Types: uint8

lookaheadDistFlag — Lookahead distance flag
0 (default) | 1

Lookahead distance flag, returned as 0 or 1. 0 indicates lookahead distance is not saturated, 1
indicates lookahead distance is saturated to minimum lookahead distance value specified.
Data Types: uint8

crossTrackError — Cross track error from UAV position to path
positive numeric scalar

Cross track error from UAV position to path, returned as a positive numeric scalar in meters. The
error measures the perpendicular distance from the UAV position to the closest point on the path.
Data Types: double

numTurns — Number of times the UAV has completed the orbit
numeric scalar

Number of times the UAV has completed the orbit, specified as a numeric scalar. As the UAV circles
the center point, this value increases or decreases based on the specified Turn Direction property.
Decimal values indicate partial completion of a circle. If the UAV cross track error exceeds the
lookahead distance, the number of turns is not updated.

NumTurns is reset whenever Center, Radius, or TurnDirection properties are changed.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate Control Commands for Orbit Following

This example shows how to use the uavOrbitFollower to generate course and yaw commands for
orbiting a location of interest with a UAV.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

 uavOrbitFollower

1-109

Create the orbit follower. Set the center of the location of interest and the radius of orbit. Set a
TurnDirection of 1 for counter-clockwise rotation around the location.

orbFollower = uavOrbitFollower;

orbFollower.OrbitCenter = [1 1 5]';
orbFollower.OrbitRadius = 2.5;
orbFollower.TurnDirection = 1;

Specify the pose of the UAV and the lookahead distance for tracking the path.

pose = [0;0;5;0];
lookaheadDistance = 2;

Call the orbFollower object with the pose and lookahead distance. The object returns a lookahead
point on the path, the desired course, and yaw. You can use the desired course and yaw to generate
control commands for the UAV.

[lookaheadPoint,desiredCourse,desiredYaw,~,~] = orbFollower(pose,lookaheadDistance);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
control | derivative | environment | state | plotTransforms

Objects
uavWaypointFollower | fixedwing | multirotor

Blocks
Orbit Follower | Waypoint Follower | UAV Guidance Model

Introduced in R2019a

1 Classes

1-110

uavPathManager
Compute and execute a UAV autonomous mission

Description
The uavPathManager System object computes mission parameters for an unmanned aerial vehicle
(UAV) by sequentially switching between the mission points specified in the MissionData property.
The MissionCmd property changes the execution order at runtime. The object supports both
multirotor and fixed-wing UAV types.

To compute mission parameters:

1 Create the uavPathManager object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
pathManagerObj = uavPathManager
pathManagerObj = uavPathManager(Name,Value)

Description

pathManagerObj = uavPathManager creates a UAV path manager System object with default
property values.

pathManagerObj = uavPathManager(Name,Value) creates a UAV path manager object with
additional options specified by one or more Name,Value pair arguments.

Name is a property name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: uavPathManager('UAVType','fixed-wing')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 uavPathManager

1-111

UAVType — Type of UAV
'multirotor' (default) | 'fixed-wing'

Type of UAV, specified as either 'multirotor' or 'fixed-wing'.
Data Types: string

LoiterRadius — Loiter radius for fixed-wing UAV
25 (default) | positive numeric scalar

Loiter radius for the fixed-wing UAV, specified as a positive numeric scalar in meters.

Dependencies: To enable this parameter, set the UAV type property to 'fixed-wing'.
Data Types: single | double

MissionData — UAV mission data
n-by-1 array of structures

UAV mission data, specified as an n-by-1 array of structures. n is the number of mission points. The
fields of each structure are:

• mode — Mode of the mission point, specified as an 8-bit unsigned integer between 1 and 6.
• position — Position of the mission point, specified as a three-element column vector of

[x;y;z]. x, y, and z is the position in north-east-down (NED) coordinates specified in meters.
• params — Parameters of the mission point, specified as a four-element column vector.

This table describes types of mode and the corresponding values for the position and params fields
in a mission point structure.

mode position params Mode description
uint8(1) [x;y;z] [p1;p2;p3;p4] Takeoff — Take off from

the ground and travel
towards the specified
position

uint8(2) [x;y;z] [yaw;radius;p3;p4]

yaw — Yaw angle in
radians in the range [-
pi, pi]

radius — Transition
radius in meters

Waypoint — Navigate
to waypoint

1 Classes

1-112

mode position params Mode description
uint8(3) [x;y;z]

x, y, and z is the center
of the circular orbit in
NED coordinates
specified in meters

[radius;turnDir;nu
mTurns;p4]

radius — Radius of the
orbit in meters

turnDir — Turn
direction, specified as
one of these:

• 1 — Clockwise turn
• —1 — Counter-

clockwise turn
• 0 — Automatic

selection of turn
direction

numTurns — Number of
turns

Orbit — Orbit along the
circumference of a
circle defined by the
parameters

uint8(4) [x;y;z] [p1;p2;p3;p4] Land — Land at the
specified position

uint8(5) [x;y;z]

The launch position is
specified in the Home
property

[p1;p2;p3;p4] RTL — Return to launch
position

uint8(6) [x;y;z] [p1;p2;p3;p4]

p1, p2, p3, and p4 are
user-specified
parameters
corresponding to the
custom mission point

Custom — Custom
mission point

Note p1, p2, p3, and p4 are user-specified parameters.

Example: [struct('mode',uint8(1),'position',[0;0;100],'params',[0;0;0;0])]

Tunable: Yes

IsModeDone — Determine if mission point was executed
false (default) | true

Determine if the mission point was executed, specified as true (1) or false (0).

Tunable: Yes
Data Types: logical

 uavPathManager

1-113

MissionCmd — Command to change mission
uint8(0) (default) | 8-bit unsigned integer between 0 and 3

Command to change mission at runtime, specified as an 8-bit unsigned integer between 0 and 3.

This table describes the possible mission commands.

Mission Command Description
uint8(0) Default — Execute the mission from first to the

last mission point in the sequence
uint8(1) Hold — Hold at the current mission point

Loiter around the current position for fixed-wing,
and hover at the current position for multirotor
UAVs

uint8(2) Repeat — Repeat the mission after reaching the
last mission point

uint8(3) RTL — Execute return to launch (RTL) mode

After RTL, the mission resumes if the
MissionCmd property is changed to Default or
Repeat

Tunable: Yes
Data Types: uint8

Home — UAV home location
three-element column vector

UAV home location, specified as a three-element column vector of [x;y;z]. x, y, and z is the position
in north-east-down (NED) coordinates specified in meters.

Tunable: Yes
Data Types: single | double

Usage

Syntax
missionParams = pathManagerObj(pose)

Description

missionParams = pathManagerObj(pose)

Input Arguments

pose — Current UAV pose
four-element column vector

1 Classes

1-114

Current UAV pose, specified as a four-element column vector of [x;y;z;courseAngle]. x, y, and z
is the current position in north-east-down (NED) coordinates specified in meters. courseAngle
specifies the course angle in radians in the range [-pi, pi].
Data Types: single | double

Output Arguments

missionParams — UAV mission parameters
2-by-1 array of structures

UAV mission parameters, returned as a 2-by-1 array of structures. The first row of the array contains
the structure of the current mission point, and the second row of the array contains the structure of
the previous mission point. The fields of each structure are:

• mode — Mode of the mission point, returned as an 8-bit unsigned integer between 0 and 7.
• position — Position of the mission point based on the mode, returned as a three-element column

vector of [x;y;z]. x, y, and z is the position in north-east-down (NED) coordinates specified in
meters.

• params — Parameters of the mission point based on the mode, returned as a four-element column
vector.

At start of simulation, the previous mission point is set to the Armed mode.

struct('mode',uint8(0),'position',[x;y;z],'params',[-1;-1;-1;-1])

Note The Armed mode cannot be configured by the user.

Set the end mission point to RTL or Land mode, else the end mission point is automatically set to
Hold mode.

• Multirotor UAVs hover at the current position.

struct('mode',uint8(7),'position',[x;y;z],'params',[-1;-1;-1;-1])
• Fixed-wing UAVs loiter around the current position.

struct('mode',uint8(7),'position',[x;y;z],'params',[radius;turnDir;-1;-1])

Note The Hold mode cannot be configured by the user.

This table describes the output mission parameters depending on the mission mode.

Current Mission
Mode

Output Mission Parameters
Mission Points mode position params

Takeoff Row 1: Current uint8(1) [x;y;z] [p1;p2;p3;p4]
Row 2: Previous mode of the

previous mission
point

position of the
previous mission
point

params of the
previous mission
point

 uavPathManager

1-115

Current Mission
Mode

Output Mission Parameters
Mission Points mode position params

Waypoint Row 1: Current uint8(2) [x;y;z] [yaw;radius;p3
;p4]

yaw — Yaw angle
in radians in the
range [-pi, pi]

radius —
Transition radius
in meters

Row 2: Previous mode of the
previous mission
point

position of the
previous mission
point

• [yaw;radius;
p3;p4] if the
previous
mission point
was Takeoff

• [courseAngle
;25;p3;p4]
otherwise

courseAngle —
Angle of the line
segment between
the previous and
the current
position, specified
in radians in the
range [-pi, pi]

Orbit Row 1: Current uint8(3) [x;y;z]

x, y, and z is the
center of the
circular orbit in
NED coordinates
specified in meters

[radius;turnDi
r;numTurns;p4]

radius — Radius of
the orbit in meters

turnDir — Turn
direction, specified
as one of these:

• 1 — Clockwise
turn

• —1 — Counter-
clockwise turn

• 0 — Automatic
selection of
turn direction

numTurns —
Number of turns

1 Classes

1-116

Current Mission
Mode

Output Mission Parameters
Mission Points mode position params
Row 2: Previous mode of the

previous mission
point

position of the
previous mission
point

params of the
previous mission
point

Land Row 1: Current uint8(4) [x;y;z] [p1;p2;p3;p4]
Row 2: Previous mode of the

previous mission
point

position of the
previous mission
point

params of the
previous mission
point

RTL Row 1: Current uint8(5) [x;y;z]

The launch
position is
specified in the
Home property

[p1;p2;p3;p4]

Row 2: Previous mode of the
previous mission
point

position of the
previous mission
point

params of the
previous mission
point

Custom Row 1: Current uint8(6) [x;y;z] [p1;p2;p3;p4]

p1, p2, p3, and p4
are user-specified
parameters
corresponding to
the custom mission
point

Row 2: Previous mode of the
previous mission
point

position of the
previous mission
point

params of the
previous mission
point

Note p1, p2, p3, and p4 are user-specified parameters.

This table describes the output mission parameters when the input to the MissionCmd property is
set to Hold mode.

UAV Type Output Mission Parameters
Mission Points mode position params

Multirotor Row 1: Current uint8(7) [x;y;z] [-1;-1;-1;-1]
Row 2: Previous mode of the

previous mission
point

position of the
previous mission
point

params of the
previous mission
point

 uavPathManager

1-117

UAV Type Output Mission Parameters
Mission Points mode position params

Fixed-Wing Row 1: Current uint8(7) [x;y;z]

x, y, and z is the
center of the
circular orbit in
NED coordinates
specified in meters

[radius;turnDi
r;-1;-1]

radius — Loiter
radius is specified
in the
LoiterRadius
property

turnDir — Turn
direction is
specified as 0 for
automatic
selection of turn
direction

Row 2: Previous mode of the
previous mission
point

position of the
previous mission
point

params of the
previous mission
point

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

See Also
uavWaypointFollower | uavOrbitFollower | fixedwing | multirotor

Introduced in R2020b

1 Classes

1-118

uavPlatform
UAV platform for sensors in scenario

Description
The uavPlatform object represents an unmanned aerial vehicle (UAV) platform in a given UAV
scenario. Use the platform to define and track the trajectory of a UAV in the scenario. To simulate
sensor readings for the platform, mount sensors such as the gpsSensor, insSensor, and
uavLidarPointCloudGenerator System object to the platform as uavSensor objects. Add a body
mesh to the platform for visualization using the updateMesh object function. Set geofencing
limitations using the addGeoFence object and check those limits using the checkPermission object
function.

Creation

Syntax
platform = uavPlatform(name,scenario)
platform = uavPlatform(name,scenario,Name,Value)

Description

platform = uavPlatform(name,scenario) creates a platform with a specified name name and
adds it to the scenario, specified as a uavScenario object. Specify the name argument as a string
scalar. The name argument sets the Name property.

platform = uavPlatform(name,scenario,Name,Value) specifies options using one or more
name-value pair arguments. You can specify properties as name-value pair arguments as well. For
example, uavPlatform("UAV1",scene,'StartTime',10) sets the initial time for the platform
trajectory to 10 seconds. Enclose each property name in quotes

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'StartTime',10 sets the initial time of the platform trajectory to 10 seconds.

StartTime — Initial time of platform trajectory
0 (default) | scalar in seconds

Initial time of the platform trajectory, specified as the comma-separated pair consisting of
'StartTime' and a scalar in seconds. The UAV platform starts following the trajectory at the time of
the first waypoint in the trajectory plus the start time of the platform.
Data Types: double

 uavPlatform

1-119

InitialPosition — Initial platform position for UAV
[0 0 0] (default) | vector of the form [x y z]

Initial platform position for UAV, specified as the comma-separated pair consisting of
'InitialPosition' and a vector of the form [x y z]. Only specify this name-value pair if not
specifying the Trajectory property.
Data Types: double

InitialOrientation — Initial platform orientation for UAV
[1 0 0 0] (default) | vector of the form [w x y z]

Initial platform orientation for UAV, specified as the comma-separated pair consisting of
'InitialOrientation' and a vector of the form [w x y z], representing a quaternion. Only
specify this name-value pair if not specifying the Trajectory property.
Data Types: double

InitialVelocity — Initial platform velocity for UAV
[0 0 0] (default) | vector of the form [vx vy vz]

Initial platform velocity for UAV, specified as the comma-separated pair consisting of
'InitialVelocity' and a vector of the form [vx vy vz]. Only specify this name-value pair if not
specifying the Trajectory property.
Data Types: double

InitialAcceleration — Initial platform acceleration for UAV
[0 0 0] (default) | vector of the form [ax ay az]

Initial platform acceleration for UAV, specified as the comma-separated pair consisting of
'InitialAcceleration' and a vector of the form [ax ay az]. Only specify this name-value pair
if not specifying the Trajectory property.
Data Types: double

InitialAngularVelocity — Initial platform angular velocity for UAV
[0 0 0] (default) | three-element vector of the form [x y z] | vector

Initial platform angular velocity for UAV, specified as the comma-separated pair consisting of
'InitialAngularVelocity' and a three-element vector of the form [x y z]. The magnitude of
the vector defines the angular speed in radians per second. The xyz-coordinates define the axis of
clockwise rotation. Only specify this name-value pair if not specifying the Trajectory property.
Data Types: double

Trajectory — Trajectory for UAV platform motion
[] (default) | waypointTrajectory object

Trajectory for UAV platform motion, specified as a waypointTrajectory object. By default, the
platform is assumed to be stationary and at the origin. To move the platform at each simulation step
of the scenario, use the move object function .

Note The uavPlatform object must specify the same ReferenceFrame property as the specified
waypointTrajectory object.

1 Classes

1-120

ReferenceFrame — Reference frame for computing UAV platform motion
string scalar

Reference frame for computing UAV platform motion, specified as string scalar, which matches any
reference frame in the uavScenario. All platform motion is computed relative to this inertial frame.
Data Types: string

Properties
Name — Identifier for UAV platform
string scalar | character vector

Identifier for the UAV platform, specified as a string scalar or character vector.
Example: "uav1"
Data Types: string | char

Trajectory — Trajectory for UAV platform motion
[] (default) | waypointTrajectory object

Trajectory for UAV platform motion, specified as a waypointTrajectory object. By default, the
object assumes the platform is stationary and at the scenario origin. To move the platform at each
simulation step of the scenario, use the move object function .

Note The uavPlatform object must specify the same ReferenceFrame property as the specified
waypointTrajectory object.

ReferenceFrame — Reference frame for computing UAV platform motion
string scalar | character vector

Reference frame for computing UAV platform motion, specified as string scalar or character vector,
which matches any reference frame in the uavScenario. The object computes all platform motion
relative to this inertial frame.
Data Types: string | char

Mesh — UAV platform body mesh
extendedObjectMesh object

UAV platform body mesh, specified as an extendedObjectMesh object. The body mesh describes the
3-D model of the platform for visualization purposes.

MeshColor — UAV platform body mesh color
RGB triplet

UAV platform body mesh color when displayed in the scenario, specified as an RGB triplet.
Data Types: double

MeshTransform — Transform between UAV platform body and mesh frame
4-by-4 homogeneous transformation matrix

 uavPlatform

1-121

Transform between UAV platform body and mesh frame, specified as a 4-by-4 homogeneous
transformation matrix that maps points in the platform mesh frame to points in the body frame.
Data Types: double

Sensors — Sensors mounted on UAV platform
array of uavSensor objects

Sensors mount on UAV platform, specified as an array of uavSensor objects.

GeoFences — Geofence restrictions for UAV platform
structure array

Geofence restrictions for UAV platform, specified as a structure array with these fields:

• Geometry — An extendedObjectMesh object representing the 3-D space for the geofence in the
scenario frame.

• Permission — A logical scalar that indicates if the platform is permitted inside the geofence
(true) or not permitted (false).

Data Types: double

Object Functions
move Move UAV platform in scenario
read Read UAV motion vector
updateMesh Update body mesh for UAV platform
addGeoFence Add geographical fencing to UAV platform
checkPermission Check UAV platform permission based on geofencing

Examples

UAV Scenario Tutorial

Create a scenario to simulate unmanned aerial vehicle (UAV) flights between a set of buildings. The
example demonstrates updating the UAV pose in open-loop simulations. Use the UAV scenario to
visualize the UAV flight and generate simulated point cloud sensor readings.

Introduction

To test autonomous algorithms, a UAV scenario enables you to generate test cases and generate
sensor data from the environment. You can specify obstacles in the workspace, provide trajectories of
UAVs in global coordinates, and convert data between coordinate frames. The UAV scenario enables
you to visualize this information in the reference frame of the environment.

Create Scenario with Polygon Building Meshes

A uavScenario object is model consisting of a set of static obstacles and movable objects called
platforms. Use uavPlatform objects to model fixed-wing UAVs, multirotors, and other objects within
the scenario. This example builds a scenario consisting of a ground plane and 11 buildings as by
extruded polygons. The polygon data for the buildings is loaded and used to add polygon meshes.

% Create the UAV scenario.
scene = uavScenario("UpdateRate",2,"ReferenceLocation",[75 -46 0]);

1 Classes

1-122

% Add a ground plane.
color.Gray = 0.651*ones(1,3);
color.Green = [0.3922 0.8314 0.0745];
color.Red = [1 0 0];
addMesh(scene,"polygon",{[-250 -150; 200 -150; 200 180; -250 180],[-4 0]},color.Gray)

% Load building polygons.
load("buildingData.mat");

% Add sets of polygons as extruded meshes with varying heights from 10-30.
addMesh(scene,"polygon",{buildingData{1}(1:4,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{2}(2:5,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{3}(2:10,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{4}(2:9,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{5}(1:end-1,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{6}(1:end-1,:),[0 15]},color.Green)
addMesh(scene,"polygon",{buildingData{7}(1:end-1,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{8}(2:end-1,:),[0 10]},color.Green)
addMesh(scene,"polygon",{buildingData{9}(1:end-1,:),[0 15]},color.Green)
addMesh(scene,"polygon",{buildingData{10}(1:end-1,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{11}(1:end-2,:),[0 30]},color.Green)

% Show the scenario.
show3D(scene);
xlim([-250 200])
ylim([-150 180])
zlim([0 50])

 uavPlatform

1-123

Define UAV Platform and Mount Sensor

You can define a uavPlatform in the scenario as a carrier of your sensor models and drive them
through the scenario to collect simulated sensor data. You can associate the platform with various
meshes, such as fixedwing, quadrotor, and cuboid meshes. You can define a custom mesh
defined ones represented by vertices and faces. Specify the reference frame for describing the motion
of your platform.

Load flight data into the workspace and create a quadrotor platform using an NED reference frame.
Specify the initial position and orientation based on loaded flight log data. The configuration of the
UAV body frame orients the x-axis as forward-positive, the y-axis as right-positive, and the z-axis
downward-positive.

load("flightData.mat")

% Set up platform
plat = uavPlatform("UAV",scene,"ReferenceFrame","NED", ...
 "InitialPosition",position(:,:,1),"InitialOrientation",eul2quat(orientation(:,:,1)));

% Set up platform mesh. Add a rotation to orient the mesh to the UAV body frame.
updateMesh(plat,"quadrotor",{10},color.Red,[0 0 0],eul2quat([0 0 pi]))

You can choose to mount different sensors, such as the insSensor, gpsSensor, or
uavLidarPointCloudGenerator System objects to your UAV. Mount a lidar point cloud generator
and a uavSensor object that contains the lidar sensor model. Specify a mounting location of the
sensor that is relative to the UAV body frame.

1 Classes

1-124

lidarmodel = uavLidarPointCloudGenerator("AzimuthResolution",0.3324099,...
 "ElevationLimits",[-20 20],"ElevationResolution",1.25,...
 "MaxRange",90,"UpdateRate",2,"HasOrganizedOutput",true);

lidar = uavSensor("Lidar",plat,lidarmodel,"MountingLocation",[0,0,-1]);

Fly the UAV Platform Along Pre-Defined Trajectory and Collect Point Cloud Sensor Readings

Move the UAV along a pre-defined trajectory, and collect the lidar sensor readings along the way. This
data could be used to test lidar-based mapping and localization algorithms.

Preallocate the traj and scatterPlot line plots and then specify the plot-specific data sources.
During the simulation of the uavScenario, use the provided plotFrames output from the scene as
the parent axes to visualize your sensor data in the correct coordinate frames.

Visualize the scene.

[ax,plotFrames] = show3D(scene);

Update plot view for better visibility.

xlim([-250 200])
ylim([-150 180])
zlim([0 50])
view([-110 30])
axis equal
hold on

Create a line plot for the trajectory. First create the plot with plot3, then manually modify the data
source properties of the plot. This improves performance of the plotting.

traj = plot3(nan,nan,nan,"Color",[1 1 1],"LineWidth",2);
traj.XDataSource = "position(:,2,1:idx+1)";
traj.YDataSource = "position(:,1,1:idx+1)";
traj.ZDataSource = "-position(:,3,1:idx+1)";

Create a scatter plot for the point cloud. Update the data source properties again.

colormap("jet")
pt = pointCloud(nan(1,1,3));
scatterplot = scatter3(nan,nan,nan,1,[0.3020 0.7451 0.9333],...
 "Parent",plotFrames.UAV.Lidar);
scatterplot.XDataSource = "reshape(pt.Location(:,:,1),[],1)";
scatterplot.YDataSource = "reshape(pt.Location(:,:,2),[],1)";
scatterplot.ZDataSource = "reshape(pt.Location(:,:,3),[],1)";
scatterplot.CDataSource = "reshape(pt.Location(:,:,3),[],1) - min(reshape(pt.Location(:,:,3),[],1))";

Set up the simulation. Then, iterate through the positions and show the scene each time the lidar
sensor updates. Advance the scene, move the UAV platform, and update the sensors.

setup(scene)
for idx = 0:size(position, 3)-1
 [isupdated,lidarSampleTime, pt] = read(lidar);
 if isupdated
 % Use fast update to move platform visualization frames.
 show3D(scene,"Time",lidarSampleTime,"FastUpdate",true,"Parent",ax);
 % Refresh all plot data and visualize.
 refreshdata

 uavPlatform

1-125

 drawnow limitrate
 end
 % Advance scene simulation time and move platform.
 advance(scene);
 move(plat,[position(:,:,idx+1),zeros(1,6),eul2quat(orientation(:,:,idx+1)),zeros(1,3)])
 % Update all sensors in the scene.
 updateSensors(scene)
end
hold off

See Also
Functions
move | read | updateMesh | addGeoFence | checkPermission

Objects
uavScenario | uavSensor

Topics
“UAV Scenario Tutorial”

Introduced in R2020b

1 Classes

1-126

uavScenario
Generate UAV simulation scenario

Description
The uavScenario object generates a simulation scenario consisting of static meshes, UAV platforms,
and sensors in a 3-D environment.

Creation
scene = uavScenario creates an empty UAV scenario with default property values. The default
inertial frames are the north-east-down (NED) and the east-north-up (ENU) frames.

scene = uavScenario(Name,Value) configures a uavScenario object with properties using one
or more Name,Value pair arguments. Name is a property name and Value is the corresponding
value. Name must appear inside quotes. You can specify several name-value pair arguments in any
order as Name1,Value1,...,NameN,ValueN. Any unspecified properties take default values.

Using this syntax, you can specify the UpdateRate, StopTime, HistoryBufferSize,
ReferenceLocation, and MaxNumFrames properties. You cannot specify other properties of the
uavScenario object, which are read-only.

Properties
UpdateRate — Simulation update rate
10 (default) | positive scalar

Simulation update rate, specified as a positive scalar in Hz. The step size of the scenario when using
an advance object function is equal to the inverse of the update rate.
Example: 2
Data Types: double

StopTime — Stop time of simulation
Inf (default) | nonnegative scalar

Stop time of the simulation, specified as a nonnegative scalar. A scenario stops advancing when it
reaches the stop time.
Example: 60.0
Data Types: double

HistoryBufferSize — Maximum number of steps stored in scenario
100 (default) | positive integer greater than 1

Maximum number of steps stored in scenario, specified as a positive integer greater than 1. This
property determines the maximum number of frames of platform poses stored in the scenario. If the

 uavScenario

1-127

number of simulated steps exceeds the value of this property, then the scenario stores only latest
steps.
Example: 60
Data Types: double

ReferenceLocation — Scenario origin in geodetic coordinates
[0 0 0] (default) | 3-element vector of scalars

Scenario origin in geodetic coordinates, specified as a 3-element vector of scalars in the form
[latitude longitude altitude]. latitude and longitude are geodetic coordinates in degrees.
altitude is the height above the WGS84 reference ellipsoid in meters.
Data Types: double

MaxNumFrames — Maximum number of frames in the scenario
10 (default) | positive integer

Maximum number of frames in the scenario, specified as a positive integer. The combined number of
inertial frames, platforms, and sensors added to the scenario must be less than or equal to the value
of this property.
Example: 15
Data Types: double

CurrentTime — Current simulation time
nonnegative scalar

This property is read-only.

Current simulation time, specified as a nonnegative scalar.
Data Types: double

IsRunning — Indicate whether scenario is running
true | false

This property is read-only.

Indicate whether the scenario is running, specified as true or false. After a scenario simulation
starts, it runs until it reaches the stop time.
Data Types: logical

TransformTree — Transformation information between frames
tranformTree object

This property is read-only.

Transformation information between all the frames in the scenario, specified as a transformTree
object. This property contains the transformation information between the inertial, platform, and
sensor frames associated with the scenario.
Data Types: object

InertialFrames — Names of inertial frames in scenario
vector of string

1 Classes

1-128

This property is read-only.

Names of the inertial frames in the scenario, specified as a vector of strings.
Data Types: string

Platforms — UAV platforms in scenario
array of uavPlatform objects

This property is read-only.

UAV platforms in the scenario, specified as an array of uavPlatform objects.

Object Functions
setup Prepare UAV scenario for simulation
addCustomTerrain Add custom terrain data
addMesh Add new static mesh to UAV scenario
addInertialFrame Define new inertial frame in UAV scenario
advance Advance UAV scenario simulation by one time step
updateSensors Update sensor readings in UAV scenario
removeCustomTerrain Remove custom terrain data
restart Reset simulation of UAV scenario
show Visualize UAV scenario in 2-D
show3D Visualize UAV scenario in 3-D
terrainHeight Returns terrain height in UAV scenarios

Examples

Create and Simulate UAV Scenario

Create a UAV scenario and set its local origin.

scene = uavScenario("UpdateRate",200,"StopTime",2,"ReferenceLocation",[46, 42, 0]);

Add an inertial frame called MAP to the scenario.

scene.addInertialFrame("ENU","MAP",trvec2tform([1 0 0]));

Add one ground mesh and two cylindrical obstacle meshes to the scenario.

scene.addMesh("Polygon", {[-100 0; 100 0; 100 100; -100 100],[-5 0]},[0.3 0.3 0.3]);
scene.addMesh("Cylinder", {[20 10 10],[0 30]}, [0 1 0]);
scene.addMesh("Cylinder", {[46 42 5],[0 20]}, [0 1 0], "UseLatLon", true);

Create a UAV platform with a specified waypoint trajectory in the scenario. Define the mesh for the
UAV platform.

traj = waypointTrajectory("Waypoints", [0 -20 -5; 20 -20 -5; 20 0 -5],"TimeOfArrival",[0 1 2]);
uavPlat = uavPlatform("UAV",scene,"Trajectory",traj);
updateMesh(uavPlat,"quadrotor", {4}, [1 0 0],eul2tform([0 0 pi]));
addGeoFence(uavPlat,"Polygon", {[-50 0; 50 0; 50 50; -50 50],[0 100]},true,"ReferenceFrame","ENU");

Attach an INS sensor to the front of the UAV platform.

 uavScenario

1-129

insModel = insSensor();
ins = uavSensor("INS",uavPlat,insModel,"MountingLocation",[4 0 0]);

Visualize the scenario in 3-D.

ax = show3D(scene);
axis(ax,"equal");

Simulate the scenario.

setup(scene);
while advance(scene)
 % Update sensor readings
 updateSensors(scene);

 % Visualize the scenario
 show3D(scene,"Parent",ax,"FastUpdate",true);
 drawnow limitrate
end

1 Classes

1-130

Add Terrain and Buildings to UAV Scenario

This example shows how to add terrain and custom building mesh to a UAV scenario.

Add Terrain Surface

Add terrain surface based on terrain elevation data from the n39_w106_3arc_v2.dt1 DTED file.

addCustomTerrain("CustomTerrain","n39_w106_3arc_v2.dt1");
scenario = uavScenario("ReferenceLocation", [39.5 -105.5 0]);
addMesh(scenario,"terrain", {"CustomTerrain", [-200 200], [-200 200]}, [0.6 0.6 0.6]);
show3D(scenario);

Add Buildings

Add a couple custom building meshes using vertices and polygon meshes into the scenario. Use the
terrainHeight function to get ground height for each build base.

buildingCenters = [-50, -50; 100 100];

buildingHeights = [30 100];
buildingBoundary = [-25 -25; -25 50; 50 50; 50 -25];
for idx = 1:size(buildingCenters,1)
 buildingVertices = buildingBoundary+buildingCenters(idx,:);
 buildingBase = min(terrainHeight(scenario,buildingVertices(:,1),buildingVertices(:,2)));
 addMesh(scenario,"polygon", {buildingVertices, buildingBase+[0 buildingHeights(idx)]}, [0.3922 0.8314 0.0745]);
end

 uavScenario

1-131

show3D(scenario);
view([0 15])

Remove Custom Terrain

Remove the custom terrain that was imported.

removeCustomTerrain("CustomTerrain")

See Also
uavPlatform | uavSensor

Topics
“UAV Scenario Tutorial”

Introduced in R2020b

1 Classes

1-132

uavSensor
Sensor for UAV scenario

Description
The uavSensor object creates a sensor that is rigidly attached to a UAV platform, specified as a
uavPlatform object. You can specify different mounting positions and orientations. Configure this
object to automatically generate readings from a sensor specified as an insSensor, gpsSensor,
uavLidarPointCloudGenerator System object, or uav.SensorAdaptor class.

Creation

Syntax
sensor = uavSensor(name,platform,sensormodel)
sensor = uavSensor(___ ,Name,Value)

Description

sensor = uavSensor(name,platform,sensormodel) creates a sensor with the specified name
name and sensor model sensormodel, which set the Name and SensorModel properties
respectively. The sensor is added to the platform platform specified as a uavPlatform object.

sensor = uavSensor(___ ,Name,Value) sets properties on page 1-133 using one or more name-
value pair arguments in addition to the input arguments in the previous syntax. You can specify the
MountingLocation, MountingAngles, or UpdateRate properties as name-value pairs. For
example, uavSensor("uavLidar",plat,lidarmodel,'MountingLocation',[1 0 0])" places
the sensor one meter forward in the x-direction relative to the platform body frame. Enclose each
property name in quotes.

Properties
Name — Sensor name
string scalar

Sensor name, specified as a string scalar. Choose a name to identify this specific sensor.
Example: "uavLidar"
Data Types: string | char

MountingLocation — Sensor position on platform
vector of the form [x y z]

Sensor position on platform, specified as a vector of the form [x y z] in the platform frame. Units
are in meters.
Example: [1 0 0] is 1 m in the x-direction.

 uavSensor

1-133

Data Types: double

MountingAngles — Sensor orientation rotation angles
vector of the form [z y x]

Sensor orientation rotation angles, specified as a vector of the form [z y x] where z, y, x are
rotations about the z-axis, y-axis, and x-axis, sequentially, in degrees. The orientation is relative to the
platform body frame.
Example: [30 90 0]
Data Types: double

UpdateRate — Update rate of sensor
positive scalar

Update rate of the sensor, specified as a positive scalar in hertz . By default, the object uses the
UpdateRate property of the specified sensor model object.

The sensor update interval (1/UpdateRate) must be a multiple of the update interval for the
associated uavScenario object.
Data Types: double

SensorModel — Sensor model for generating readings
insSensor System object | gpsSensor System object | uavLidarPointCloudGenerator System
object

Sensor model for generating readings, specified as an insSensor, gpsSensor, or
uavLidarPointCloudGenerator System object.

Object Functions
read Gather latest reading from UAV sensor

Examples

UAV Scenario Tutorial

Create a scenario to simulate unmanned aerial vehicle (UAV) flights between a set of buildings. The
example demonstrates updating the UAV pose in open-loop simulations. Use the UAV scenario to
visualize the UAV flight and generate simulated point cloud sensor readings.

Introduction

To test autonomous algorithms, a UAV scenario enables you to generate test cases and generate
sensor data from the environment. You can specify obstacles in the workspace, provide trajectories of
UAVs in global coordinates, and convert data between coordinate frames. The UAV scenario enables
you to visualize this information in the reference frame of the environment.

Create Scenario with Polygon Building Meshes

A uavScenario object is model consisting of a set of static obstacles and movable objects called
platforms. Use uavPlatform objects to model fixed-wing UAVs, multirotors, and other objects within

1 Classes

1-134

the scenario. This example builds a scenario consisting of a ground plane and 11 buildings as by
extruded polygons. The polygon data for the buildings is loaded and used to add polygon meshes.

% Create the UAV scenario.
scene = uavScenario("UpdateRate",2,"ReferenceLocation",[75 -46 0]);

% Add a ground plane.
color.Gray = 0.651*ones(1,3);
color.Green = [0.3922 0.8314 0.0745];
color.Red = [1 0 0];
addMesh(scene,"polygon",{[-250 -150; 200 -150; 200 180; -250 180],[-4 0]},color.Gray)

% Load building polygons.
load("buildingData.mat");

% Add sets of polygons as extruded meshes with varying heights from 10-30.
addMesh(scene,"polygon",{buildingData{1}(1:4,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{2}(2:5,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{3}(2:10,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{4}(2:9,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{5}(1:end-1,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{6}(1:end-1,:),[0 15]},color.Green)
addMesh(scene,"polygon",{buildingData{7}(1:end-1,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{8}(2:end-1,:),[0 10]},color.Green)
addMesh(scene,"polygon",{buildingData{9}(1:end-1,:),[0 15]},color.Green)
addMesh(scene,"polygon",{buildingData{10}(1:end-1,:),[0 30]},color.Green)
addMesh(scene,"polygon",{buildingData{11}(1:end-2,:),[0 30]},color.Green)

% Show the scenario.
show3D(scene);
xlim([-250 200])
ylim([-150 180])
zlim([0 50])

 uavSensor

1-135

Define UAV Platform and Mount Sensor

You can define a uavPlatform in the scenario as a carrier of your sensor models and drive them
through the scenario to collect simulated sensor data. You can associate the platform with various
meshes, such as fixedwing, quadrotor, and cuboid meshes. You can define a custom mesh
defined ones represented by vertices and faces. Specify the reference frame for describing the motion
of your platform.

Load flight data into the workspace and create a quadrotor platform using an NED reference frame.
Specify the initial position and orientation based on loaded flight log data. The configuration of the
UAV body frame orients the x-axis as forward-positive, the y-axis as right-positive, and the z-axis
downward-positive.

load("flightData.mat")

% Set up platform
plat = uavPlatform("UAV",scene,"ReferenceFrame","NED", ...
 "InitialPosition",position(:,:,1),"InitialOrientation",eul2quat(orientation(:,:,1)));

% Set up platform mesh. Add a rotation to orient the mesh to the UAV body frame.
updateMesh(plat,"quadrotor",{10},color.Red,[0 0 0],eul2quat([0 0 pi]))

You can choose to mount different sensors, such as the insSensor, gpsSensor, or
uavLidarPointCloudGenerator System objects to your UAV. Mount a lidar point cloud generator
and a uavSensor object that contains the lidar sensor model. Specify a mounting location of the
sensor that is relative to the UAV body frame.

1 Classes

1-136

lidarmodel = uavLidarPointCloudGenerator("AzimuthResolution",0.3324099,...
 "ElevationLimits",[-20 20],"ElevationResolution",1.25,...
 "MaxRange",90,"UpdateRate",2,"HasOrganizedOutput",true);

lidar = uavSensor("Lidar",plat,lidarmodel,"MountingLocation",[0,0,-1]);

Fly the UAV Platform Along Pre-Defined Trajectory and Collect Point Cloud Sensor Readings

Move the UAV along a pre-defined trajectory, and collect the lidar sensor readings along the way. This
data could be used to test lidar-based mapping and localization algorithms.

Preallocate the traj and scatterPlot line plots and then specify the plot-specific data sources.
During the simulation of the uavScenario, use the provided plotFrames output from the scene as
the parent axes to visualize your sensor data in the correct coordinate frames.

Visualize the scene.

[ax,plotFrames] = show3D(scene);

Update plot view for better visibility.

xlim([-250 200])
ylim([-150 180])
zlim([0 50])
view([-110 30])
axis equal
hold on

Create a line plot for the trajectory. First create the plot with plot3, then manually modify the data
source properties of the plot. This improves performance of the plotting.

traj = plot3(nan,nan,nan,"Color",[1 1 1],"LineWidth",2);
traj.XDataSource = "position(:,2,1:idx+1)";
traj.YDataSource = "position(:,1,1:idx+1)";
traj.ZDataSource = "-position(:,3,1:idx+1)";

Create a scatter plot for the point cloud. Update the data source properties again.

colormap("jet")
pt = pointCloud(nan(1,1,3));
scatterplot = scatter3(nan,nan,nan,1,[0.3020 0.7451 0.9333],...
 "Parent",plotFrames.UAV.Lidar);
scatterplot.XDataSource = "reshape(pt.Location(:,:,1),[],1)";
scatterplot.YDataSource = "reshape(pt.Location(:,:,2),[],1)";
scatterplot.ZDataSource = "reshape(pt.Location(:,:,3),[],1)";
scatterplot.CDataSource = "reshape(pt.Location(:,:,3),[],1) - min(reshape(pt.Location(:,:,3),[],1))";

Set up the simulation. Then, iterate through the positions and show the scene each time the lidar
sensor updates. Advance the scene, move the UAV platform, and update the sensors.

setup(scene)
for idx = 0:size(position, 3)-1
 [isupdated,lidarSampleTime, pt] = read(lidar);
 if isupdated
 % Use fast update to move platform visualization frames.
 show3D(scene,"Time",lidarSampleTime,"FastUpdate",true,"Parent",ax);
 % Refresh all plot data and visualize.
 refreshdata

 uavSensor

1-137

 drawnow limitrate
 end
 % Advance scene simulation time and move platform.
 advance(scene);
 move(plat,[position(:,:,idx+1),zeros(1,6),eul2quat(orientation(:,:,idx+1)),zeros(1,3)])
 % Update all sensors in the scene.
 updateSensors(scene)
end
hold off

See Also
Functions
read

Objects
uavScenario | uavPlatform | insSensor | gpsSensor | uavLidarPointCloudGenerator |
uav.SensorAdaptor

Topics
“UAV Scenario Tutorial”

Introduced in R2020b

1 Classes

1-138

uav.SensorAdaptor class
Package: uav

Custom UAV sensor interface

Description
The uav.SensorAdaptor class is an interface for adapting custom sensor models to for use with the
uavScenario object for UAV scenario simulation.

The uav.SensorAdaptor class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Creation

Syntax
sensorObj = uav.SensorAdaptor(sensorModel)

Description

sensorObj = uav.SensorAdaptor(sensorModel) creates a sensor object compatible with the
uavScenario object. sensorModel is an object handle for a custom implementation of the
SensorAdaptor class.

To get a template for a custom sensor implementation, use the createCustomSensorTemplate
function.

Properties
UpdateRate — Sensor update rate
positive scalar

Sensor update rate, specified as a positive scalar in Hz.
Example: 10 Hz
Data Types: double

SensorModel — Custom sensor model implementation
object handle

Custom sensor model implementation, specified as an object handle. To get a template for a custom
sensor implementation, use the createCustomSensorTemplate function.

 uav.SensorAdaptor class

1-139

Attributes:

SetAccess private

Methods
Public Methods
setup Set up custom sensor model
read Read from custom sensor model
reset Reset custom sensor model
getEmptyOutputs Return empty sensor outputs without sensor inputs

Static Methods
uav.SensorAdaptor.getMotion Get sensor motion in platform reference frame

See Also
Functions
uav.SensorAdaptor.getMotion | getEmptyOutputs | reset | setup | read

Objects
uavSensor | uavPlatform | uavScenario

Topics
“Simulate Radar Sensor Mounted On UAV”

Introduced in R2021a

1 Classes

1-140

uavWaypointFollower

Follow waypoints for UAV

Description
The uavWaypointFollower System object follows a set of waypoints for an unmanned aerial vehicle
(UAV) using a lookahead point. The object calculates the lookahead point, desired course, and desired
yaw given a UAV position, a set of waypoints, and a lookahead distance. Specify a set of waypoints
and tune thelookAheadDistance input argument and TransitionRadius property for navigating
the waypoints. The object supports both multirotor and fixed-wing UAV types.

To follow a set of waypoints:

1 Create the uavWaypointFollower object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
wpFollowerObj = uavWaypointFollower
wpFollowerObj = uavWaypointFollower(Name,Value)

Description

wpFollowerObj = uavWaypointFollower creates a UAV waypoint follower with default
properties.

wpFollowerObj = uavWaypointFollower(Name,Value) creates a UAV waypoint follower with
additional options specified by one or more Name,Value pair arguments.

Name is a property name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 uavWaypointFollower

1-141

UAV type — Type of UAV
'fixed-wing' (default) | 'multirotor'

Type of UAV, specified as either 'fixed-wing' or 'multirotor'.

StartFrom — Waypoint start behavior
'first' (default) | 'closest'

Waypoint start behavior, specified as either 'first' or 'closest'.

When set to 'first', the UAV flies to the first path segment between waypoints listed in
Waypoints. When set to 'closest', the UAV flies to the closest path segment between waypoints
listed in Waypoints. When the waypoints input changes, the UAV recalculates the closest path
segment.

Waypoints — Set of waypoints
n-by-3 matrix of [x y z] vectors

Set of waypoints for UAV to follow, specified as a n-by-3 matrix of [x y z] vectors in meters.
Data Types: single | double

YawAngles — Yaw angle for each waypoint
scalar | n-element column vector | []

Yaw angle for each waypoint, specified as a scalar or n-element column vector in radians. A scalar is
applied to each waypoint in Waypoints. An input of [] keeps the yaw aligned with the desired
course based on the lookahead point.
Data Types: single | double

TransitionRadius — Transition radius for each waypoint
numeric scalar | n-element column vector

Transition radius for each waypoint, specified as a scalar or n-element vector in meter. When
specified as a scalar, this parameter is applied to each waypoint in Waypoints. When the UAV is
within the transition radius, the object transitions to following the next path segment between
waypoints.
Data Types: single | double

MinLookaheadDistance — Minimum lookahead distance
0.1 (default) | positive numeric scalar

Minimum lookahead distance, specified as a positive numeric scalar in meters.
Data Types: single | double

Usage

Syntax
[lookaheadPoint,desiredCourse,desiredYaw,lookaheadDistFlag,crossTrackError,
status] = wpFollowerObj(currentPose,lookaheadDistance)

1 Classes

1-142

Description

[lookaheadPoint,desiredCourse,desiredYaw,lookaheadDistFlag,crossTrackError,
status] = wpFollowerObj(currentPose,lookaheadDistance) follows the set of waypoints
specified in the waypoint follower object. The object takes the current position and lookahead
distance to compute the lookahead point on the path. The desired course, yaw, and cross track error
are also based on this lookahead point compared to the current position. status returns zero until
the UAV has navigated all the waypoints.

Input Arguments

currentPose — Current UAV pose
[x y z chi] vector

Current UAV pose, specified as a [x y z chi] vector. This pose is used to calculate the lookahead
point based on the input lookaheadDistance. [x y z] is the current position in meters. chi is the
current course in radians.
Data Types: single | double

lookaheadDistance — Lookahead distance along the path
positive numeric scalar

Lookahead distance along the path, specified as a positive numeric scalar in meters.
Data Types: single | double

Output Arguments

lookaheadPoint — Lookahead point on path
[x y z] position vector

Lookahead point on path, returned as an [x y z] position vector in meters.
Data Types: single | double

desiredCourse — Desired course
numeric scalar

Desired course, returned as a numeric scalar in radians in the range of [-pi, pi]. The UAV course
is the direction of the velocity vector. For fixed-wing type UAV, the values of desired course and
desired yaw are equal.
Data Types: single | double

desiredYaw — Desired yaw
numeric scalar

Desired yaw, returned as a numeric scalar in radians in the range of [-pi, pi]. The UAV yaw is the
angle of the forward direction of the UAV regardless of the velocity vector. The desired yaw is
computed using linear interpolation between the yaw angle for each waypoint. For fixed-wing type
UAV, the values of desired course and desired yaw are equal.
Data Types: single | double

lookaheadDistFlag — Lookahead distance flag
0 (default) | 1

 uavWaypointFollower

1-143

Lookahead distance flag, returned as 0 or 1. 0 indicates lookahead distance is not saturated, 1
indicates lookahead distance is saturated to minimum lookahead distance value specified.
Data Types: uint8

crossTrackError — Cross track error from UAV position to path
positive numeric scalar

Cross track error from UAV position to path, returned as a positive numeric scalar in meters. The
error measures the perpendicular distance from the UAV position to the closest point on the path.
Data Types: single | double

status — Status of waypoint navigation
0 | 1

Status of waypoint navigation, returned as 0 or 1. When the follower has navigated all waypoints, the
object outputs 1. Otherwise, the object outputs 0.
Data Types: uint8

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

More About
Waypoint Hyperplane Condition

When following a set of waypoints, the first waypoint may be ignored based on the pose of the UAV.
Due to the nature of the lookahead distance used to track the path, the waypoint follower checks if
the UAV is near the next waypoint to transition to the next path segment using a transition region.
However, there is also a condition where the UAV transitions when outside of this region. A 3-D
hyperplane is drawn at the next waypoint. If the UAV pose is inside this hyperplane, the waypoint
follower transitions to the next waypoint. This behavior helps to ensure the UAV follows an achievable
path.

1 Classes

1-144

The hyperplane condition is satisfied if:

(p-w1)T (w2-w1) ≥ 0

p is the UAV position, and w1 and w2 are sequential waypoint positions.

If you find this behavior limiting, consider adding more waypoints based on your initial pose to force
the follower to navigate towards your initial waypoint.

References
[1] Park, Sanghyuk, John Deyst, and Jonathan How. "A New Nonlinear Guidance Logic for Trajectory

Tracking." AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
control | derivative | environment | state | plotTransforms

Objects
uavOrbitFollower | fixedwing | multirotor

Blocks
UAV Guidance Model

 uavWaypointFollower

1-145

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

1 Classes

1-146

ulogreader
Read messages from ULOG file

Description
The ulogreader object reads a ULOG file (.ulg). The object stores information about the file,
including start and end logging times, summary of available topics, and dropout intervals.

Creation

Syntax
ulogOBJ = ulogreader(filePath)

Description

ulogOBJ = ulogreader(filePath) reads the ULOG file from the specified path and returns an
object containing information about the file. The information in filePath is used to set the
FileName property.

Properties
FileName — Name of ULOG file
string scalar | character vector

This property is read-only.

Name of the ULOG file, specified as a string scalar or character vector. The FileName is the path
specified in the filePath input.
Data Types: char | string

StartTime — Start time of logging
duration object

This property is read-only.

Start time of logging offset from the system start time in the ULOG file, specified as a duration
object in the 'hh:mm:ss.SSSSSS' format.
Data Types: duration

EndTime — Timestamp of last timestamped message
duration object

This property is read-only.

Timestamp of the last timestamped message logged in the ULOG file, specified as a duration object
in the 'hh:mm:ss.SSSSSS' format.

 ulogreader

1-147

Data Types: duration

AvailableTopics — Table of all logged topics
table

This property is read-only.

Summary of all the logged topics, specified as a table that contains the columns:

• TopicNames
• InstanceID
• StartTimestamp
• LastTimestamp
• NumMessages

Data Types: table

DropoutIntervals — Time intervals in which messages were dropped while logging
n-by-2 matrix

This property is read-only.

Time intervals in which messages were dropped while logging, specified as an n-by-2 matrix of
duration arrays in the 'hh:mm:ss.SSSSSS' format, where n is the number of dropouts.
Data Types: duration

Object Functions
readTopicMsgs Read topic messages
readSystemInformation Read information messages
readParameters Read parameter values
readLoggedOutput Read logged output messages

Examples

Read Messages from ULOG File

Load the ULOG file. Specify the relative path of the file.

ulog = ulogreader('flight.ulg');

Read all topic messages.

msg = readTopicMsgs(ulog);

Specify the time interval between which to select messages.

d1 = ulog.StartTime;
d2 = d1 + duration([0 0 55],'Format','hh:mm:ss.SSSSSS');

Read messages from the topic 'vehicle_attitude' with an instance ID of 0 in the time interval
[d1 d2].

1 Classes

1-148

data = readTopicMsgs(ulog,'TopicNames',{'vehicle_attitude'}, ...
'InstanceID',{0},'Time',[d1 d2]);

Extract topic messages for the topic.

vehicle_attitude = data.TopicMessages{1,1};

Read all system information.

systeminfo = readSystemInformation(ulog);

Read all initial parameter values.

params = readParameters(ulog);

Read all logged output messages.

loggedoutput = readLoggedOutput(ulog);

Read logged output messages in the time interval.

log = readLoggedOutput(ulog,'Time',[d1 d2]);

References
[1] PX4 Developer Guide. "ULog File Format." Accessed December 6, 2019. https://dev.px4.io/

v1.9.0/en/log/ulog_file_format.html.

See Also
mavlinktlog

Introduced in R2020b

 ulogreader

1-149

https://dev.px4.io/v1.9.0/en/log/ulog_file_format.html
https://dev.px4.io/v1.9.0/en/log/ulog_file_format.html

waypointTrajectory
Waypoint trajectory generator

Description
The waypointTrajectory System object generates trajectories using specified waypoints. When
you create the System object, you can optionally specify the time of arrival, velocity, and orientation
at each waypoint. See “Algorithms” on page 1-177 for more details.

To generate a trajectory from waypoints:

1 Create the waypointTrajectory object and set its properties.
2 Call the object as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
trajectory = waypointTrajectory
trajectory = waypointTrajectory(Waypoints,TimeOfArrival)
trajectory = waypointTrajectory(Waypoints,TimeOfArrival,Name,Value)

Description

trajectory = waypointTrajectory returns a System object, trajectory, that generates a
trajectory based on default stationary waypoints.

trajectory = waypointTrajectory(Waypoints,TimeOfArrival) specifies the Waypoints
that the generated trajectory passes through and the TimeOfArrival at each waypoint.

trajectory = waypointTrajectory(Waypoints,TimeOfArrival,Name,Value) sets each
creation argument or property Name to the specified Value. Unspecified properties and creation
arguments have default or inferred values.
Example: trajectory = waypointTrajectory([10,10,0;20,20,0;20,20,10],[0,0.5,10])
creates a waypoint trajectory System object, trajectory, that starts at waypoint [10,10,0], and
then passes through [20,20,0] after 0.5 seconds and [20,20,10] after 10 seconds.

Creation Arguments

Creation arguments are properties which are set during creation of the System object and cannot be
modified later. If you do not explicitly set a creation argument value, the property value is inferred.

If you specify any creation argument, then you must specify both the Waypoints and TimeOfArrival
creation arguments. You can specify Waypoints and TimeOfArrival as value-only arguments or
name-value pairs.

1 Classes

1-150

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of trajectory (Hz)
100 (default) | positive scalar

Sample rate of trajectory in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: double

SamplesPerFrame — Number of samples per output frame
1 (default) | positive scalar integer

Number of samples per output frame, specified as a positive scalar integer.

Tunable: Yes
Data Types: double

Waypoints — Positions in the navigation coordinate system (m)
N-by-3 matrix

Positions in the navigation coordinate system in meters, specified as an N-by-3 matrix. The columns of
the matrix correspond to the first, second, and third axes, respectively. The rows of the matrix, N,
correspond to individual waypoints.
Dependencies

To set this property, you must also set valid values for the TimeOfArrival property.
Data Types: double

TimeOfArrival — Time at each waypoint (s)
N-element column vector of nonnegative increasing numbers

Time corresponding to arrival at each waypoint in seconds, specified as an N-element column vector.
The first element of TimeOfArrival must be 0. The number of samples, N, must be the same as the
number of samples (rows) defined by Waypoints.
Dependencies

To set this property, you must also set valid values for the Waypoints property.
Data Types: double

Velocities — Velocity in navigation coordinate system at each waypoint (m/s)
N-by-3 matrix

Velocity in the navigation coordinate system at each waypoint in meters per second, specified as an
N-by-3 matrix. The columns of the matrix correspond to the first, second, and third axes, respectively.

 waypointTrajectory

1-151

The number of samples, N, must be the same as the number of samples (rows) defined by
Waypoints.

If the velocity is specified as a non-zero value, the object automatically calculates the course of the
trajectory. If the velocity is specified as zero, the object infers the course of the trajectory from
adjacent waypoints.
Dependencies

To set this property, you must also set valid values for the Waypoints and TimeOfArrival properties.
Data Types: double

Course — Horizontal direction of travel (degree)
N-element real vector

Horizontal direction of travel, specified as an N-element real vector in degrees. The number of
samples, N, must be the same as the number of samples (rows) defined by Waypoints. If neither
Velocities nor Course is specified, course is inferred from the waypoints.
Dependencies

To set this property, the Velocities property must not be specified in object creation.
Data Types: double

GroundSpeed — Groundspeed at each waypoint (m/s)
N-element real vector

Groundspeed at each waypoint, specified as an N-element real vector in m/s. If the property is not
specified, it is inferred from the waypoints. The number of samples, N, must be the same as the
number of samples (rows) defined by Waypoints.
Dependencies

To set this property, the Velocities property must not be specified at object creation.
Data Types: double

ClimbRate — Climb rate at each waypoint (m/s)
N-element real vector

Climb Rate at each waypoint, specified as an N-element real vector in degrees. The number of
samples, N, must be the same as the number of samples (rows) defined by Waypoints. If neither
Velocities nor Course is specified, climb rate is inferred from the waypoints.
Dependencies

To set this property, the Velocities property must not be specified at object creation.
Data Types: double

Orientation — Orientation at each waypoint
N-element quaternion column vector | 3-by-3-by-N array of real numbers

Orientation at each waypoint, specified as an N-element quaternion column vector or 3-by-3-by-N
array of real numbers. Each quaternion must have a norm of 1. Each 3-by-3 rotation matrix must be
an orthonormal matrix. The number of quaternions or rotation matrices, N, must be the same as the
number of samples (rows) defined by Waypoints.

1 Classes

1-152

If Orientation is specified by quaternions, the underlying class must be double.

Dependencies

To set this property, you must also set valid values for the Waypoints and TimeOfArrival properties.
Data Types: double

AutoPitch — Align pitch angle with direction of motion
false (default) | true

Align pitch angle with the direction of motion, specified as true or false. When specified as true,
the pitch angle automatically aligns with the direction of motion. If specified as false, the pitch
angle is set to zero (level orientation).

Dependencies

To set this property, the Orientation property must not be specified at object creation.

AutoBank — Align roll angle to counteract centripetal force
false (default) | true

Align roll angle to counteract the centripetal force, specified as true or false. When specified as
true, the roll angle automatically counteracts the centripetal force. If specified as false, the roll
angle is set to zero (flat orientation).

Dependencies

To set this property, the Orientation property must not be specified at object creation.

ReferenceFrame — Reference frame of trajectory
'NED' (default) | 'ENU'

Reference frame of the trajectory, specified as 'NED' (North-East-Down) or 'ENU' (East-North-Up).

Usage

Syntax
[position,orientation,velocity,acceleration,angularVelocity] = trajectory()

Description

[position,orientation,velocity,acceleration,angularVelocity] = trajectory()
outputs a frame of trajectory data based on specified creation arguments and properties.

Output Arguments

position — Position in local navigation coordinate system (m)
M-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

 waypointTrajectory

1-153

orientation — Orientation in local navigation coordinate system
M-element quaternion column vector | 3-by-3-by-M real array

Orientation in the local navigation coordinate system, returned as an M-by-1 quaternion column
vector or a 3-by-3-by-M real array.

Each quaternion or 3-by-3 rotation matrix is a frame rotation from the local navigation coordinate
system to the current body coordinate system.

M is specified by the SamplesPerFrame property.
Data Types: double

velocity — Velocity in local navigation coordinate system (m/s)
M-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an M-by-3
matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

acceleration — Acceleration in local navigation coordinate system (m/s2)
M-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared, returned as an
M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

angularVelocity — Angular velocity in local navigation coordinate system (rad/s)
M-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned as an M-
by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to waypointTrajectory
waypointInfo Get waypoint information table
lookupPose Obtain pose information for certain time
perturbations Perturbation defined on object
perturb Apply perturbations to object

1 Classes

1-154

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isDone End-of-data status

Examples

Create Default waypointTrajectory

trajectory = waypointTrajectory

trajectory =
 waypointTrajectory with properties:

 SampleRate: 100
 SamplesPerFrame: 1
 Waypoints: [2x3 double]
 TimeOfArrival: [2x1 double]
 Velocities: [2x3 double]
 Course: [2x1 double]
 GroundSpeed: [2x1 double]
 ClimbRate: [2x1 double]
 Orientation: [2x1 quaternion]
 AutoPitch: 0
 AutoBank: 0
 ReferenceFrame: 'NED'

Inspect the default waypoints and times of arrival by calling waypointInfo. By default, the
waypoints indicate a stationary position for one second.

waypointInfo(trajectory)

ans=2×2 table
 TimeOfArrival Waypoints
 _____________ ___________

 0 0 0 0
 1 0 0 0

Create Square Trajectory

Create a square trajectory and examine the relationship between waypoint constraints, sample rate,
and the generated trajectory.

Create a square trajectory by defining the vertices of the square. Define the orientation at each
waypoint as pointing in the direction of motion. Specify a 1 Hz sample rate and use the default
SamplesPerFrame of 1.

 waypointTrajectory

1-155

waypoints = [0,0,0; ... % Initial position
 0,1,0; ...
 1,1,0; ...
 1,0,0; ...
 0,0,0]; % Final position

toa = 0:4; % time of arrival

orientation = quaternion([0,0,0; ...
 45,0,0; ...
 135,0,0; ...
 225,0,0; ...
 0,0,0], ...
 'eulerd','ZYX','frame');

trajectory = waypointTrajectory(waypoints, ...
 'TimeOfArrival',toa, ...
 'Orientation',orientation, ...
 'SampleRate',1);

Create a figure and plot the initial position of the platform.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
xlabel('X')
ylabel('Y')
grid on
hold on

1 Classes

1-156

In a loop, step through the trajectory to output the current position and current orientation. Plot the
current position and log the orientation. Use pause to mimic real-time processing.

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
 [currentPosition,orientationLog(count)] = trajectory();

 plot(currentPosition(1),currentPosition(2),'bo')

 pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
 count = count + 1;
end
hold off

 waypointTrajectory

1-157

Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
plot(toa,eulerAngles(:,1),'ko', ...
 toa,eulerAngles(:,2),'bd', ...
 toa,eulerAngles(:,3),'r.');
title('Orientation Over Time')
legend('Rotation around Z-axis','Rotation around Y-axis','Rotation around X-axis')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

1 Classes

1-158

So far, the trajectory object has only output the waypoints that were specified during construction. To
interpolate between waypoints, increase the sample rate to a rate faster than the time of arrivals of
the waypoints. Set the trajectory sample rate to 100 Hz and call reset.

trajectory.SampleRate = 100;
reset(trajectory)

Create a figure and plot the initial position of the platform. In a loop, step through the trajectory to
output the current position and current orientation. Plot the current position and log the orientation.
Use pause to mimic real-time processing.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
xlabel('X')
ylabel('Y')
grid on
hold on

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
 [currentPosition,orientationLog(count)] = trajectory();

 plot(currentPosition(1),currentPosition(2),'bo')

 waypointTrajectory

1-159

 pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
 count = count + 1;
end
hold off

The trajectory output now appears circular. This is because the waypointTrajectory System
object™ minimizes the acceleration and angular velocity when interpolating, which results in
smoother, more realistic motions in most scenarios.

Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time. The orientation is also interpolated.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
t = 0:1/trajectory.SampleRate:4;
plot(t,eulerAngles(:,1),'ko', ...
 t,eulerAngles(:,2),'bd', ...
 t,eulerAngles(:,3),'r.');
title('Orientation Over Time')
legend('Rotation around Z-axis','Rotation around Y-axis','Rotation around X-axis')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

1 Classes

1-160

The waypointTrajectory algorithm interpolates the waypoints to create a smooth trajectory. To
return to the square trajectory, provide more waypoints, especially around sharp changes. To track
corresponding times, waypoints, and orientation, specify all the trajectory info in a single matrix.

 % Time, Waypoint, Orientation
trajectoryInfo = [0, 0,0,0, 0,0,0; ... % Initial position
 0.1, 0,0.1,0, 0,0,0; ...

 0.9, 0,0.9,0, 0,0,0; ...
 1, 0,1,0, 45,0,0; ...
 1.1, 0.1,1,0, 90,0,0; ...

 1.9, 0.9,1,0, 90,0,0; ...
 2, 1,1,0, 135,0,0; ...
 2.1, 1,0.9,0, 180,0,0; ...

 2.9, 1,0.1,0, 180,0,0; ...
 3, 1,0,0, 225,0,0; ...
 3.1, 0.9,0,0, 270,0,0; ...

 3.9, 0.1,0,0, 270,0,0; ...
 4, 0,0,0, 270,0,0]; % Final position

trajectory = waypointTrajectory(trajectoryInfo(:,2:4), ...
 'TimeOfArrival',trajectoryInfo(:,1), ...
 'Orientation',quaternion(trajectoryInfo(:,5:end),'eulerd','ZYX','frame'), ...
 'SampleRate',100);

 waypointTrajectory

1-161

Create a figure and plot the initial position of the platform. In a loop, step through the trajectory to
output the current position and current orientation. Plot the current position and log the orientation.
Use pause to mimic real-time processing.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
xlabel('X')
ylabel('Y')
grid on
hold on

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
 [currentPosition,orientationLog(count)] = trajectory();

 plot(currentPosition(1),currentPosition(2),'bo')

 pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
 count = count+1;
end
hold off

The trajectory output now appears more square-like, especially around the vertices with waypoints.

1 Classes

1-162

Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
t = 0:1/trajectory.SampleRate:4;
eulerAngles = plot(t,eulerAngles(:,1),'ko', ...
 t,eulerAngles(:,2),'bd', ...
 t,eulerAngles(:,3),'r.');
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
 'Rotation around Y-axis', ...
 'Rotation around X-axis', ...
 'Location', 'SouthWest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

Create Arc Trajectory

This example shows how to create an arc trajectory using the waypointTrajectory System
object™. waypointTrajectory creates a path through specified waypoints that minimizes
acceleration and angular velocity. After creating an arc trajectory, you restrict the trajectory to be
within preset bounds.

 waypointTrajectory

1-163

Create an Arc Trajectory

Define a constraints matrix consisting of waypoints, times of arrival, and orientation for an arc
trajectory. The generated trajectory passes through the waypoints at the specified times with the
specified orientation. The waypointTrajectory System object requires orientation to be specified
using quaternions or rotation matrices. Convert the Euler angles saved in the constraints matrix to
quaternions when specifying the Orientation property.

 % Arrival, Waypoints, Orientation
constraints = [0, 20,20,0, 90,0,0;
 3, 50,20,0, 90,0,0;
 4, 58,15.5,0, 162,0,0;
 5.5, 59.5,0,0 180,0,0];

trajectory = waypointTrajectory(constraints(:,2:4), ...
 'TimeOfArrival',constraints(:,1), ...
 'Orientation',quaternion(constraints(:,5:7),'eulerd','ZYX','frame'));

Call waypointInfo on trajectory to return a table of your specified constraints. The creation
properties Waypoints, TimeOfArrival, and Orientation are variables of the table. The table is
convenient for indexing while plotting.

tInfo = waypointInfo(trajectory)

tInfo =

 4x3 table

 TimeOfArrival Waypoints Orientation
 _____________ ____________________ ________________

 0 20 20 0 {1x1 quaternion}
 3 50 20 0 {1x1 quaternion}
 4 58 15.5 0 {1x1 quaternion}
 5.5 59.5 0 0 {1x1 quaternion}

The trajectory object outputs the current position, velocity, acceleration, and angular velocity at each
call. Call trajectory in a loop and plot the position over time. Cache the other outputs.

figure(1)
plot(tInfo.Waypoints(1,1),tInfo.Waypoints(1,2),'b*')
title('Position')
axis([20,65,0,25])
xlabel('North')
ylabel('East')
grid on
daspect([1 1 1])
hold on

orient = zeros(tInfo.TimeOfArrival(end)*trajectory.SampleRate,1,'quaternion');
vel = zeros(tInfo.TimeOfArrival(end)*trajectory.SampleRate,3);
acc = vel;
angVel = vel;

count = 1;
while ~isDone(trajectory)

1 Classes

1-164

 [pos,orient(count),vel(count,:),acc(count,:),angVel(count,:)] = trajectory();

 plot(pos(1),pos(2),'bo')

 pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
 count = count + 1;
end

Inspect the orientation, velocity, acceleration, and angular velocity over time. The
waypointTrajectory System object™ creates a path through the specified constraints that
minimized acceleration and angular velocity.

figure(2)
timeVector = 0:(1/trajectory.SampleRate):tInfo.TimeOfArrival(end);
eulerAngles = eulerd([tInfo.Orientation{1};orient],'ZYX','frame');
plot(timeVector,eulerAngles(:,1), ...
 timeVector,eulerAngles(:,2), ...
 timeVector,eulerAngles(:,3));
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
 'Rotation around Y-axis', ...
 'Rotation around X-axis', ...
 'Location','southwest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

 waypointTrajectory

1-165

figure(3)
plot(timeVector(2:end),vel(:,1), ...
 timeVector(2:end),vel(:,2), ...
 timeVector(2:end),vel(:,3));
title('Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Velocity (m/s)')
grid on

figure(4)
plot(timeVector(2:end),acc(:,1), ...
 timeVector(2:end),acc(:,2), ...
 timeVector(2:end),acc(:,3));
title('Acceleration Over Time')
legend('North','East','Down','Location','southwest')
xlabel('Time (seconds)')
ylabel('Acceleration (m/s^2)')
grid on

figure(5)
plot(timeVector(2:end),angVel(:,1), ...
 timeVector(2:end),angVel(:,2), ...
 timeVector(2:end),angVel(:,3));
title('Angular Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Angular Velocity (rad/s)')
grid on

1 Classes

1-166

 waypointTrajectory

1-167

1 Classes

1-168

 waypointTrajectory

1-169

Restrict Arc Trajectory Within Preset Bounds

You can specify additional waypoints to create trajectories within given bounds. Create upper and
lower bounds for the arc trajectory.

figure(1)
xUpperBound = [(20:50)';50+10*sin(0:0.1:pi/2)';60*ones(11,1)];
yUpperBound = [20.5.*ones(31,1);10.5+10*cos(0:0.1:pi/2)';(10:-1:0)'];

xLowerBound = [(20:49)';50+9*sin(0:0.1:pi/2)';59*ones(11,1)];
yLowerBound = [19.5.*ones(30,1);10.5+9*cos(0:0.1:pi/2)';(10:-1:0)'];

plot(xUpperBound,yUpperBound,'r','LineWidth',2);
plot(xLowerBound,yLowerBound,'r','LineWidth',2)

1 Classes

1-170

To create a trajectory within the bounds, add additional waypoints. Create a new
waypointTrajectory System object™, and then call it in a loop to plot the generated trajectory.
Cache the orientation, velocity, acceleration, and angular velocity output from the trajectory
object.

 % Time, Waypoint, Orientation
constraints = [0, 20,20,0, 90,0,0;
 1.5, 35,20,0, 90,0,0;
 2.5 45,20,0, 90,0,0;
 3, 50,20,0, 90,0,0;
 3.3, 53,19.5,0, 108,0,0;
 3.6, 55.5,18.25,0, 126,0,0;
 3.9, 57.5,16,0, 144,0,0;
 4.2, 59,14,0, 162,0,0;
 4.5, 59.5,10,0 180,0,0;
 5, 59.5,5,0 180,0,0;
 5.5, 59.5,0,0 180,0,0];

trajectory = waypointTrajectory(constraints(:,2:4), ...
 'TimeOfArrival',constraints(:,1), ...
 'Orientation',quaternion(constraints(:,5:7),'eulerd','ZYX','frame'));
tInfo = waypointInfo(trajectory);

figure(1)
plot(tInfo.Waypoints(1,1),tInfo.Waypoints(1,2),'b*')

count = 1;

 waypointTrajectory

1-171

while ~isDone(trajectory)
 [pos,orient(count),vel(count,:),acc(count,:),angVel(count,:)] = trajectory();

 plot(pos(1),pos(2),'gd')

 pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
 count = count + 1;
end

The generated trajectory now fits within the specified boundaries. Visualize the orientation, velocity,
acceleration, and angular velocity of the generated trajectory.

figure(2)
timeVector = 0:(1/trajectory.SampleRate):tInfo.TimeOfArrival(end);
eulerAngles = eulerd(orient,'ZYX','frame');
plot(timeVector(2:end),eulerAngles(:,1), ...
 timeVector(2:end),eulerAngles(:,2), ...
 timeVector(2:end),eulerAngles(:,3));
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
 'Rotation around Y-axis', ...
 'Rotation around X-axis', ...
 'Location','southwest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

figure(3)

1 Classes

1-172

plot(timeVector(2:end),vel(:,1), ...
 timeVector(2:end),vel(:,2), ...
 timeVector(2:end),vel(:,3));
title('Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Velocity (m/s)')
grid on

figure(4)
plot(timeVector(2:end),acc(:,1), ...
 timeVector(2:end),acc(:,2), ...
 timeVector(2:end),acc(:,3));
title('Acceleration Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Acceleration (m/s^2)')
grid on

figure(5)
plot(timeVector(2:end),angVel(:,1), ...
 timeVector(2:end),angVel(:,2), ...
 timeVector(2:end),angVel(:,3));
title('Angular Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Angular Velocity (rad/s)')
grid on

 waypointTrajectory

1-173

1 Classes

1-174

 waypointTrajectory

1-175

1 Classes

1-176

Note that while the generated trajectory now fits within the spatial boundaries, the acceleration and
angular velocity of the trajectory are somewhat erratic. This is due to over-specifying waypoints.

Algorithms
The waypointTrajectory System object defines a trajectory that smoothly passes through
waypoints. The trajectory connects the waypoints through an interpolation that assumes the gravity
direction expressed in the trajectory reference frame is constant. Generally, you can use
waypointTrajectory to model platform or vehicle trajectories within a hundreds of kilometers
distance span.

The planar path of the trajectory (the x-y plane projection) consists of piecewise, clothoid curves. The
curvature of the curve between two consecutive waypoints varies linearly with the curve length
between them. The tangent direction of the path at each waypoint is chosen to minimize
discontinuities in the curvature, unless the course is specified explicitly via the Course property or
implicitly via the Velocities property. Once the path is established, the object uses cubic Hermite
interpolation to compute the location of the vehicle throughout the path as a function of time and the
planar distance traveled.

The normal component (z-component) of the trajectory is subsequently chosen to satisfy a shape-
preserving piecewise spline (PCHIP) unless the climb rate is specified explicitly via the ClimbRate
property or the third column of the Velocities property. Choose the sign of the climb rate based on
the selected ReferenceFrame:

 waypointTrajectory

1-177

• When an 'ENU' reference frame is selected, specifying a positive climb rate results in an
increasing value of z.

• When an 'NED' reference frame is selected, specifying a positive climb rate results in a decreasing
value of z.

You can define the orientation of the vehicle through the path in two primary ways:

• If the Orientation property is specified, then the object uses a piecewise-cubic, quaternion
spline to compute the orientation along the path as a function of time.

• If the Orientation property is not specified, then the yaw of the vehicle is always aligned with
the path. The roll and pitch are then governed by the AutoBank and AutoPitch property values,
respectively.

AutoBank AutoPitch Description
false false The vehicle is always level

(zero pitch and roll). This is
typically used for large
marine vessels.

false true The vehicle pitch is aligned
with the path, and its roll is
always zero. This is typically
used for ground vehicles.

true false The vehicle pitch and roll are
chosen so that its local z-axis
is aligned with the net
acceleration (including
gravity). This is typically used
for rotary-wing craft.

true true The vehicle roll is chosen so
that its local transverse plane
aligns with the net
acceleration (including
gravity). The vehicle pitch is
aligned with the path. This is
typically used for two-wheeled
vehicles and fixed-wing
aircraft.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object function, waypointInfo, does not support code generation.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

1 Classes

1-178

See Also
Objects
uavPlatform

Introduced in R2020b

 waypointTrajectory

1-179

pcplayer
Visualize streaming 3-D point cloud data

Description
Visualize 3-D point cloud data streams from devices such as Microsoft®Kinect®.

To improve performance, pcplayer automatically downsamples the rendered point cloud during
interaction with the figure. The downsampling occurs only for rendering the point cloud and does not
affect the saved points.

Creation

Syntax
player = pcplayer(xlimits,ylimits,zlimits)
player = pcplayer(xlimits,ylimits,zlimits,Name,Value)

Description

player = pcplayer(xlimits,ylimits,zlimits) returns a player with xlimits,ylimits, and
zlimits set for the axes limits.

player = pcplayer(xlimits,ylimits,zlimits,Name,Value) returns a player with additional
properties specified by one or more Name,Value pair arguments.

Input Arguments

xlimits — Range of x-axis coordinates
1-by-2 vector

Range of x-axis coordinates, specified as a 1-by-2 vector in the format [min max]. pcplayer does not
display data outside these limits.

ylimits — Range of y-axis coordinates
1-by-2 vector

Range of y-axis coordinates, specified as a 1-by-2 vector in the format [min max]. pcplayer does not
display data outside these limits.

zlimits — Range of z-axis coordinates
1-by-2 vector

Range of z-axis coordinates, specified as a 1-by-2 vector in the format [min max].pcplayer does not
display data outside these limits.

1 Classes

1-180

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'VerticalAxisDir', 'Up'.

MarkerSize — Diameter of marker
6 (default) | positive scalar

Diameter of marker, specified as the comma-separated pair consisting of 'MarkerSize' and a positive
scalar. The value specifies the approximate diameter of the point marker. MATLAB graphics defines
the unit as points. A marker size larger than six can reduce the rendering performance.

VerticalAxis — Vertical axis
'Z' (default) | 'X' | 'Y'

Vertical axis, specified as the comma-separated pair consisting of 'VerticalAxis' and 'X', 'Y', or
'Z'. When you reload a saved figure, any action on the figure resets the vertical axis to the z-axis.

VerticalAxisDir — Vertical axis direction
'Up' (default) | 'Down'

Vertical axis direction, specified as the comma-separated pair consisting of 'VerticalAxisDir' and
'Up' or 'Down'. When you reload a saved figure, any action on the figure resets the direction to the
up direction.

Properties
Axes — Player axes handle
axes graphics object

Player axes handle, specified as an axes graphics object.

Usage
Color and Data Point Values in Figure

To view point data or modify color display values, hover over the axes toolbar and select one of the
following options.

 pcplayer

1-181

Feature Description
Datatip Click Data Tips to view the data point values for any point in the point

cloud figure. For a normal point cloud, the Data Tips displays the x,y,z
values. Additional data properties for the depth image and lidar are:

Point Cloud Data Data Value Properties
Depth image (RGB-D sensor) Color, row, column
Lidar Intensity, range, azimuth angle,

elevation angle, row, column

Background color Click Rotate and then right-click in the figure for background options.
Colormap value Click Rotate and then right-click in the figure for colormap options.

You can modify colormap values for the coordinate and range values
available, depending on the type of point cloud displayed.

View Click Rotate to change the viewing angle of the point cloud figure to
the XZ, ZX,YZ, ZY, XY, or the YX plane. Click Restore View to reset
the viewing angle.

OpenGL Option

pcplayer supports the 'opengl' option for the Renderer figure property only.

Object Functions
hide Hide player figure
isOpen Visible or hidden status for player
show Show player
view Display point cloud

Examples

Terminate a Point Cloud Processing Loop

Create the player and add data.

player = pcplayer([0 1],[0 1],[0 1]);

Display continuous player figure. Use the isOpen function to check if player figure window is open.

while isOpen(player)
 ptCloud = pointCloud(rand(1000,3,'single'));
 view(player,ptCloud);
end

Terminate while-loop by closing pcplayer figure window.

See Also
pointCloud

Introduced in R2020b

1 Classes

1-182

hide
Hide player figure

Syntax
hide(player)

Description
hide(player) hides the figure. To redisplay the player, use show(player).

Input Arguments
player — Player
object

Video player, specified as a pcplayer object.

Introduced in R2020b

 hide

1-183

isOpen
Visible or hidden status for player

Syntax
isOpen(player)

Description
isOpen(player) returns true or false to indicate whether the player is visible.

Input Arguments
player — Player
object

Video player, specified as a pcplayer object.

Introduced in R2020b

1 Classes

1-184

show
Show player

Syntax
show(player)

Description
show(player) makes the player figure visible again after closing or hiding it.

Input Arguments
player — Player
object

Player for visualizing data streams, specified as a pcplayer object. Use this method to view the
figure after you have removed it from display. For example, after you x-out of a figure and you want to
view it again. This is particularly useful to use after a while loop that contains display code ends.

Introduced in R2020b

 show

1-185

view
Display point cloud

Syntax
view(player,ptCloud)
view(player,xyzPoints)
view(player,xyzPoints,color)
view(player,xyzPoints,colorMap)

Description
view(player,ptCloud) displays a point cloud in the pcplayer figure window, player. The
points, locations, and colors are stored in the ptCloud object.

view(player,xyzPoints) displays the points of a point cloud at the locations specified by the
xyzPoints matrix. The color of each point is determined by the z value.

view(player,xyzPoints,color) displays a point cloud with colors specified by color.

view(player,xyzPoints,colorMap) displays a point cloud with colors specified by colorMap.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. The object contains the locations, intensities, and RGB
colors to render the point cloud.

Point Cloud Property Color Rendering Result
Location only Maps the z-value to a color value in the current

color map.
Location and Intensity Maps the intensity to a color value in the current

color map.
Location and Color Use provided color.
Location, Intensity, and Color Use provided color.

player — Player
pcplayer object

Player for visualizing 3-D point cloud data streams, specified as a pcplayer object.

xyzPoints — Point cloud x, y, and z locations
M-by-3 numeric matrix | M-by-N-by-3 numeric matrix

Point cloud x, y, and z locations, specified as either an M-by-3 or an M-by-N-by-3 numeric matrix. The
M-by-N-by-3 numeric matrix is commonly referred to as an organized point cloud. The xyzPoints

1 Classes

1-186

numeric matrix contains M or M-by-N [x,y,z] points. The z values in the numeric matrix, which
generally correspond to depth or elevation, determine the color of each point.

color — Point cloud color
1-by-3 RGB vector | short name of color | long name of color | M-by-3 matrix | M-by-N-by-3 matrix

Point cloud color of points, specified as one of:

• RGB triplet
• A color name or a short name
• M-by-3 matrix
• M-by-N-by-3 matrix

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

You can specify the same color for all points or a different color for each point. When you set color
to single or double, the RGB values range between [0, 1]. When you set color to uint8, the
values range between [0, 255].

Points Input Color Selection Valid Values of C
xyzPoints Same color for all

points
1-by-3 RGB vector, or the short or long name of a color

Different color for
each point

M-by-3 matrix or M-by-N-by-3 matrix containing RGB values for each
point.

colorMap — Point cloud color map
M-by-1 vector | M-by-N matrix

Point cloud color of points, specified as one of:

• M-by-1 vector
• M-by-N matrix

Points Input Color Selection Valid Values of C
xyzPoints Different color for

each point
Vector or M-by-N matrix. The matrix must contain values that are
linearly mapped to a color in the current colormap.

Introduced in R2020b

 view

1-187

pointCloud
Object for storing 3-D point cloud

Description
The pointCloud object creates point cloud data from a set of points in 3-D coordinate system. The
point cloud data is stored as an object with the properties listed in “Properties” on page 1-189. Use
“Object Functions” on page 1-190 to retrieve, select, and remove desired points from the point cloud
data.

Creation

Syntax
ptCloud = pointCloud(xyzPoints)
ptCloud = pointCloud(xyzPoints,Name,Value)

Description

ptCloud = pointCloud(xyzPoints) returns a point cloud object with coordinates specified by
xyzPoints.

ptCloud = pointCloud(xyzPoints,Name,Value) creates a pointCloud object with properties
specified as one or more Name,Value pair arguments. For example,
pointCloud(xyzPoints,'Color',[0 0 0]) sets the Color property of the point xyzPoints as
[0 0 0]. Enclose each property name in quotes. Any unspecified properties have default values.

Input Arguments

xyzPoints — 3-D coordinate points
M-by-3 list of points | M-by-N-by-3 array for organized point cloud

3-D coordinate points, specified as an M-by-3 list of points or an M-by-N-by-3 array for an organized
point cloud. The 3-D coordinate points specify the x, y, and z positions of a point in the 3-D coordinate
space. The first two dimensions of an organized point cloud correspond to the scanning order from
sensors such as RGBD or lidar. This argument sets the Location property.
Data Types: single | double

Output Arguments

ptCloud — Point cloud
pointCloud object

Point cloud, returned as a pointCloud object with the properties listed in “Properties” on page 1-
189.

1 Classes

1-188

Properties
Location — Position of the points in 3-D coordinate space
M-by-3 array | M-by-N-by-3 array

This property is read-only.

Position of the points in 3-D coordinate space, specified as an M-by-3 or M-by-N-by-3 array. Each
entry specifies the x, y, and z coordinates of a point in the 3-D coordinate space. You cannot set this
property as a name-value pair. Use the xyzPoints input argument.
Data Types: single | double

Color — Point cloud color
[] (default) | M-by-3 array | M-by-N-by-3 array

Point cloud color, specified as an M-by-3 or M-by-N-by-3 array. Use this property to set the color of
points in point cloud. Each entry specifies the RGB color of a point in the point cloud data. Therefore,
you can specify the same color for all points or a different color for each point.

• The specified RGB values must lie within the range [0, 1], when you specify the data type for
Color as single or double.

• The specified RGB values must lie within the range [0, 255], when you specify the data type for
Color as uint8.

Coordinates Valid assignment of Color
M-by-3 array M-by-3 array containing RGB values for each point
M-by-N-by-3 array M-by-N-by-3 array containing RGB values for each point

Data Types: uint8

Normal — Surface normals
[] (default) | M-by-3 array | M-by-N-by-3 array

Surface normals, specified as a M-by-3 or M-by-N-by-3 array. Use this property to specify the normal
vector with respect to each point in the point cloud. Each entry in the surface normals specifies the x,
y, and z component of a normal vector.

Coordinates Surface Normals
M-by-3 array M-by-3 array, where each row contains a corresponding normal vector.
M-by-N-by-3 array M-by-N-by-3 array containing a 1-by-1-by-3 normal vector for each point.

Data Types: single | double

Intensity — Grayscale intensities
[] (default) | M-by-1 vector | M-by-N matrix

Grayscale intensities at each point, specified as a M-by-1 vector or M-by-N matrix. The function maps
each intensity value to a color value in the current colormap.

Coordinates Intensity
M-by-3 array M-by-1 vector, where each row contains a corresponding intensity value.

 pointCloud

1-189

Coordinates Intensity
M-by-N-by-3 array M-by-N matrix containing intensity value for each point.

Data Types: single | double | uint8

Count — Number of points
positive integer

This property is read-only.

Number of points in the point cloud, stored as a positive integer.

XLimits — Range of x coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along x-axis, stored as a 1-by-2 vector.

YLimits — Range of y coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along y-axis, stored as a 1-by-2 vector.

ZLimits — Range of z coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along z-axis, stored as a 1-by-2 vector.

Object Functions
findNearestNeighbors Find nearest neighbors of a point in point cloud
findNeighborsInRadius Find neighbors within a radius of a point in the point cloud
findPointsInROI Find points within a region of interest in the point cloud
removeInvalidPoints Remove invalid points from point cloud
select Select points in point cloud
copy Copy array of handle objects

Tips
The pointCloud object is a handle object. If you want to create a separate copy of a point cloud,
you can use the MATLAB copy method.
ptCloudB = copy(ptCloudA)

If you want to preserve a single copy of a point cloud, which can be modified by point cloud functions,
use the same point cloud variable name for the input and output.
ptCloud = pcFunction(ptCloud)

1 Classes

1-190

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation for variable input sizes is not optimized. Consider using constant size inputs
for an optimized code generation.

• GPU code generation supports the 'Color', 'Normal', and 'Intensity' name-value pairs.
• GPU code generation supports the findNearestNeighbors, findNeighborsInRadius,

findPointsInROI, removeInvalidPoints, and select methods.
• For very large inputs, the memory requirements of the algorithm may exceed the GPU device

limits. In such cases, consider reducing the input size to proceed with code generation.

See Also
Objects
pcplayer

Functions
findNearestNeighbors | findNeighborsInRadius | findPointsInROI |
removeInvalidPoints | select

Introduced in R2020b

 pointCloud

1-191

findNearestNeighbors
Find nearest neighbors of a point in point cloud

Syntax
[indices,dists] = findNearestNeighbors(ptCloud,point,K)
[indices,dists] = findNearestNeighbors(___ ,Name,Value)

Description
[indices,dists] = findNearestNeighbors(ptCloud,point,K) returns the indices for the
K-nearest neighbors of a query point in the input point cloud. ptCloud can be an unorganized or
organized point cloud. The K-nearest neighbors of the query point are computed by using the Kd-tree
based search algorithm.

[indices,dists] = findNearestNeighbors(___ ,Name,Value) specifies options using one or
more name-value arguments in addition to the input arguments in the preceding syntaxes.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

point — Query point
three-element vector of form [x y z]

Query point, specified as a three-element vector of form [x y z].

K — Number of nearest neighbors
positive integer

Number of nearest neighbors, specified as a positive integer.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: findNearestNeighbors(ptCloud,point,k,'Sort',true)

Sort — Sort indices
false (default) | true

Sort indices, specified as a comma-separated pair of 'Sort' and a logical scalar. When you set Sort
to true, the returned indices are sorted in the ascending order based on the distance from a query
point. To turn off sorting, set Sort to false.

1 Classes

1-192

MaxLeafChecks — Number of leaf nodes to check
Inf (default) | integer

Number of leaf nodes to check, specified as a comma-separated pair consisting of 'MaxLeafChecks'
and an integer. When you set this value to Inf, the entire tree is searched. When the entire tree is
searched, it produces exact search results. Increasing the number of leaf nodes to check increases
accuracy, but reduces efficiency.

Note The name-value argument 'MaxLeafChecks' is valid only with Kd-tree based search method.

Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains K linear indices of the
nearest neighbors stored in the point cloud.

dists — Distances to query point
column vector

Distances to query point, returned as a column vector. The vector contains the Euclidean distances
between the query point and its nearest neighbors.

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331–340.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For code generation in non-host platforms, the value for 'MaxLeafChecks' must be set to the
default value Inf. If you specify values other than Inf, the function generates a warning and
automatically assigns the default value for 'MaxLeafChecks'.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For GPU code generation, the 'MaxLeafChecks' name-value pair option is ignored.

 findNearestNeighbors

1-193

See Also
Objects
pointCloud

Functions
findNeighborsInRadius | findPointsInROI | removeInvalidPoints | select

Introduced in R2020b

1 Classes

1-194

findNeighborsInRadius
Find neighbors within a radius of a point in the point cloud

Syntax
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius)
[indices,dists] = findNeighborsInRadius(___ ,Name,Value)

Description
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius) returns the indices
of neighbors within a radius of a query point in the input point cloud. ptCloud can be an
unorganized or organized point cloud. The neighbors within a radius of the query point are computed
by using the Kd-tree based search algorithm.

[indices,dists] = findNeighborsInRadius(___ ,Name,Value) specifies options using one
or more name-value pair arguments in addition to the input arguments in the preceding syntaxes.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

point — Query point
three-element vector of form [x y z]

Query point, specified as a three-element vector of form [x y z].

radius — Search radius
scalar

Search radius, specified as a scalar. The function finds the neighbors within the specified radius
around a query point in the input point cloud.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: findNeighborsInRadius(ptCloud,point,radius,'Sort',true)

Sort — Sort indices
false (default) | true

 findNeighborsInRadius

1-195

Sort indices, specified as a comma-separated pair of 'Sort' and a logical scalar. When you set Sort
to true, the returned indices are sorted in the ascending order based on the distance from a query
point. To turn off sorting, set Sort to false.

MaxLeafChecks — Number of leaf nodes
Inf (default) | integer

Number of leaf nodes, specified as a comma-separated pair consisting of 'MaxLeafChecks' and an
integer. When you set this value to Inf, the entire tree is searched. When the entire tree is searched,
it produces exact search results. Increasing the number of leaf nodes to check increases accuracy,
but reduces efficiency.

Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains the linear indices of the
radial neighbors stored in the point cloud.

dists — Distances to query point
column vector

Distances to query point, returned as a column vector. The vector contains the Euclidean distances
between the query point and its radial neighbors.

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331–340.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For code generation in non-host platforms, the value for 'MaxLeafChecks' must be set to the
default value Inf. If you specify values other than Inf, the function generates a warning and
automatically assigns the default value for 'MaxLeafChecks'.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For GPU code generation, the 'MaxLeafChecks' name-value pair option is ignored.

1 Classes

1-196

See Also
Objects
pointCloud

Functions
findNearestNeighbors | findPointsInROI | removeInvalidPoints | select

Introduced in R2020b

 findNeighborsInRadius

1-197

findPointsInROI
Find points within a region of interest in the point cloud

Syntax
indices = findPointsInROI(ptCloud,roi)

Description
indices = findPointsInROI(ptCloud,roi) returns the points within a region of interest (ROI)
in the input point cloud. The points within the specified ROI are obtained using a Kd-tree based
search algorithm.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

roi — Region of interest
six-element vector of form [xmin xmax ymin ymax zmin zmax]

Region of interest, specified as a six-element vector of form [xmin xmax ymin ymax zmin zmax],
where:

• xmin and xmax are the minimum and the maximum limits along the x-axis respectively.
• ymin and ymax are the minimum and the maximum limits along the y-axis respectively.
• zmin and zmax are the minimum and the maximum limits along the z-axis respectively.

Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains the linear indices of the
ROI points stored in the point cloud.

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331–340.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Classes

1-198

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

-

See Also
Objects
pointCloud

Functions
findNearestNeighbors | findNeighborsInRadius | removeInvalidPoints | select

Introduced in R2020b

 findPointsInROI

1-199

removeInvalidPoints
Remove invalid points from point cloud

Syntax
[ptCloudOut,indices] = removeInvalidPoints(ptCloud)

Description
[ptCloudOut,indices] = removeInvalidPoints(ptCloud) removes points with Inf or NaN
coordinate values from point cloud and returns the indices of valid points.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

Output Arguments
ptCloudOut — Point cloud with points removed
pointCloud object

Point cloud, returned as a pointCloud object with Inf or NaN coordinates removed.

Note The output is always an unorganized (X-by-3) point cloud. If the input ptCloud is an organized
point cloud (M-by-N-by-3), the function returns the output as an unorganized point cloud.

indices — Indices of valid points
vector

Indices of valid points in the point cloud, specified as a vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Objects
pointCloud

1 Classes

1-200

Functions
findNearestNeighbors | findNeighborsInRadius | findPointsInROI | select

Introduced in R2020b

 removeInvalidPoints

1-201

select
Select points in point cloud

Syntax
ptCloudOut = select(ptCloud,indices)
ptCloudOut = select(ptCloud,row,column)
ptCloudOut = select(___ ,'OutputSize',outputSize)

Description
ptCloudOut = select(ptCloud,indices) returns a pointCloud object containing only the
points that are selected using linear indices.

ptCloudOut = select(ptCloud,row,column) returns a pointCloud object containing only the
points that are selected using row and column subscripts. This syntax applies only if the input is an
organized point cloud data of size M-by-N-by-3.

ptCloudOut = select(___ ,'OutputSize',outputSize) returns the selected points as a
pointCloud object of size specified by outputSize.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

indices — Indices of selected points
vector

Indices of selected points, specified as a vector.

row — Row indices
vector

Row indices, specified as a vector. This argument applies only if the input is an organized point cloud
data of size M-by-N-by-3.

column — Column indices
vector

Column indices, specified as a vector. This argument applies only if the input is an organized point
cloud data of size M-by-N-by-3.

outputSize — Size of output point cloud
'selected' (default) | 'full'

Size of the output point cloud, ptCloudOut, specified as 'selected' or 'full'.

1 Classes

1-202

• If the size is 'selected', then the output contains only the selected points from the input point
cloud, ptCloud.

• If the size is 'full', then the output is same size as the input point cloud ptCloud. Cleared
points are filled with NaN and the color is set to [0 0 0].

Output Arguments
ptCloudOut — Selected point cloud
pointCloud object

Point cloud, returned as a pointCloud object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Objects
pointCloud

Functions
findNearestNeighbors | findNeighborsInRadius | findPointsInROI |
removeInvalidPoints

Introduced in R2020b

 select

1-203

Methods

2

applyTransform
Apply forward transformation to mesh vertices

Syntax
transformedMesh = applyTransform(mesh,T)

Description
transformedMesh = applyTransform(mesh,T) applies the forward transformation matrix T to
the vertices of the object mesh.

Examples

Create and Transform Cuboid Mesh

Create an extendedObjectMesh object and transform the object by using a transformation matrix.

Create a cuboid mesh of unit dimensions.

cuboid = extendedObjectMesh('cuboid');

Create a transformation matrix that is a combination of a translation, a scaling, and a rotation.

tform = makehgtform('translate',[0.2 -0.5 0.5], ...
 'scale',[0.5 0.6 0.7], ...
 'xrotate',pi/4);

Transform the mesh.

transformedCuboid = applyTransform(cuboid,tform);

Visualize the meshes.

subplot(1,2,1);
show(cuboid);
title('Initial Mesh')

subplot(1,2,2);
show(transformedCuboid);
title('Transformed Mesh')

2 Methods

2-2

Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

T — Transformation matrix
4-by-4 matrix

Transformation matrix applied on the object mesh, specified as a 4-by-4 matrix. The 3-D coordinates
of each point in the object mesh is transformed according to this formula:

[xT; yT; zT; 1] = T*[x; y; z; 1]

xT, yT, and zT are the transformed 3-D coordinates of the point.
Data Types: single | double

Output Arguments
transformedMesh — Transformed object mesh
extendedObjectMesh object

Transformed object mesh, returned as an extendedObjectMesh object.

 applyTransform

2-3

See Also
Objects
extendedObjectMesh

Functions
rotate | translate | scale | join | scaleToFit | show

Introduced in R2020b

2 Methods

2-4

join
Join two object meshes

Syntax
joinedMesh = join(mesh1,mesh2)

Description
joinedMesh = join(mesh1,mesh2) joins the object meshes mesh1 and mesh2 and returns
joinedMesh with the combined objects.

Examples

Create and Join Two Object Meshes

Create extendedObjectMesh objects and join them together.

Construct two meshes of unit dimensions.

sph = extendedObjectMesh('sphere');
cub = extendedObjectMesh('cuboid');

Join the two meshes.

cub = translate(cub,[0 0 1]);
sphCub = join(sph,cub);

Visualize the final mesh.

show(sphCub);

 join

2-5

Input Arguments
mesh1 — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

mesh2 — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

Output Arguments
joinedMesh — Joined object mesh
extendedObjectMesh object

Joined object mesh, specified as an extendedObjectMesh object.

See Also
Objects
extendedObjectMesh

2 Methods

2-6

Functions
rotate | translate | scale | applyTransform | scaleToFit | show

Introduced in R2020b

 join

2-7

rotate
Rotate mesh about coordinate axes

Syntax
rotatedMesh = rotate(mesh,orient)

Description
rotatedMesh = rotate(mesh,orient) rotate the mesh object by an orientation, orient.

Examples

Create and Rotate Cuboid Mesh

Create an extendedObjectMesh object and rotate the object.

Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Rotate the mesh by 30 degrees around the z axis.

mesh = rotate(mesh,[30 0 0]);

Visualize the mesh.

ax = show(mesh);

2 Methods

2-8

Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

orient — Description of rotation
3-by-3 orthonormal matrix | quaternion | 1-by-3 vector

Description of rotation for an object mesh, specified as:

• 3-by-3 orthonormal rotation matrix
• quaternion
• 1-by-3 vector, where the elements are positive rotations in degrees about the z, y, and x axes, in

that order.

Output Arguments
rotatedMesh — Rotated object mesh
extendedObjectMesh object

Rotated object mesh, returned as an extendedObjectMesh object.

 rotate

2-9

See Also
Objects
extendedObjectMesh

Functions
translate | scale | applyTransform | join | scaleToFit | show

Introduced in R2020b

2 Methods

2-10

scale
Scale mesh in each dimension

Syntax
scaledMesh = scale(mesh,scaleFactor)
scaledMesh = scale(mesh,[sx sy sz])

Description
scaledMesh = scale(mesh,scaleFactor) scales the object mesh by scaleFactor.
scaleFactor can be the same for all dimensions or defined separately as elements of a 1-by-3 vector
in the order x, y, and z.

scaledMesh = scale(mesh,[sx sy sz]) scales the object mesh along the dimensions x, y, and z
by the scaling factors sx, sy, and sz.

Examples

Create and Scale Cuboid Mesh

Create an extendedObjectMesh object and scale the object.

Construct a cuboid mesh of unit dimensions.

 cuboid = extendedObjectMesh('cuboid');

Scale the mesh by different factors along each of the three axes.

scaledCuboid = scale(cuboid,[100 30 20]);

Visualize the mesh.

show(scaledCuboid);

 scale

2-11

Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

scaleFactor — Scaling factor
positive real scalar | 1-by-3 vector

Scaling factor for the object mesh, specified as a positive real scalar or as a 1-by-3 vector in the order
x, y, and z.
Data Types: single | double

sx — Scaling factor for x-axis
positive real scalar

Scaling factor for x-axis, specified as a positive real scalar.
Data Types: single | double

sy — Scaling factor for y-axis
positive real scalar

Scaling factor for y-axis, specified as a positive real scalar.

2 Methods

2-12

Data Types: single | double

sz — Scaling factor for z-axis
positive real scalar

Scaling factor for z-axis, specified as a positive real scalar.
Data Types: single | double

Output Arguments
scaledMesh — Scaled object mesh
extendedObjectMesh object

Scaled object mesh, returned as an extendedObjectMesh object.

See Also
Objects
extendedObjectMesh

Functions
rotate | translate | applyTransform | join | scaleToFit | show

Introduced in R2020b

 scale

2-13

scaleToFit
Auto-scale object mesh to match specified cuboid dimensions

Syntax
scaledMesh = scaleToFit(mesh,dims)

Description
scaledMesh = scaleToFit(mesh,dims) auto-scales the object mesh to match the dimensions of
a cuboid specified in the structure dims.

Examples

Create and Auto-Scale Sphere Mesh

Create an extendedObjectMesh object and auto-scale the object to the required dimensions.

Construct a sphere mesh of unit dimensions.

sph = extendedObjectMesh('sphere');

Auto-scale the mesh to the dimensions in dims.

dims = struct('Length',5,'Width',10,'Height',3,'OriginOffset',[0 0 -3]);
sph = scaleToFit(sph,dims);

Visualize the mesh.

show(sph);

2 Methods

2-14

Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

dims — Cuboid dimensions
structure

Dimensions of the cuboid to scale an object mesh, specified as a struct with these fields:

• Length – Length of the cuboid
• Width – Width of the cuboid
• Height – Height of the cuboid
• OriginOffset – Origin offset in 3-D coordinates

All the dimensions are in meters.
Data Types: struct

 scaleToFit

2-15

Output Arguments
scaledMesh — Scaled object mesh
extendedObjectMesh object

Scaled object mesh, returned as an extendedObjectMesh object.

See Also
Objects
extendedObjectMesh

Functions
rotate | translate | scale | applyTransform | join | show

Introduced in R2020b

2 Methods

2-16

show
Display the mesh as a patch on the current axes

Syntax
show(mesh)
show(mesh,ax)
ax = show(mesh)

Description
show(mesh) displays the extendedObjectMesh as a patch on the current axes. If there are no
active axes, the function creates new axes.

show(mesh,ax) displays the object mesh as a patch on the axes ax.

ax = show(mesh) optionally outputs the handle to the axes where the mesh was plotted.

Examples

Create and Translate Cuboid Mesh

Create an extendedObjectMesh object and translate the object.

Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Translate the mesh by 5 units along the negative y axis.

mesh = translate(mesh,[0 -5 0]);

Visualize the mesh.

ax = show(mesh);
ax.YLim = [-6 0];

 show

2-17

Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

ax — Current axes
axes object

Current axes, specified as an axes object.

See Also
Objects
extendedObjectMesh

Functions
rotate | translate | scale | applyTransform | join | scaleToFit

Introduced in R2020b

2 Methods

2-18

translate
Translate mesh along coordinate axes

Syntax
translatedMesh = translate(mesh,deltaPos)

Description
translatedMesh = translate(mesh,deltaPos) translates the object mesh by the distances
specified by deltaPos along the coordinate axes.

Examples

Create and Translate Cuboid Mesh

Create an extendedObjectMesh object and translate the object.

Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Translate the mesh by 5 units along the negative y axis.

mesh = translate(mesh,[0 -5 0]);

Visualize the mesh.

ax = show(mesh);
ax.YLim = [-6 0];

 translate

2-19

Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

deltaPos — Translation vector
three-element real-valued vector

Translation vector for an object mesh, specified as a three-element real-valued vector. The three
elements in the vector define the translation along the x, y, and z axes.
Data Types: single | double

Output Arguments
translatedMesh — Translated object mesh
extendedObjectMesh object

Translated object mesh, returned as an extendedObjectMesh object.

2 Methods

2-20

See Also
Objects
extendedObjectMesh

Functions
rotate | scale | applyTransform | join | scaleToFit | show

Introduced in R2020b

 translate

2-21

control
Control commands for UAV

Syntax
controlStruct = control(uavGuidanceModel)

Description
controlStruct = control(uavGuidanceModel) returns a structure that captures all the
relevant control commands for the specified UAV guidance model. Use the output of this function to
ensure you have the proper fields for your control. Use the control commands as an input to the
derivative function to get the state time-derivative of the UAV.

Examples

Simulate A Multirotor Control Command

This example shows how to use the multirotor guidance model to simulate the change in state of a
UAV due to a command input.

Create the multirotor guidance model.

model = multirotor;

Create a state structure. Specify the location in world coordinates.

s = state(model);
s(1:3) = [3;2;1];

Specify a control command, u, that specified the roll and thrust of the multirotor.

u = control(model);
u.Roll = pi/12;
u.Thrust = 1;

Create a default environment without wind.

e = environment(model);

Compute the time derivative of the state given the current state, control command, and environment.

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the multirotor UAV states as a
13-by-n matrix.

simOut = ode45(@(~,x)derivative(model,x,u,e), [0 3], s);
size(simOut.y)

ans = 1×2

2 Methods

2-22

 13 3536

Plot the change in roll angle based on the simulation output. The roll angle (the X Euler angle) is the
9th row of the simOut.y output.

plot(simOut.y(9,:))

Plot the change in the Y and Z positions. With the specified thrust and roll angle, the multirotor
should fly over and lose some altitude. A positive value for Z is expected as positive Z is down.

figure
plot(simOut.y(2,:));
hold on
plot(simOut.y(3,:));
legend('Y-position','Z-position')
hold off

 control

2-23

You can also plot the multirotor trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 300th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
multirotor.stl file and the positive Z-direction as "down". The displayed view shows the UAV
translating in the Y-direction and losing altitude.

translations = simOut.y(1:3,1:300:end)'; % xyz position
rotations = eul2quat(simOut.y(7:9,1:300:end)'); % ZYX Euler
plotTransforms(translations,rotations,...
 'MeshFilePath','multirotor.stl','InertialZDirection',"down")
view([90.00 -0.60])

2 Methods

2-24

Simulate A Fixed-Wing Control Command

This example shows how to use the fixedwing guidance model to simulate the change in state of a
UAV due to a command input.

Create the fixed-wing guidance model.

model = fixedwing;

Set the air speed of the vehicle by modifying the structure from the state function.

s = state(model);
s(4) = 5; % 5 m/s

Specify a control command, u, that maintains the air speed and gives a roll angle of pi/12.

u = control(model);
u.RollAngle = pi/12;
u.AirSpeed = 5;

Create a default environment without wind.

e = environment(model);

Compute the time derivative of the state given the current state, control command, and environment.

 control

2-25

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the fixed-wing UAV states based
on this simulation.

simOut = ode45(@(~,x)derivative(model,x,u,e), [0 50], s);
size(simOut.y)

ans = 1×2

 8 904

Plot the change in roll angle based on the simulation output. The roll angle is the 7th row of the
simOut.y output.

plot(simOut.y(7,:))

You can also plot the fixed-wing trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 30th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
fixedwing.stl file and the positive Z-direction as "down". The displayed view shows the UAV
making a constant turn based on the constant roll angle.

downsample = 1:30:size(simOut.y,2);
translations = simOut.y(1:3,downsample)'; % xyz-position
rotations = eul2quat([simOut.y(5,downsample)',simOut.y(6,downsample)',simOut.y(7,downsample)']); % ZYX Euler

2 Methods

2-26

plotTransforms(translations,rotations,...
 'MeshFilePath','fixedwing.stl','InertialZDirection',"down")
hold on
plot3(simOut.y(1,:),-simOut.y(2,:),simOut.y(3,:),'--b') % full path
xlim([-10.0 10.0])
ylim([-20.0 5.0])
zlim([-0.5 4.00])
view([-45 90])
hold off

Input Arguments
uavGuidanceModel — UAV guidance model
fixedwing object | multirotor object

UAV guidance model, specified as a fixedwing or multirotor object.

Output Arguments
controlStruct — Control commands for UAV
structure

Control commands for UAV, returned as a structure.

 control

2-27

For multirotor UAVs, the guidance model is approximated as separate PD controllers for each
command. The elements of the structure are control commands:

• Roll - Roll angle in radians.
• Pitch - Pitch angle in radians.
• YawRate - Yaw rate in radians per second. (D = 0. P only controller)
• Thrust - Vertical thrust of the UAV in Newtons. (D = 0. P only controller)

For fixed-wing UAVs, the model assumes the UAV is flying under the coordinated-turn condition. The
guidance model equations assume zero side-slip. The elements of the structure are:

• Height - Altitude above the ground in meters.
• Airspeed - UAV speed relative to wind in meters per second.
• RollAngle - Roll angle along body forward axis in radians. Because of the coordinated-turn

condition, the heading angular rate is based on the roll angle.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ode45 | derivative | environment | state | plotTransforms

Objects
fixedwing | multirotor

Blocks
Waypoint Follower | UAV Guidance Model

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

2 Methods

2-28

derivative
Time derivative of UAV states

Syntax
stateDerivative = derivative(uavGuidanceModel,state,control,environment)

Description
stateDerivative = derivative(uavGuidanceModel,state,control,environment)
determines the time derivative of the state of the UAV guidance model using the current state,
control commands, and environmental inputs. Use the state and time derivative with ode45 to
simulate the UAV.

Examples

Simulate A Multirotor Control Command

This example shows how to use the multirotor guidance model to simulate the change in state of a
UAV due to a command input.

Create the multirotor guidance model.

model = multirotor;

Create a state structure. Specify the location in world coordinates.

s = state(model);
s(1:3) = [3;2;1];

Specify a control command, u, that specified the roll and thrust of the multirotor.

u = control(model);
u.Roll = pi/12;
u.Thrust = 1;

Create a default environment without wind.

e = environment(model);

Compute the time derivative of the state given the current state, control command, and environment.

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the multirotor UAV states as a
13-by-n matrix.

simOut = ode45(@(~,x)derivative(model,x,u,e), [0 3], s);
size(simOut.y)

ans = 1×2

 derivative

2-29

 13 3536

Plot the change in roll angle based on the simulation output. The roll angle (the X Euler angle) is the
9th row of the simOut.y output.

plot(simOut.y(9,:))

Plot the change in the Y and Z positions. With the specified thrust and roll angle, the multirotor
should fly over and lose some altitude. A positive value for Z is expected as positive Z is down.

figure
plot(simOut.y(2,:));
hold on
plot(simOut.y(3,:));
legend('Y-position','Z-position')
hold off

2 Methods

2-30

You can also plot the multirotor trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 300th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
multirotor.stl file and the positive Z-direction as "down". The displayed view shows the UAV
translating in the Y-direction and losing altitude.

translations = simOut.y(1:3,1:300:end)'; % xyz position
rotations = eul2quat(simOut.y(7:9,1:300:end)'); % ZYX Euler
plotTransforms(translations,rotations,...
 'MeshFilePath','multirotor.stl','InertialZDirection',"down")
view([90.00 -0.60])

 derivative

2-31

Simulate A Fixed-Wing Control Command

This example shows how to use the fixedwing guidance model to simulate the change in state of a
UAV due to a command input.

Create the fixed-wing guidance model.

model = fixedwing;

Set the air speed of the vehicle by modifying the structure from the state function.

s = state(model);
s(4) = 5; % 5 m/s

Specify a control command, u, that maintains the air speed and gives a roll angle of pi/12.

u = control(model);
u.RollAngle = pi/12;
u.AirSpeed = 5;

Create a default environment without wind.

e = environment(model);

Compute the time derivative of the state given the current state, control command, and environment.

2 Methods

2-32

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the fixed-wing UAV states based
on this simulation.

simOut = ode45(@(~,x)derivative(model,x,u,e), [0 50], s);
size(simOut.y)

ans = 1×2

 8 904

Plot the change in roll angle based on the simulation output. The roll angle is the 7th row of the
simOut.y output.

plot(simOut.y(7,:))

You can also plot the fixed-wing trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 30th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
fixedwing.stl file and the positive Z-direction as "down". The displayed view shows the UAV
making a constant turn based on the constant roll angle.

downsample = 1:30:size(simOut.y,2);
translations = simOut.y(1:3,downsample)'; % xyz-position
rotations = eul2quat([simOut.y(5,downsample)',simOut.y(6,downsample)',simOut.y(7,downsample)']); % ZYX Euler

 derivative

2-33

plotTransforms(translations,rotations,...
 'MeshFilePath','fixedwing.stl','InertialZDirection',"down")
hold on
plot3(simOut.y(1,:),-simOut.y(2,:),simOut.y(3,:),'--b') % full path
xlim([-10.0 10.0])
ylim([-20.0 5.0])
zlim([-0.5 4.00])
view([-45 90])
hold off

Input Arguments
uavGuidanceModel — UAV guidance model
fixedwing object | multirotor object

UAV guidance model, specified as a fixedwing or multirotor object.

state — State vector
eight-element vector | thirteen-element vector

State vector, specified as a eight-element or thirteen-element vector. The vector is always filled with
zeros. Use this function to ensure you have the proper size for your state vector.

For fixed-wing UAVs, the state is an eight-element vector:

2 Methods

2-34

• North - Position in north direction in meters.
• East - Position in east direction in meters.
• Height - Height above ground in meters.
• AirSpeed - Speed relative to wind in meters per second.
• HeadingAngle - Angle between ground velocity and north direction in radians.
• FlightPathAngle - Angle between ground velocity and north-east plane in radians.
• RollAngle - Angle of rotation along body x-axis in radians per second.
• RollAngleRate - Angular velocity of rotation along body x-axis in radians per second.

For multirotor UAVs, the state is a thirteen-element vector in this order:

• World Position - [x y z] in meters.
• World Velocity - [vx vy vz] in meters per second.
• Euler Angles (ZYX) - [psi theta phi] in radians.
• Body Angular Rates - [p q r] in radians per second.
• Thrust - F in Newtons.

environment — Environmental input parameters
structure

Environmental input parameters, returned as a structure. To generate this structure, use
environment.

For fixed-wing UAVs, the fields of the structure are WindNorth, WindEast,WindDown, and Gravity.
Wind speeds are in meters per second, and negative speeds point in the opposite direction. Gravity is
in meters per second squared (default 9.81).

For multirotor UAVs, the only element of the structure is Gravity (default 9.81) in meters per
second squared.

control — Control commands for UAV
structure

Control commands for UAV, specified as a structure. To generate this structure, use control.

For multirotor UAVs, the guidance model is approximated as separate PD controllers for each
command. The elements of the structure are control commands:

• Roll - Roll angle in radians.
• Pitch - Pitch angle in radians.
• YawRate - Yaw rate in radians per second. (D = 0. P only controller)
• Thrust - Vertical thrust of the UAV in Newtons. (D = 0. P only controller)

For fixed-wing UAVs, the model assumes the UAV is flying under the coordinated-turn condition. The
Guidance Model equations assume zero side-slip. The elements of the bus are:

• Height - Altitude above the ground in meters.
• Airspeed - UAV speed relative to wind in meters per second.
• RollAngle - Roll angle along body forward axis in radians. Because of the coordinated-turn

condition, the heading angular rate is based on the roll angle.

 derivative

2-35

Output Arguments
stateDerivative — Time derivative of state
vector

Time derivative of state, returned as a vector. The time derivative vector has the same length as the
input state.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ode45 | control | derivative | environment | state | plotTransforms

Objects
fixedwing | multirotor

Blocks
Waypoint Follower | UAV Guidance Model

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

2 Methods

2-36

environment
Environmental inputs for UAV

Syntax
envStruct = environment(uavGuidanceModel)

Description
envStruct = environment(uavGuidanceModel) returns a structure that captures all the
relevant environmental variables for the specified UAV guidance model. Use this function to ensure
you have the proper fields for your environmental parameters. Use the environmental inputs as an
input to the derivative function to get the state time-derivative of the UAV.

Examples

Simulate A Multirotor Control Command

This example shows how to use the multirotor guidance model to simulate the change in state of a
UAV due to a command input.

Create the multirotor guidance model.

model = multirotor;

Create a state structure. Specify the location in world coordinates.

s = state(model);
s(1:3) = [3;2;1];

Specify a control command, u, that specified the roll and thrust of the multirotor.

u = control(model);
u.Roll = pi/12;
u.Thrust = 1;

Create a default environment without wind.

e = environment(model);

Compute the time derivative of the state given the current state, control command, and environment.

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the multirotor UAV states as a
13-by-n matrix.

simOut = ode45(@(~,x)derivative(model,x,u,e), [0 3], s);
size(simOut.y)

ans = 1×2

 environment

2-37

 13 3536

Plot the change in roll angle based on the simulation output. The roll angle (the X Euler angle) is the
9th row of the simOut.y output.

plot(simOut.y(9,:))

Plot the change in the Y and Z positions. With the specified thrust and roll angle, the multirotor
should fly over and lose some altitude. A positive value for Z is expected as positive Z is down.

figure
plot(simOut.y(2,:));
hold on
plot(simOut.y(3,:));
legend('Y-position','Z-position')
hold off

2 Methods

2-38

You can also plot the multirotor trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 300th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
multirotor.stl file and the positive Z-direction as "down". The displayed view shows the UAV
translating in the Y-direction and losing altitude.

translations = simOut.y(1:3,1:300:end)'; % xyz position
rotations = eul2quat(simOut.y(7:9,1:300:end)'); % ZYX Euler
plotTransforms(translations,rotations,...
 'MeshFilePath','multirotor.stl','InertialZDirection',"down")
view([90.00 -0.60])

 environment

2-39

Simulate A Fixed-Wing Control Command

This example shows how to use the fixedwing guidance model to simulate the change in state of a
UAV due to a command input.

Create the fixed-wing guidance model.

model = fixedwing;

Set the air speed of the vehicle by modifying the structure from the state function.

s = state(model);
s(4) = 5; % 5 m/s

Specify a control command, u, that maintains the air speed and gives a roll angle of pi/12.

u = control(model);
u.RollAngle = pi/12;
u.AirSpeed = 5;

Create a default environment without wind.

e = environment(model);

Compute the time derivative of the state given the current state, control command, and environment.

2 Methods

2-40

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the fixed-wing UAV states based
on this simulation.

simOut = ode45(@(~,x)derivative(model,x,u,e), [0 50], s);
size(simOut.y)

ans = 1×2

 8 904

Plot the change in roll angle based on the simulation output. The roll angle is the 7th row of the
simOut.y output.

plot(simOut.y(7,:))

You can also plot the fixed-wing trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 30th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
fixedwing.stl file and the positive Z-direction as "down". The displayed view shows the UAV
making a constant turn based on the constant roll angle.

downsample = 1:30:size(simOut.y,2);
translations = simOut.y(1:3,downsample)'; % xyz-position
rotations = eul2quat([simOut.y(5,downsample)',simOut.y(6,downsample)',simOut.y(7,downsample)']); % ZYX Euler

 environment

2-41

plotTransforms(translations,rotations,...
 'MeshFilePath','fixedwing.stl','InertialZDirection',"down")
hold on
plot3(simOut.y(1,:),-simOut.y(2,:),simOut.y(3,:),'--b') % full path
xlim([-10.0 10.0])
ylim([-20.0 5.0])
zlim([-0.5 4.00])
view([-45 90])
hold off

Input Arguments
uavGuidanceModel — UAV guidance model
fixedwing object | multirotor object

UAV guidance model, specified as a fixedwing or multirotor object.

Output Arguments
envStruct — Environmental input parameters
structure

Environmental input parameters, returned as a structure.

2 Methods

2-42

For fixed-wing UAVs, the fields of the structure are WindNorth, WindEast,WindDown, and Gravity.
Wind speeds are in meters per second and negative speeds point in the opposite direction. Gravity
is in meters per second squared (default 9.81).

For multirotor UAVs, the only element of the structure is Gravity (default 9.81) in meters per
second.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ode45 | control | derivative | state | plotTransforms

Objects
fixedwing | multirotor

Blocks
Waypoint Follower | UAV Guidance Model

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

 environment

2-43

state
UAV state vector

Syntax
stateVec = state(uavGuidanceModel)

Description
stateVec = state(uavGuidanceModel) returns a state vector for the specified UAV guidance
model. The vector is always filled with zeros. Use this function to ensure you have the proper size for
your state vector. Use the state vector as an input to the derivative function or when simulating
the UAV using ode45.

Examples

Simulate A Multirotor Control Command

This example shows how to use the multirotor guidance model to simulate the change in state of a
UAV due to a command input.

Create the multirotor guidance model.

model = multirotor;

Create a state structure. Specify the location in world coordinates.

s = state(model);
s(1:3) = [3;2;1];

Specify a control command, u, that specified the roll and thrust of the multirotor.

u = control(model);
u.Roll = pi/12;
u.Thrust = 1;

Create a default environment without wind.

e = environment(model);

Compute the time derivative of the state given the current state, control command, and environment.

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the multirotor UAV states as a
13-by-n matrix.

simOut = ode45(@(~,x)derivative(model,x,u,e), [0 3], s);
size(simOut.y)

ans = 1×2

2 Methods

2-44

 13 3536

Plot the change in roll angle based on the simulation output. The roll angle (the X Euler angle) is the
9th row of the simOut.y output.

plot(simOut.y(9,:))

Plot the change in the Y and Z positions. With the specified thrust and roll angle, the multirotor
should fly over and lose some altitude. A positive value for Z is expected as positive Z is down.

figure
plot(simOut.y(2,:));
hold on
plot(simOut.y(3,:));
legend('Y-position','Z-position')
hold off

 state

2-45

You can also plot the multirotor trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 300th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
multirotor.stl file and the positive Z-direction as "down". The displayed view shows the UAV
translating in the Y-direction and losing altitude.

translations = simOut.y(1:3,1:300:end)'; % xyz position
rotations = eul2quat(simOut.y(7:9,1:300:end)'); % ZYX Euler
plotTransforms(translations,rotations,...
 'MeshFilePath','multirotor.stl','InertialZDirection',"down")
view([90.00 -0.60])

2 Methods

2-46

Simulate A Fixed-Wing Control Command

This example shows how to use the fixedwing guidance model to simulate the change in state of a
UAV due to a command input.

Create the fixed-wing guidance model.

model = fixedwing;

Set the air speed of the vehicle by modifying the structure from the state function.

s = state(model);
s(4) = 5; % 5 m/s

Specify a control command, u, that maintains the air speed and gives a roll angle of pi/12.

u = control(model);
u.RollAngle = pi/12;
u.AirSpeed = 5;

Create a default environment without wind.

e = environment(model);

Compute the time derivative of the state given the current state, control command, and environment.

 state

2-47

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the fixed-wing UAV states based
on this simulation.

simOut = ode45(@(~,x)derivative(model,x,u,e), [0 50], s);
size(simOut.y)

ans = 1×2

 8 904

Plot the change in roll angle based on the simulation output. The roll angle is the 7th row of the
simOut.y output.

plot(simOut.y(7,:))

You can also plot the fixed-wing trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 30th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
fixedwing.stl file and the positive Z-direction as "down". The displayed view shows the UAV
making a constant turn based on the constant roll angle.

downsample = 1:30:size(simOut.y,2);
translations = simOut.y(1:3,downsample)'; % xyz-position
rotations = eul2quat([simOut.y(5,downsample)',simOut.y(6,downsample)',simOut.y(7,downsample)']); % ZYX Euler

2 Methods

2-48

plotTransforms(translations,rotations,...
 'MeshFilePath','fixedwing.stl','InertialZDirection',"down")
hold on
plot3(simOut.y(1,:),-simOut.y(2,:),simOut.y(3,:),'--b') % full path
xlim([-10.0 10.0])
ylim([-20.0 5.0])
zlim([-0.5 4.00])
view([-45 90])
hold off

Input Arguments
uavGuidanceModel — UAV guidance model
fixedwing object | multirotor object

UAV guidance model, specified as a fixedwing or multirotor object.

Output Arguments
stateVec — State vector
zeros(7,1) | zeros(13,1)

State vector, returned as a seven-element or thirteen-element vector. The vector is always filled with
zeros. Use this function to ensure you have the proper size for your state vector.

 state

2-49

For fixed-wing UAVs, the state is an eight-element vector:

• North - Position in north direction in meters.
• East - Position in east direction in meters.
• Height - Height above ground in meters.
• AirSpeed - Speed relative to wind in meters per second.
• HeadingAngle - Angle between ground velocity and north direction in radians.
• FlightPathAngle - Angle between ground velocity and north-east plane in radians.
• RollAngle - Angle of rotation along body x-axis in radians.
• RollAngleRate - Angular velocity of rotation along body x-axis in radians per second.

For multirotor UAVs, the state is a thirteen-element vector in this order:

• World Position - [x y z] in meters.
• World Velocity - [vx vy vz] in meters per second.
• Euler Angles (ZYX) - [psi theta phi] in radians.
• Body Angular Rates - [p q r] in radians per second.
• Thrust - F in Newtons.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ode45 | control | derivative | environment | state | plotTransforms

Objects
fixedwing | multirotor

Blocks
Waypoint Follower | UAV Guidance Model

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

2 Methods

2-50

checkSignal
Check mapped signal

Syntax
[summary,errorIndex] = checkSignal(mapper,logData)
[summary,errorIndex] = checkSignal(___ ,Name,Value)

Description
[summary,errorIndex] = checkSignal(mapper,logData) checks mapped signals stored in
mapper using the imported flight log logData. Import your flight log using mavlinktlog or
ulogreader.

[summary,errorIndex] = checkSignal(___ ,Name,Value) specifies options using one or
more name-value pair arguments in addition to the input arguments in the previous syntax. For
example, 'Preview',"on" shows a preview of the extracted signal.

Examples

Check Mapped Signals Using Flight Log Data

Create a flightLogSignalMapping object for the ULOG file.

mapping = flightLogSignalMapping("ulog");

Load the ULOG file. Specify the relative path of the file.

logData = ulogreader("flight.ulg");

Check all the mapped signals stored in the flightLogSignalMapping object using the imported
flight log.

[summary,errorIndex] = checkSignal(mapping,logData)

--
SignalName: Accel
Pass
--
SignalName: Gyro
Pass
--
SignalName: Mag
Pass
--
SignalName: Barometer
Pass
--
SignalName: GPS
Pass
--

 checkSignal

2-51

SignalName: LocalNED
Pass
--
SignalName: LocalENU
Pass
--
SignalName: LocalNEDVel
Pass
--
SignalName: LocalENUVel
Pass
--
SignalName: LocalNEDTarget
Unable to extract vehicle local position value from log data
--
SignalName: LocalENUTarget
Unable to extract vehicle local position value from log data
--
SignalName: LocalNEDVelTarget
Unable to extract vehicle local velocity value from log data
--
SignalName: LocalENUVelTarget
Unable to extract vehicle local velocity value from log data
--
SignalName: AttitudeEuler
Pass
--
SignalName: AttitudeRate
Unable to extract attitude rate value from log data
--
SignalName: AttitudeTargetEuler
Pass
--
SignalName: Airspeed
Pass
--
SignalName: Battery
Pass

summary=1×18 struct array with fields:
 SignalName
 Result

errorIndex = 1×5

 10 11 12 13 15

Check specific set of signals.

[summary,errorIndex] = checkSignal(mapping,logData,"Signal",["Accel" "Gyro"]);

--
SignalName: Accel
Pass
--
SignalName: Gyro
Pass

2 Methods

2-52

Input Arguments
mapper — Flight log signal mapping object
flightLogSignalMapping object

Flight log signal mapping object, specified as a flightLogSignalMapping object.

logData — Data from flight log
table | ulogreader object | mavlinktlog object

Data from the flight log, specified as a table, ulogreader object, mavlinktlog object, or other
custom formats.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Preview',"on" shows a preview of the extracted signal.

Signal — Signal names to check
string array | cell array of character vectors

Signal names to check, specified as the comma-separated pair consisting of 'Signal' and a string
array or cell array of character vectors.
Example: ["Accel","Gyro"]
Data Types: char | string

Preview — Preview of extracted signals in plot
"off" (default) | "on"

Preview of extracted signals in a plot, specified as the comma-separated pair consisting of
'Preview' and "on" or "off". Specify "on" to display plots of the signals in the order the mapped
signals are stored. Press any key to display the next signal. Press Q to close the figure.
Example: 'Preview',"on"
Data Types: char | string

Output Arguments
summary — Summary of signal extraction
structure

Summary of signal extraction, returned as a structure with these fields:

• SignalName –– Name of the mapped signals as a string
• Result –– Status of signal extraction as a character vector

 checkSignal

2-53

errorIndex — Indices of unsuccessful signal extraction
vector of positive integers

Indices of unsuccessful signal extraction, returned as a vector of positive integers.

See Also
Objects
flightLogSignalMapping | ulogreader | mavlinktlog

Functions
copy | extract | info | mapSignal | show | updatePlot

Introduced in R2021a

2 Methods

2-54

copy
Create deep copy of flight log signal mapping object

Syntax
mapperCopy = copy(mapper)

Description
mapperCopy = copy(mapper) creates a deep copy of the flightLogSignalMapping object with
the same properties.

Input Arguments
mapper — Flight log signal mapping object
flightLogSignalMapping object

Flight log signal mapping object, specified as a flightLogSignalMapping object.

Output Arguments
mapperCopy — Copy of flight log signal mapping object
flightLogSignalMapping object

Copy of flight log signal mapping object, returned as a flightLogSignalMapping object with the
same properties.

See Also
Objects
flightLogSignalMapping

Functions
checkSignal | extract | info | mapSignal | show | updatePlot

Introduced in R2021a

 copy

2-55

extract
Extract UAV flight log signals as timetables

Syntax
signals = extract(mapper,data,signalNames)
signals = extract(mapper,data,signalNames,timeStart)
signals = extract(mapper,data,signalNames,timeStart,timeEnd)

Description
signals = extract(mapper,data,signalNames) obtains signals with the given names
signalNames as timetables from imported flight log, data. Import your flight log using
mavlinktlog or ulogreader.

signals = extract(mapper,data,signalNames,timeStart) obtains signals with the given
names with time stamps greater than or equal to timeStart.

signals = extract(mapper,data,signalNames,timeStart,timeEnd) obtains signals with
the given names with time stamps within the interval [timeStart timeEnd] inclusive.

Input Arguments
mapper — Flight log signal mapping
flightLogSignalMapping object

Flight log signal mapping object, specified as a flightLogSignalMapping object.

data — Flight log data
table

Flight log data, specified as a table.

signalNames — Signal names to extract from log
string array

Signal names to extract from log, specified as a string array.

timeStart — Initial time stamp for signal
duration object

Initial time stamp for signal to extract, specified as a duration object.

timeEnd — Final time stamp for signal
duration object

Final time stamp for signal to extract, specified as a duration object.

2 Methods

2-56

Output Arguments
signals — Extracted signals
cell array

Extracted signals, returned as a cell array. Each signal name maps to an element of the cell array.

See Also
flightLogSignalMapping | mavlinktlog | info | mapSignal | show | updatePlot

Introduced in R2020b

 extract

2-57

info
Signal mapping and plot information for UAV log signal mapping

Syntax
signalTable = info(mapper,"Signal")
signalTable = info(mapper,"Signal",signalNames)
plotTable = info(mapper,"Plot")
signalTable = info(mapper,"Plot",plotNames)

Description
signalTable = info(mapper,"Signal") generates a table of information for the Predefined
Signals on page 2-59 available and the signals mapped in the flight log signal mapping object. The
table contains a list of signal names, field names, units, and whether the signal has a value function
mapped to it (IsMapped column).

signalTable = info(mapper,"Signal",signalNames) generates the signal table for the
specified signal names.

plotTable = info(mapper,"Plot") generates a table of information for the Predefined Plots on
page 2-60 and custom plots available in the flight log signal mapping object. The table contains plots
names, required signals, missing signals, and whether the plot is ready to plot.

signalTable = info(mapper,"Plot",plotNames) generates the plot table for the specified
plot names.

Input Arguments
mapper — Flight log signal mapping
flightLogSignalMapping object

Flight log signal mapping object, specified as a flightLogSignalMapping object.

signalNames — Signal names
string array

Signal names, specified as a string array.

plotNames — Plot names
string array

Plot names, specified as a string array.

Output Arguments
signalTable — Table of available signals
table

2 Methods

2-58

Table of available signals, returned as a table. This table includes preconfigured signals and any
signals you added to the flight log signal mapping object using mapSignal. The table has these
fields:

• SignalName –– String scalar of the name of the signal.
• IsMapped –– Logical indicating if the signal is properly mapped. To update signal mapping, see

mapSignal.
• SignalFields –– String scalar that lists the fields of the signal.
• FieldUnits –– String scalar that lists the units of each field.

plotTable — Table of available plots
table

Table of available plots, returned as a table. This table includes preconfigured plots and any plots you
added to the flight log signal mapping object using updatePlot. The table has these fields:

• PlotName –– String scalar of the name of the plot.
• ReadyToPlot –– Logical indicating if the plot is configured properly. To update the plot, see

updatePlot.
• MissingSignals –– String scalar that lists the signals that need to be mapped using mapSignal.
• RequiredSignals –– String scalar that lists all required signals for a specific plot name.

More About
Predefined Signals

A set of predefined signals and plots are configured in the flightLogSignalMapping object.
Depending on your log file type, you can map specific signals to the provided signal names using
mapSignal. You can also call info to view the table for your log type and see whether you have
already mapped a signal to that plot type.

Specify the SignalName as the input to mapSignal. Signals with the format SignalName# support
mapping multiple signals of the same type. Replace # with incremental integers for each signal name
when calling mapSignal.

The predefined signals have specific names and required fields when mapping the signal.

 info

2-59

Predefined Signals

Signal Name Description Fields Units
Accel# Raw magnetometer reading from

IMU sensor
[ax ay az] m/s2

Airspeed# Airspeed reading of pressure
differential, indicated air speed, and
temperature

[PressDiff, AirSpeed, Temp] Pa, m/s, ℃

AttitudeEuler Attitude of UAV in Euler (ZYX) form [Roll, Pitch, Yaw] radians
AttitudeRate Angular velocity along each body axis [xRotRate, yRotRate, zRotRate] rad/s
AttitudeTargetEule
r

Target attitude of UAV in Euler (ZYX)
form

[TargetRoll, TargetPitch,
TargetYaw]

radians

Barometer# Barometer readings for absolute
pressure, relative pressure, and
temperature

[PressAbs, PressAltitude, Temp] Pa, m, ℃

Battery Voltage readings for battery and
remaining battery capacity (%)

[Volt1,Volt2, ... Volt16,
RemainingCapacity

V, %

GPS# GPS readings for latitude, longitude,
altitude, ground speed, course angle,
and number of satellites visible

[lat, long, alt, groundspeed,
courseAngle, satellites]

degree, degree, m, m/s,
degree, n/a

Gyro# Raw body angular velocity readings
from IMU sensor

[GyroX, GyroY, GyroZ] rad/s

LocalNED Local NED coordinates estimated by
the UAV

[xNED, yNED, zNED] meters

LocalNEDTarget Target location in local NED
coordinates

[xTarget, yTarget, zTarget] meters

LocalNEDVel Local NED velocity estimated by the
UAV

[vx vy vz] m/s

LocalNEDVelTarget Target velocity in NED in local NED [vxTarget, vyTarget, vzTarget] m/s
Mag# Raw magnetometer reading from

IMU sensor
[x y z] Gs

Predefined Plots

After mapping signals to the list of predefined signals using mapSignal, specific plots are made
available when calling show. To view a list of available plots and their associated signals for your
specific object, call info(mapper,"Plot"). If you want to define custom plots based on signals, use
updatePlot.

Each predefined plot has a set of required signals that must be mapped.

2 Methods

2-60

Predefined Plots

Plot Description Signals
Attitude Stacked plot of roll, pitch, yaw angles and

body rotation rates
AttitudeEuler,
AttitudeRate, Gyro#

 info

2-61

Plot Description Signals
AttitudeControl Estimated attitude of UAV and the attitude

target set point
AttitudeEuler,
AttitudeTargetEuler

Battery Battery consumption plot Battery

2 Methods

2-62

Plot Description Signals
Compass Estimated yaw and magnetometer

readings
AttitudeEuler, Mag#,
GPS#

 info

2-63

Plot Description Signals
GPS2D Raw Lat-Lon plot for GPS sensor readings. GPS#

2 Methods

2-64

Plot Description Signals
Height Stacked plots of barometer reading, GPS

altitude reading, and fused height estimate
Barometer#, GPS#,
LocalNED

 info

2-65

Plot Description Signals
Speed Stacked plot of ground velocity and air

speed
GPS#, Airspeed#

2 Methods

2-66

Plot Description Signals
Trajectory Trajectory in local coordinates versus

target set points
LocalNED,
LocalNEDTarget

 info

2-67

Plot Description Signals
TrajectoryTracking Error between desired and actual position

in NED coordinates
LocalNED,
LocalNEDTarget

2 Methods

2-68

Plot Description Signals
TrajectoryVelTracking Error between desired and actual velocity

in NED coordinates
LocalNEDVel,
LocalNEDVelTarget

See Also
Objects
flightLogSignalMapping

Functions
checkSignal | copy | extract | mapSignal | show | updatePlot

Introduced in R2020b

 info

2-69

mapSignal
Map UAV flight log signal

Syntax
mapSignal(mapper,signalName,timeFunc,valueFunc)
mapSignal(mapper,signalName,timeFunc,valueFunc,varNames)
mapSignal(mapper,signalName,timeFunc,valueFunc,varNames,varUnits)

Description
mapSignal(mapper,signalName,timeFunc,valueFunc) maps the signal with name
signalName to a pair of function handles, timeFunc and valueFunc. These functions define the
time stamps and values of signals from a flight log file, which can be imported using mavlinktlog or
ulogreader. For a list of preconfigured signals and plots, see Predefined Signals on page 2-71 and
Predefined Plots on page 2-72.

mapSignal(mapper,signalName,timeFunc,valueFunc,varNames) maps the signal with name
signalName and specifies the variable names, varName, for the columns of a matrix generated from
valueFunc.

mapSignal(mapper,signalName,timeFunc,valueFunc,varNames,varUnits) maps the signal
with name signalName and specifies the units, varUnits for varName.

Input Arguments
mapper — Flight log signal mapping
flightLogSignalMapping object

Flight log signal mapping object, specified as a flightLogSignalMapping object.

signalName — Signal name to map data
string scalar | character vector

Signal name to map data, specified as a string scalar or character vector.
Example: "Gyro"
Data Types: char | string

timeFunc — Timestamps for signal
function handle

Timestamps for signal values , specified as a function handle. Typically, this function handle extracts
time data from a flight log, which can be imported using mavlinktlog or ulogreader.
Example: @(x)x.Gyro.Time
Data Types: function_handle

valueFunc — Values for signal
function handle

2 Methods

2-70

Values for signal, specified as a function handle. Typically, this function handle extracts signal data
from a flight log, which can be imported using mavlinktlog or ulogreader.
Example: @(x)x.Gyro.Value
Data Types: function_handle

varNames — Variable names for a matrix of values
string array | cell array of character vectors

Variable names for a matrix of values, specified as a string array or cell array of character vectors.
Each element corresponds to a column in the matrix of values generated from valueFunc.
Example: ["xPos" "yPos" "zPos"]
Data Types: char | string

varUnits — Variable units for a matrix of values
string array | cell array of character vectors

Variable units for a matrix of values, specified as a string array or cell array of character vectors.
Each element corresponds to an element in varNames.
Example: ["m" "m" "rad"]
Data Types: char | string

More About
Predefined Signals

A set of predefined signals and plots are configured in the flightLogSignalMapping object.
Depending on your log file type, you can map specific signals to the provided signal names using
mapSignal. You can also call info to view the table for your log type and see whether you have
already mapped a signal to that plot type.

Specify the SignalName as the input to mapSignal. Signals with the format SignalName# support
mapping multiple signals of the same type. Replace # with incremental integers for each signal name
when calling mapSignal.

The predefined signals have specific names and required fields when mapping the signal.

 mapSignal

2-71

Predefined Signals

Signal Name Description Fields Units
Accel# Raw magnetometer reading from

IMU sensor
[ax ay az] m/s2

Airspeed# Airspeed reading of pressure
differential, indicated air speed, and
temperature

[PressDiff, AirSpeed, Temp] Pa, m/s, ℃

AttitudeEuler Attitude of UAV in Euler (ZYX) form [Roll, Pitch, Yaw] radians
AttitudeRate Angular velocity along each body axis [xRotRate, yRotRate, zRotRate] rad/s
AttitudeTargetEule
r

Target attitude of UAV in Euler (ZYX)
form

[TargetRoll, TargetPitch,
TargetYaw]

radians

Barometer# Barometer readings for absolute
pressure, relative pressure, and
temperature

[PressAbs, PressAltitude, Temp] Pa, m, ℃

Battery Voltage readings for battery and
remaining battery capacity (%)

[Volt1,Volt2, ... Volt16,
RemainingCapacity

V, %

GPS# GPS readings for latitude, longitude,
altitude, ground speed, course angle,
and number of satellites visible

[lat, long, alt, groundspeed,
courseAngle, satellites]

degree, degree, m, m/s,
degree, n/a

Gyro# Raw body angular velocity readings
from IMU sensor

[GyroX, GyroY, GyroZ] rad/s

LocalNED Local NED coordinates estimated by
the UAV

[xNED, yNED, zNED] meters

LocalNEDTarget Target location in local NED
coordinates

[xTarget, yTarget, zTarget] meters

LocalNEDVel Local NED velocity estimated by the
UAV

[vx vy vz] m/s

LocalNEDVelTarget Target velocity in NED in local NED [vxTarget, vyTarget, vzTarget] m/s
Mag# Raw magnetometer reading from

IMU sensor
[x y z] Gs

Predefined Plots

After mapping signals to the list of predefined signals using mapSignal, specific plots are made
available when calling show. To view a list of available plots and their associated signals for your
specific object, call info(mapper,"Plot"). If you want to define custom plots based on signals, use
updatePlot.

Each predefined plot has a set of required signals that must be mapped.

2 Methods

2-72

Predefined Plots

Plot Description Signals
Attitude Stacked plot of roll, pitch, yaw angles and

body rotation rates
AttitudeEuler,
AttitudeRate, Gyro#

 mapSignal

2-73

Plot Description Signals
AttitudeControl Estimated attitude of UAV and the attitude

target set point
AttitudeEuler,
AttitudeTargetEuler

Battery Battery consumption plot Battery

2 Methods

2-74

Plot Description Signals
Compass Estimated yaw and magnetometer

readings
AttitudeEuler, Mag#,
GPS#

 mapSignal

2-75

Plot Description Signals
GPS2D Raw Lat-Lon plot for GPS sensor readings. GPS#

2 Methods

2-76

Plot Description Signals
Height Stacked plots of barometer reading, GPS

altitude reading, and fused height estimate
Barometer#, GPS#,
LocalNED

 mapSignal

2-77

Plot Description Signals
Speed Stacked plot of ground velocity and air

speed
GPS#, Airspeed#

2 Methods

2-78

Plot Description Signals
Trajectory Trajectory in local coordinates versus

target set points
LocalNED,
LocalNEDTarget

 mapSignal

2-79

Plot Description Signals
TrajectoryTracking Error between desired and actual position

in NED coordinates
LocalNED,
LocalNEDTarget

2 Methods

2-80

Plot Description Signals
TrajectoryVelTracking Error between desired and actual velocity

in NED coordinates
LocalNEDVel,
LocalNEDVelTarget

See Also
flightLogSignalMapping | mavlinktlog | extract | info | mapSignal | show | updatePlot

Introduced in R2020b

 mapSignal

2-81

show
Display plots for inspection of UAV logs

Syntax
show(mapper,data)
show(mapper,data,timeStart)
show(mapper,data,timeStart,timeEnd)
show(___ ,"PlotsToShow",plotNames)
plotStruct = show(___)

Description
show(mapper,data) generates all the plots stored in the flight log signal mapping object using the
data from an imported flight log. For a list of preconfigured signals and plots, see Predefined Signals
on page 2-83 and Predefined Plots on page 2-84.

show(mapper,data,timeStart) plots all data starting at the given start time.

show(mapper,data,timeStart,timeEnd) plots all data within the interval [timeStart
timeEnd] inclusive.

show(___ ,"PlotsToShow",plotNames) plots data using any of the previous syntaxes with plot
names specified as a string array. These plot names are listed in mapper.AvailablePlots

plotStruct = show(___) returns the plots as a structure of plot names and figure handles.

Input Arguments
mapper — Flight log signal mapping
flightLogSignalMapping object

Flight log signal mapping object, specified as a flightLogSignalMapping object.

data — Data from flight log
table | ulogreader object

Data from flight log, specified as a table, ulogreader object, or other custom option. The data is fed
directly into the plot functions specified when you call updatePlot.

timeStart — Initial time stamp for signal
duration object

Initial time stamp for signal to extract, specified as a duration object.

timeEnd — Final time stamp for signal
duration object

Final time stamp for signal to extract, specified as a duration object.

2 Methods

2-82

Output Arguments
plotStruct — Figures of individual plots
structure

Figured of individual plots, returned as a structure of plot names and associated figure handles.

More About
Predefined Signals

A set of predefined signals and plots are configured in the flightLogSignalMapping object.
Depending on your log file type, you can map specific signals to the provided signal names using
mapSignal. You can also call info to view the table for your log type and see whether you have
already mapped a signal to that plot type.

Specify the SignalName as the input to mapSignal. Signals with the format SignalName# support
mapping multiple signals of the same type. Replace # with incremental integers for each signal name
when calling mapSignal.

The predefined signals have specific names and required fields when mapping the signal.

 show

2-83

Predefined Signals

Signal Name Description Fields Units
Accel# Raw magnetometer reading from

IMU sensor
[ax ay az] m/s2

Airspeed# Airspeed reading of pressure
differential, indicated air speed, and
temperature

[PressDiff, AirSpeed, Temp] Pa, m/s, ℃

AttitudeEuler Attitude of UAV in Euler (ZYX) form [Roll, Pitch, Yaw] radians
AttitudeRate Angular velocity along each body axis [xRotRate, yRotRate, zRotRate] rad/s
AttitudeTargetEule
r

Target attitude of UAV in Euler (ZYX)
form

[TargetRoll, TargetPitch,
TargetYaw]

radians

Barometer# Barometer readings for absolute
pressure, relative pressure, and
temperature

[PressAbs, PressAltitude, Temp] Pa, m, ℃

Battery Voltage readings for battery and
remaining battery capacity (%)

[Volt1,Volt2, ... Volt16,
RemainingCapacity

V, %

GPS# GPS readings for latitude, longitude,
altitude, ground speed, course angle,
and number of satellites visible

[lat, long, alt, groundspeed,
courseAngle, satellites]

degree, degree, m, m/s,
degree, n/a

Gyro# Raw body angular velocity readings
from IMU sensor

[GyroX, GyroY, GyroZ] rad/s

LocalNED Local NED coordinates estimated by
the UAV

[xNED, yNED, zNED] meters

LocalNEDTarget Target location in local NED
coordinates

[xTarget, yTarget, zTarget] meters

LocalNEDVel Local NED velocity estimated by the
UAV

[vx vy vz] m/s

LocalNEDVelTarget Target velocity in NED in local NED [vxTarget, vyTarget, vzTarget] m/s
Mag# Raw magnetometer reading from

IMU sensor
[x y z] Gs

Predefined Plots

After mapping signals to the list of predefined signals using mapSignal, specific plots are made
available when calling show. To view a list of available plots and their associated signals for your
specific object, call info(mapper,"Plot"). If you want to define custom plots based on signals, use
updatePlot.

Each predefined plot has a set of required signals that must be mapped.

2 Methods

2-84

Predefined Plots

Plot Description Signals
Attitude Stacked plot of roll, pitch, yaw angles and

body rotation rates
AttitudeEuler,
AttitudeRate, Gyro#

 show

2-85

Plot Description Signals
AttitudeControl Estimated attitude of UAV and the attitude

target set point
AttitudeEuler,
AttitudeTargetEuler

Battery Battery consumption plot Battery

2 Methods

2-86

Plot Description Signals
Compass Estimated yaw and magnetometer

readings
AttitudeEuler, Mag#,
GPS#

 show

2-87

Plot Description Signals
GPS2D Raw Lat-Lon plot for GPS sensor readings. GPS#

2 Methods

2-88

Plot Description Signals
Height Stacked plots of barometer reading, GPS

altitude reading, and fused height estimate
Barometer#, GPS#,
LocalNED

 show

2-89

Plot Description Signals
Speed Stacked plot of ground velocity and air

speed
GPS#, Airspeed#

2 Methods

2-90

Plot Description Signals
Trajectory Trajectory in local coordinates versus

target set points
LocalNED,
LocalNEDTarget

 show

2-91

Plot Description Signals
TrajectoryTracking Error between desired and actual position

in NED coordinates
LocalNED,
LocalNEDTarget

2 Methods

2-92

Plot Description Signals
TrajectoryVelTracking Error between desired and actual velocity

in NED coordinates
LocalNEDVel,
LocalNEDVelTarget

See Also
flightLogSignalMapping | mavlinktlog | extract | info | mapSignal | show | updatePlot

Introduced in R2020b

 show

2-93

updatePlot
Update UAV flight log plot functions

Syntax
updatePlot(mapper,plotName,plotFunc,requiredSignals)

Description
updatePlot(mapper,plotName,plotFunc,requiredSignals) adds or updates the plot with
name plotName stored in mapper. Specify the plot function as a predefined plot name or function
handle and the required signals for the plot. For a list of preconfigured signals and plots, see
Predefined Signals on page 2-95 and Predefined Plots on page 2-96.

Input Arguments
mapper — Flight log signal mapping
flightLogSignalMapping object

Flight log signal mapping object, specified as a flightLogSignalMapping object.

plotName — Name of plot
string scalar | character vector

Name of plot, specified as a string scalar or character vector. This name is either added or updated in
the AvailablePlots property of mapper.
Example: "IMU"
Data Types: char | string

plotFunc — Function for generating plot
function handle

Function for generating plot, specified as a function handle. The function is of the form:

f = plotFunc(signal1, signal2, ...)

The function takes input signals as structures with two fields, "Names" and "Values", and
generates a plot output as a figure handle using those signals.
Example: @(acc, gyro, mag)plotIMU(acc, gyro, mag)
Data Types: function_handle

requiredSignals — List of required signal names
string array | cell array of character vectors

List of required signal names, specified as a string array or cell array of character vectors.
Example: ["LocalNED.X" "LocalNED.Y" "LocalNED.Z"]
Data Types: char | string

2 Methods

2-94

More About
Predefined Signals

A set of predefined signals and plots are configured in the flightLogSignalMapping object.
Depending on your log file type, you can map specific signals to the provided signal names using
mapSignal. You can also call info to view the table for your log type and see whether you have
already mapped a signal to that plot type.

Specify the SignalName as the input to mapSignal. Signals with the format SignalName# support
mapping multiple signals of the same type. Replace # with incremental integers for each signal name
when calling mapSignal.

The predefined signals have specific names and required fields when mapping the signal.

Predefined Signals

Signal Name Description Fields Units
Accel# Raw magnetometer reading from

IMU sensor
[ax ay az] m/s2

Airspeed# Airspeed reading of pressure
differential, indicated air speed, and
temperature

[PressDiff, AirSpeed, Temp] Pa, m/s, ℃

AttitudeEuler Attitude of UAV in Euler (ZYX) form [Roll, Pitch, Yaw] radians
AttitudeRate Angular velocity along each body axis [xRotRate, yRotRate, zRotRate] rad/s
AttitudeTargetEule
r

Target attitude of UAV in Euler (ZYX)
form

[TargetRoll, TargetPitch,
TargetYaw]

radians

Barometer# Barometer readings for absolute
pressure, relative pressure, and
temperature

[PressAbs, PressAltitude, Temp] Pa, m, ℃

Battery Voltage readings for battery and
remaining battery capacity (%)

[Volt1,Volt2, ... Volt16,
RemainingCapacity

V, %

GPS# GPS readings for latitude, longitude,
altitude, ground speed, course angle,
and number of satellites visible

[lat, long, alt, groundspeed,
courseAngle, satellites]

degree, degree, m, m/s,
degree, n/a

Gyro# Raw body angular velocity readings
from IMU sensor

[GyroX, GyroY, GyroZ] rad/s

LocalNED Local NED coordinates estimated by
the UAV

[xNED, yNED, zNED] meters

LocalNEDTarget Target location in local NED
coordinates

[xTarget, yTarget, zTarget] meters

LocalNEDVel Local NED velocity estimated by the
UAV

[vx vy vz] m/s

LocalNEDVelTarget Target velocity in NED in local NED [vxTarget, vyTarget, vzTarget] m/s
Mag# Raw magnetometer reading from

IMU sensor
[x y z] Gs

 updatePlot

2-95

Predefined Plots

After mapping signals to the list of predefined signals using mapSignal, specific plots are made
available when calling show. To view a list of available plots and their associated signals for your
specific object, call info(mapper,"Plot"). If you want to define custom plots based on signals, use
updatePlot.

Each predefined plot has a set of required signals that must be mapped.

2 Methods

2-96

Predefined Plots

Plot Description Signals
Attitude Stacked plot of roll, pitch, yaw angles and

body rotation rates
AttitudeEuler,
AttitudeRate, Gyro#

 updatePlot

2-97

Plot Description Signals
AttitudeControl Estimated attitude of UAV and the attitude

target set point
AttitudeEuler,
AttitudeTargetEuler

Battery Battery consumption plot Battery

2 Methods

2-98

Plot Description Signals
Compass Estimated yaw and magnetometer

readings
AttitudeEuler, Mag#,
GPS#

 updatePlot

2-99

Plot Description Signals
GPS2D Raw Lat-Lon plot for GPS sensor readings. GPS#

2 Methods

2-100

Plot Description Signals
Height Stacked plots of barometer reading, GPS

altitude reading, and fused height estimate
Barometer#, GPS#,
LocalNED

 updatePlot

2-101

Plot Description Signals
Speed Stacked plot of ground velocity and air

speed
GPS#, Airspeed#

2 Methods

2-102

Plot Description Signals
Trajectory Trajectory in local coordinates versus

target set points
LocalNED,
LocalNEDTarget

 updatePlot

2-103

Plot Description Signals
TrajectoryTracking Error between desired and actual position

in NED coordinates
LocalNED,
LocalNEDTarget

2 Methods

2-104

Plot Description Signals
TrajectoryVelTracking Error between desired and actual velocity

in NED coordinates
LocalNEDVel,
LocalNEDVelTarget

See Also
flightLogSignalMapping | mavlinktlog | extract | info | mapSignal | show

Introduced in R2020b

 updatePlot

2-105

createcmd
Create MAVLink command message

Syntax
cmdMsg = createcmd(dialect,cmdSetting,cmdType)

Description
cmdMsg = createcmd(dialect,cmdSetting,cmdType) returns a blank COMMAND_INT or
COMMAND_LONG message structure based on the command setting and type. The command definitions
are contained in the mavlinkdialect object, dialect.

Examples

Parse and Use MAVLink Dialect

This example shows how to parse a MAVLink XML file and create messages and commands from the
definitions.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

Parse and store the MAVLink dialect XML. Specify the XML path. The default "common.xml" dialect
is provided. This XML file contains all the message and enum definitions.

dialect = mavlinkdialect("common.xml");

Create a MAVLink command from the MAV_CMD enum, which is an enum of MAVLink commands to
send to the UAV. Specify the setting as "int" or "long", and the type as an integer or string.

cmdMsg = createcmd(dialect,"long",22)

cmdMsg = struct with fields:
 MsgID: 76
 Payload: [1x1 struct]

Verify the command name using num2enum. Command 22 is a take-off command for the UAV. You can
convert back to an ID using enum2num. Your dialect can contain many different enums with different
names and IDs.

cmdName = num2enum(dialect,"MAV_CMD",22)

cmdName =
"MAV_CMD_NAV_TAKEOFF"

cmdID = enum2num(dialect,"MAV_CMD",cmdName)

cmdID = 22

Use enuminfo to view the table of the MAV_CMD enum entries.

2 Methods

2-106

info = enuminfo(dialect,"MAV_CMD");
info.Entries{:}

ans=148×3 table
 Name Value Description
 _____________________________________ _____ ___

 "MAV_CMD_NAV_WAYPOINT" 16 "Navigate to waypoint."
 "MAV_CMD_NAV_LOITER_UNLIM" 17 "Loiter around this waypoint an unlimited amount of time"
 "MAV_CMD_NAV_LOITER_TURNS" 18 "Loiter around this waypoint for X turns"
 "MAV_CMD_NAV_LOITER_TIME" 19 "Loiter at the specified latitude, longitude and altitude for a certain amount of time. Multicopter vehicles stop at the point (within a vehicle-specific acceptance radius). Forward-only moving vehicles (e.g. fixed-wing) circle the point with the specified radius/direction. If the Heading Required parameter (2) is non-zero forward moving aircraft will only leave the loiter circle once heading towards the next waypoint."
 "MAV_CMD_NAV_RETURN_TO_LAUNCH" 20 "Return to launch location"
 "MAV_CMD_NAV_LAND" 21 "Land at location."
 "MAV_CMD_NAV_TAKEOFF" 22 "Takeoff from ground / hand. Vehicles that support multiple takeoff modes (e.g. VTOL quadplane) should take off using the currently configured mode."
 "MAV_CMD_NAV_LAND_LOCAL" 23 "Land at local position (local frame only)"
 "MAV_CMD_NAV_TAKEOFF_LOCAL" 24 "Takeoff from local position (local frame only)"
 "MAV_CMD_NAV_FOLLOW" 25 "Vehicle following, i.e. this waypoint represents the position of a moving vehicle"
 "MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT" 30 "Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached."
 "MAV_CMD_NAV_LOITER_TO_ALT" 31 "Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint."
 "MAV_CMD_DO_FOLLOW" 32 "Begin following a target"
 "MAV_CMD_DO_FOLLOW_REPOSITION" 33 "Reposition the MAV after a follow target command has been sent"
 "MAV_CMD_DO_ORBIT" 34 "Start orbiting on the circumference of a circle defined by the parameters. Setting any value NaN results in using defaults."
 "MAV_CMD_NAV_ROI" 80 "Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicle's control system to control the vehicle attitude and the attitude of various sensors such as cameras."
 ⋮

Query the dialect for a specific message ID. Create a blank MAVLink message using the message ID.

info = msginfo(dialect,"HEARTBEAT")

info=1×4 table
 MessageID MessageName Description Fields
 _________ ___________ ___ ___________

 0 "HEARTBEAT" "The heartbeat message shows that a system or component is present and responding. The type and autopilot fields (along with the message component id), allow the receiving system to treat further messages from this system appropriately (e.g. by laying out the user interface based on the autopilot). This microservice is documented at https://mavlink.io/en/services/heartbeat.html" {6x6 table}

msg = createmsg(dialect,info.MessageID);

Input Arguments
dialect — MAVLink dialect
mavlinkdialect object

MAVLink dialect, specified as a mavlinkdialect object. The dialect specifies the message structure
for the MAVLink protocol.

cmdSetting — Command setting
"int" | "long"

Command setting, specified as either "int" or "long" for either a COMMAND_INT or COMMAND_LONG
command.

cmdType — Command type
positive integer | string

 createcmd

2-107

Command type, specified as either a positive integer or string. If specified as an integer, the
command definition with the matching ID from the MAV_CMD enum in dialect is returned. If
specified as a string, the command with the matching name is returned.

To get the command types for the MAV_CMD enum, use enuminfo:

enumTable = enuminfo(dialect,"MAV_CMD")
enumTable.Entries{1}

Output Arguments
cmdMsg — MAVLink command message
structure

MAVLink command message, returned as a structure with the fields:

• MsgID: Positive integer for message ID.
• Payload: Structure containing fields for the specific message definition.

See Also
Functions
createmsg | msginfo | enuminfo | enum2num | num2enum

Objects
mavlinkdialect | mavlinkio | mavlinkclient | mavlinksub

Introduced in R2019a

2 Methods

2-108

createmsg
Create MAVLink message

Syntax
msg = createmsg(dialect,msgID)

Description
msg = createmsg(dialect,msgID) returns a blank message structure based on the message
definitions specified in the mavlinkdialect object, dialect, and the input message ID, msgID.

Examples

Parse and Use MAVLink Dialect

This example shows how to parse a MAVLink XML file and create messages and commands from the
definitions.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

Parse and store the MAVLink dialect XML. Specify the XML path. The default "common.xml" dialect
is provided. This XML file contains all the message and enum definitions.

dialect = mavlinkdialect("common.xml");

Create a MAVLink command from the MAV_CMD enum, which is an enum of MAVLink commands to
send to the UAV. Specify the setting as "int" or "long", and the type as an integer or string.

cmdMsg = createcmd(dialect,"long",22)

cmdMsg = struct with fields:
 MsgID: 76
 Payload: [1x1 struct]

Verify the command name using num2enum. Command 22 is a take-off command for the UAV. You can
convert back to an ID using enum2num. Your dialect can contain many different enums with different
names and IDs.

cmdName = num2enum(dialect,"MAV_CMD",22)

cmdName =
"MAV_CMD_NAV_TAKEOFF"

cmdID = enum2num(dialect,"MAV_CMD",cmdName)

cmdID = 22

Use enuminfo to view the table of the MAV_CMD enum entries.

 createmsg

2-109

info = enuminfo(dialect,"MAV_CMD");
info.Entries{:}

ans=148×3 table
 Name Value Description
 _____________________________________ _____ ___

 "MAV_CMD_NAV_WAYPOINT" 16 "Navigate to waypoint."
 "MAV_CMD_NAV_LOITER_UNLIM" 17 "Loiter around this waypoint an unlimited amount of time"
 "MAV_CMD_NAV_LOITER_TURNS" 18 "Loiter around this waypoint for X turns"
 "MAV_CMD_NAV_LOITER_TIME" 19 "Loiter at the specified latitude, longitude and altitude for a certain amount of time. Multicopter vehicles stop at the point (within a vehicle-specific acceptance radius). Forward-only moving vehicles (e.g. fixed-wing) circle the point with the specified radius/direction. If the Heading Required parameter (2) is non-zero forward moving aircraft will only leave the loiter circle once heading towards the next waypoint."
 "MAV_CMD_NAV_RETURN_TO_LAUNCH" 20 "Return to launch location"
 "MAV_CMD_NAV_LAND" 21 "Land at location."
 "MAV_CMD_NAV_TAKEOFF" 22 "Takeoff from ground / hand. Vehicles that support multiple takeoff modes (e.g. VTOL quadplane) should take off using the currently configured mode."
 "MAV_CMD_NAV_LAND_LOCAL" 23 "Land at local position (local frame only)"
 "MAV_CMD_NAV_TAKEOFF_LOCAL" 24 "Takeoff from local position (local frame only)"
 "MAV_CMD_NAV_FOLLOW" 25 "Vehicle following, i.e. this waypoint represents the position of a moving vehicle"
 "MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT" 30 "Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached."
 "MAV_CMD_NAV_LOITER_TO_ALT" 31 "Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint."
 "MAV_CMD_DO_FOLLOW" 32 "Begin following a target"
 "MAV_CMD_DO_FOLLOW_REPOSITION" 33 "Reposition the MAV after a follow target command has been sent"
 "MAV_CMD_DO_ORBIT" 34 "Start orbiting on the circumference of a circle defined by the parameters. Setting any value NaN results in using defaults."
 "MAV_CMD_NAV_ROI" 80 "Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicle's control system to control the vehicle attitude and the attitude of various sensors such as cameras."
 ⋮

Query the dialect for a specific message ID. Create a blank MAVLink message using the message ID.

info = msginfo(dialect,"HEARTBEAT")

info=1×4 table
 MessageID MessageName Description Fields
 _________ ___________ ___ ___________

 0 "HEARTBEAT" "The heartbeat message shows that a system or component is present and responding. The type and autopilot fields (along with the message component id), allow the receiving system to treat further messages from this system appropriately (e.g. by laying out the user interface based on the autopilot). This microservice is documented at https://mavlink.io/en/services/heartbeat.html" {6x6 table}

msg = createmsg(dialect,info.MessageID);

Input Arguments
dialect — MAVLink dialect
mavlinkdialect object

MAVLink dialect, specified as a mavlinkdialect object. The dialect specifies the message structure
for the MAVLink protocol.

msgID — Message ID
positive integer | string

Message ID, specified as either a positive integer or string. If specified as an integer, the message
definition with the matching ID from the dialect is returned. If specified as a string, the message
with the matching name is returned.

2 Methods

2-110

Output Arguments
msg — MAVLink message
structure

MAVLink message, returned as a structure with the fields:

• MsgID: Positive integer for message ID.
• Payload: Structure containing fields for the specific message definition.

See Also
Functions
createcmd | msginfo | enuminfo | enum2num | num2enum

Objects
mavlinkdialect | mavlinkio | mavlinkclient | mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

Introduced in R2019a

 createmsg

2-111

enum2num
Enum value for given entry

Syntax
enumValue = enum2num(dialect,enum,entry)

Description
enumValue = enum2num(dialect,enum,entry) returns the value for the given entry in the
enum.

Examples

Parse and Use MAVLink Dialect

This example shows how to parse a MAVLink XML file and create messages and commands from the
definitions.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

Parse and store the MAVLink dialect XML. Specify the XML path. The default "common.xml" dialect
is provided. This XML file contains all the message and enum definitions.

dialect = mavlinkdialect("common.xml");

Create a MAVLink command from the MAV_CMD enum, which is an enum of MAVLink commands to
send to the UAV. Specify the setting as "int" or "long", and the type as an integer or string.

cmdMsg = createcmd(dialect,"long",22)

cmdMsg = struct with fields:
 MsgID: 76
 Payload: [1x1 struct]

Verify the command name using num2enum. Command 22 is a take-off command for the UAV. You can
convert back to an ID using enum2num. Your dialect can contain many different enums with different
names and IDs.

cmdName = num2enum(dialect,"MAV_CMD",22)

cmdName =
"MAV_CMD_NAV_TAKEOFF"

cmdID = enum2num(dialect,"MAV_CMD",cmdName)

cmdID = 22

Use enuminfo to view the table of the MAV_CMD enum entries.

2 Methods

2-112

info = enuminfo(dialect,"MAV_CMD");
info.Entries{:}

ans=148×3 table
 Name Value Description
 _____________________________________ _____ ___

 "MAV_CMD_NAV_WAYPOINT" 16 "Navigate to waypoint."
 "MAV_CMD_NAV_LOITER_UNLIM" 17 "Loiter around this waypoint an unlimited amount of time"
 "MAV_CMD_NAV_LOITER_TURNS" 18 "Loiter around this waypoint for X turns"
 "MAV_CMD_NAV_LOITER_TIME" 19 "Loiter at the specified latitude, longitude and altitude for a certain amount of time. Multicopter vehicles stop at the point (within a vehicle-specific acceptance radius). Forward-only moving vehicles (e.g. fixed-wing) circle the point with the specified radius/direction. If the Heading Required parameter (2) is non-zero forward moving aircraft will only leave the loiter circle once heading towards the next waypoint."
 "MAV_CMD_NAV_RETURN_TO_LAUNCH" 20 "Return to launch location"
 "MAV_CMD_NAV_LAND" 21 "Land at location."
 "MAV_CMD_NAV_TAKEOFF" 22 "Takeoff from ground / hand. Vehicles that support multiple takeoff modes (e.g. VTOL quadplane) should take off using the currently configured mode."
 "MAV_CMD_NAV_LAND_LOCAL" 23 "Land at local position (local frame only)"
 "MAV_CMD_NAV_TAKEOFF_LOCAL" 24 "Takeoff from local position (local frame only)"
 "MAV_CMD_NAV_FOLLOW" 25 "Vehicle following, i.e. this waypoint represents the position of a moving vehicle"
 "MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT" 30 "Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached."
 "MAV_CMD_NAV_LOITER_TO_ALT" 31 "Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint."
 "MAV_CMD_DO_FOLLOW" 32 "Begin following a target"
 "MAV_CMD_DO_FOLLOW_REPOSITION" 33 "Reposition the MAV after a follow target command has been sent"
 "MAV_CMD_DO_ORBIT" 34 "Start orbiting on the circumference of a circle defined by the parameters. Setting any value NaN results in using defaults."
 "MAV_CMD_NAV_ROI" 80 "Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicle's control system to control the vehicle attitude and the attitude of various sensors such as cameras."
 ⋮

Query the dialect for a specific message ID. Create a blank MAVLink message using the message ID.

info = msginfo(dialect,"HEARTBEAT")

info=1×4 table
 MessageID MessageName Description Fields
 _________ ___________ ___ ___________

 0 "HEARTBEAT" "The heartbeat message shows that a system or component is present and responding. The type and autopilot fields (along with the message component id), allow the receiving system to treat further messages from this system appropriately (e.g. by laying out the user interface based on the autopilot). This microservice is documented at https://mavlink.io/en/services/heartbeat.html" {6x6 table}

msg = createmsg(dialect,info.MessageID);

Input Arguments
dialect — MAVLink dialect
mavlinkdialect object

MAVLink dialect, specified as a mavlinkdialect object, which contains a parsed dialect XML for
MAVLink message definitions.

enum — MAVLink enum name
string

MAVLink enum name, specified as a string.

entry — MAVLink enum entry name
string

MAVLink enum entry name, specified as a string.

 enum2num

2-113

Output Arguments
enumValue — Enum value
integer

Enum value, returned as an integer.

See Also
num2enum | enuminfo | msginfo | mavlinkdialect | mavlinkio | mavlinkclient | mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

2 Methods

2-114

https://mavlink.io

enuminfo
Enum definition for enum ID

Syntax
enumTable = enuminfo(dialect,enumID)

Description
enumTable = enuminfo(dialect,enumID) returns a table detailing the enumeration definition
based on the given enumID.

Examples

Parse and Use MAVLink Dialect

This example shows how to parse a MAVLink XML file and create messages and commands from the
definitions.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

Parse and store the MAVLink dialect XML. Specify the XML path. The default "common.xml" dialect
is provided. This XML file contains all the message and enum definitions.

dialect = mavlinkdialect("common.xml");

Create a MAVLink command from the MAV_CMD enum, which is an enum of MAVLink commands to
send to the UAV. Specify the setting as "int" or "long", and the type as an integer or string.

cmdMsg = createcmd(dialect,"long",22)

cmdMsg = struct with fields:
 MsgID: 76
 Payload: [1x1 struct]

Verify the command name using num2enum. Command 22 is a take-off command for the UAV. You can
convert back to an ID using enum2num. Your dialect can contain many different enums with different
names and IDs.

cmdName = num2enum(dialect,"MAV_CMD",22)

cmdName =
"MAV_CMD_NAV_TAKEOFF"

cmdID = enum2num(dialect,"MAV_CMD",cmdName)

cmdID = 22

Use enuminfo to view the table of the MAV_CMD enum entries.

 enuminfo

2-115

info = enuminfo(dialect,"MAV_CMD");
info.Entries{:}

ans=148×3 table
 Name Value Description
 _____________________________________ _____ ___

 "MAV_CMD_NAV_WAYPOINT" 16 "Navigate to waypoint."
 "MAV_CMD_NAV_LOITER_UNLIM" 17 "Loiter around this waypoint an unlimited amount of time"
 "MAV_CMD_NAV_LOITER_TURNS" 18 "Loiter around this waypoint for X turns"
 "MAV_CMD_NAV_LOITER_TIME" 19 "Loiter at the specified latitude, longitude and altitude for a certain amount of time. Multicopter vehicles stop at the point (within a vehicle-specific acceptance radius). Forward-only moving vehicles (e.g. fixed-wing) circle the point with the specified radius/direction. If the Heading Required parameter (2) is non-zero forward moving aircraft will only leave the loiter circle once heading towards the next waypoint."
 "MAV_CMD_NAV_RETURN_TO_LAUNCH" 20 "Return to launch location"
 "MAV_CMD_NAV_LAND" 21 "Land at location."
 "MAV_CMD_NAV_TAKEOFF" 22 "Takeoff from ground / hand. Vehicles that support multiple takeoff modes (e.g. VTOL quadplane) should take off using the currently configured mode."
 "MAV_CMD_NAV_LAND_LOCAL" 23 "Land at local position (local frame only)"
 "MAV_CMD_NAV_TAKEOFF_LOCAL" 24 "Takeoff from local position (local frame only)"
 "MAV_CMD_NAV_FOLLOW" 25 "Vehicle following, i.e. this waypoint represents the position of a moving vehicle"
 "MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT" 30 "Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached."
 "MAV_CMD_NAV_LOITER_TO_ALT" 31 "Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint."
 "MAV_CMD_DO_FOLLOW" 32 "Begin following a target"
 "MAV_CMD_DO_FOLLOW_REPOSITION" 33 "Reposition the MAV after a follow target command has been sent"
 "MAV_CMD_DO_ORBIT" 34 "Start orbiting on the circumference of a circle defined by the parameters. Setting any value NaN results in using defaults."
 "MAV_CMD_NAV_ROI" 80 "Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicle's control system to control the vehicle attitude and the attitude of various sensors such as cameras."
 ⋮

Query the dialect for a specific message ID. Create a blank MAVLink message using the message ID.

info = msginfo(dialect,"HEARTBEAT")

info=1×4 table
 MessageID MessageName Description Fields
 _________ ___________ ___ ___________

 0 "HEARTBEAT" "The heartbeat message shows that a system or component is present and responding. The type and autopilot fields (along with the message component id), allow the receiving system to treat further messages from this system appropriately (e.g. by laying out the user interface based on the autopilot). This microservice is documented at https://mavlink.io/en/services/heartbeat.html" {6x6 table}

msg = createmsg(dialect,info.MessageID);

Input Arguments
dialect — MAVLink dialect
mavlinkdialect object

MAVLink dialect, specified as a mavlinkdialect object, which contains a parsed dialect XML for
MAVLink message definitions.

enumID — MAVLink enum ID
string

MAVLink enum ID, specified as a string.

Output Arguments
enumTable — Enum definition
table

2 Methods

2-116

Enum definition, returned as a table containing the message ID, name, description, and entries. The
entries are given as another table with their own information listed. All this information is defined by
dialect XML file.

See Also
msginfo | mavlinkdialect | mavlinkio | mavlinkclient | mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

 enuminfo

2-117

https://mavlink.io

msginfo
Message definition for message ID

Syntax
msgTable = msginfo(dialect,messageID)

Description
msgTable = msginfo(dialect,messageID) returns a table detailing the message definition
based on the given messageID.

Examples

Parse and Use MAVLink Dialect

This example shows how to parse a MAVLink XML file and create messages and commands from the
definitions.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

Parse and store the MAVLink dialect XML. Specify the XML path. The default "common.xml" dialect
is provided. This XML file contains all the message and enum definitions.

dialect = mavlinkdialect("common.xml");

Create a MAVLink command from the MAV_CMD enum, which is an enum of MAVLink commands to
send to the UAV. Specify the setting as "int" or "long", and the type as an integer or string.

cmdMsg = createcmd(dialect,"long",22)

cmdMsg = struct with fields:
 MsgID: 76
 Payload: [1x1 struct]

Verify the command name using num2enum. Command 22 is a take-off command for the UAV. You can
convert back to an ID using enum2num. Your dialect can contain many different enums with different
names and IDs.

cmdName = num2enum(dialect,"MAV_CMD",22)

cmdName =
"MAV_CMD_NAV_TAKEOFF"

cmdID = enum2num(dialect,"MAV_CMD",cmdName)

cmdID = 22

Use enuminfo to view the table of the MAV_CMD enum entries.

2 Methods

2-118

info = enuminfo(dialect,"MAV_CMD");
info.Entries{:}

ans=148×3 table
 Name Value Description
 _____________________________________ _____ ___

 "MAV_CMD_NAV_WAYPOINT" 16 "Navigate to waypoint."
 "MAV_CMD_NAV_LOITER_UNLIM" 17 "Loiter around this waypoint an unlimited amount of time"
 "MAV_CMD_NAV_LOITER_TURNS" 18 "Loiter around this waypoint for X turns"
 "MAV_CMD_NAV_LOITER_TIME" 19 "Loiter at the specified latitude, longitude and altitude for a certain amount of time. Multicopter vehicles stop at the point (within a vehicle-specific acceptance radius). Forward-only moving vehicles (e.g. fixed-wing) circle the point with the specified radius/direction. If the Heading Required parameter (2) is non-zero forward moving aircraft will only leave the loiter circle once heading towards the next waypoint."
 "MAV_CMD_NAV_RETURN_TO_LAUNCH" 20 "Return to launch location"
 "MAV_CMD_NAV_LAND" 21 "Land at location."
 "MAV_CMD_NAV_TAKEOFF" 22 "Takeoff from ground / hand. Vehicles that support multiple takeoff modes (e.g. VTOL quadplane) should take off using the currently configured mode."
 "MAV_CMD_NAV_LAND_LOCAL" 23 "Land at local position (local frame only)"
 "MAV_CMD_NAV_TAKEOFF_LOCAL" 24 "Takeoff from local position (local frame only)"
 "MAV_CMD_NAV_FOLLOW" 25 "Vehicle following, i.e. this waypoint represents the position of a moving vehicle"
 "MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT" 30 "Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached."
 "MAV_CMD_NAV_LOITER_TO_ALT" 31 "Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint."
 "MAV_CMD_DO_FOLLOW" 32 "Begin following a target"
 "MAV_CMD_DO_FOLLOW_REPOSITION" 33 "Reposition the MAV after a follow target command has been sent"
 "MAV_CMD_DO_ORBIT" 34 "Start orbiting on the circumference of a circle defined by the parameters. Setting any value NaN results in using defaults."
 "MAV_CMD_NAV_ROI" 80 "Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicle's control system to control the vehicle attitude and the attitude of various sensors such as cameras."
 ⋮

Query the dialect for a specific message ID. Create a blank MAVLink message using the message ID.

info = msginfo(dialect,"HEARTBEAT")

info=1×4 table
 MessageID MessageName Description Fields
 _________ ___________ ___ ___________

 0 "HEARTBEAT" "The heartbeat message shows that a system or component is present and responding. The type and autopilot fields (along with the message component id), allow the receiving system to treat further messages from this system appropriately (e.g. by laying out the user interface based on the autopilot). This microservice is documented at https://mavlink.io/en/services/heartbeat.html" {6x6 table}

msg = createmsg(dialect,info.MessageID);

Input Arguments
dialect — MAVLink dialect
mavlinkdialect object

MAVLink dialect, specified as a mavlinkdialect object, which contains a parsed dialect XML for
MAVLink message definitions.

messageID — MAVLink message ID or name
integer | string

MAVLink message ID or name, specified as an integer or string.

Output Arguments
msgTable — Message definition
table

 msginfo

2-119

Message definition, returned as a table containing the message ID, name, description, and fields. The
fields are given as another table with their own information. All this information is defined by dialect
XML file.

See Also
createmsg | enuminfo | mavlinkdialect | mavlinkio | mavlinkclient | mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

2 Methods

2-120

https://mavlink.io

connect
Connect to MAVLink clients through UDP port

Syntax
connectionName = connect(mavlink,"UDP")
connectionName = connect(___ ,Name,Value)

Description
connectionName = connect(mavlink,"UDP") connects to the mavlinkio client through a UDP
port.

connectionName = connect(___ ,Name,Value) additionally specifies arguments using name-
value pairs.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Examples

Store MAVLink Client Information

Connect to a MAVLink client.

mavlink = mavlinkio("common.xml");
connect(mavlink,"UDP");

Create the object for storing the client information. Specify the system and component ID.

client = mavlinkclient(mavlink,1,1)

client =
 mavlinkclient with properties:

 SystemID: 1
 ComponentID: 1
 ComponentType: "Unknown"
 AutopilotType: "Unknown"

Disconnect from client.

disconnect(mavlink)

 connect

2-121

Work with MAVLink Connection

This example shows how to connect to MAVLink clients, inspect the list of topics, connections, and
clients, and send messages through UDP ports using the MAVLink communication protocol.

Connect to a MAVLink client using the "common.xml" dialect. This local client communicates with
any other clients through a UDP port.

dialect = mavlinkdialect("common.xml");
mavlink = mavlinkio(dialect);
connect(mavlink,"UDP")

ans =
"Connection1"

You can list all the active clients, connections, and topics for the MAVLink connection. Currently,
there is only one client connection and no topics have received messages.

listClients(mavlink)

ans=1×4 table
 SystemID ComponentID ComponentType AutopilotType
 ________ ___________ ______________ _______________________

 255 1 "MAV_TYPE_GCS" "MAV_AUTOPILOT_INVALID"

listConnections(mavlink)

ans=1×2 table
 ConnectionName ConnectionInfo
 ______________ ___________________

 "Connection1" "UDP@0.0.0.0:64030"

listTopics(mavlink)

ans =

 0x5 empty table

Create a subscriber for receiving messages on the client. This subscriber listens for the
"HEARTBEAT" message topic with ID equal to 0.

sub = mavlinksub(mavlink,0);

Create a "HEARTBEAT" message using the mavlinkdialect object. Specify payload information and
send the message over the MAVLink client.

msg = createmsg(dialect,"HEARTBEAT");
msg.Payload.type(:) = enum2num(dialect,'MAV_TYPE','MAV_TYPE_QUADROTOR');
sendmsg(mavlink,msg)

Disconnect from the client.

disconnect(mavlink)

2 Methods

2-122

Input Arguments
mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LocalPort',12345

ConnectionName — Identifying connection name
"Connection#" (default) | string scalar

Identifying connection name, specified as the comma-separated pair consisting of
'ConnectionName' and a string scalar. The default connection name is "Connection#".
Data Types: string

LocalPort — Local port for UDP connection
0 (default) | numeric scalar

Local port for UDP connection, specified as a numeric scalar. A value of 0 binds to a random open
port.
Data Types: double

Output Arguments
connectionName — Identifying connection name
"Connection#" (default) | string scalar

Identifying connection name, specified as a string scalar. The default connection name is
"Connection#", where # is an integer starting at 1 and increases with each new connection
created.
Data Types: string

See Also
disconnect | mavlinkdialect | mavlinkclient | mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

External Websites
MAVLink Developer Guide

Introduced in R2019a

 connect

2-123

https://mavlink.io

disconnect
Disconnect from MAVLink clients

Syntax
disconnect(mavlink)
disconnect(mavlink,connection)

Description
disconnect(mavlink) disconnects from all MAVLink clients connected through the mavlinkio
client.

disconnect(mavlink,connection) disconnects from the specific client connection name.

Examples

Store MAVLink Client Information

Connect to a MAVLink client.

mavlink = mavlinkio("common.xml");
connect(mavlink,"UDP");

Create the object for storing the client information. Specify the system and component ID.

client = mavlinkclient(mavlink,1,1)

client =
 mavlinkclient with properties:

 SystemID: 1
 ComponentID: 1
 ComponentType: "Unknown"
 AutopilotType: "Unknown"

Disconnect from client.

disconnect(mavlink)

Work with MAVLink Connection

This example shows how to connect to MAVLink clients, inspect the list of topics, connections, and
clients, and send messages through UDP ports using the MAVLink communication protocol.

Connect to a MAVLink client using the "common.xml" dialect. This local client communicates with
any other clients through a UDP port.

2 Methods

2-124

dialect = mavlinkdialect("common.xml");
mavlink = mavlinkio(dialect);
connect(mavlink,"UDP")

ans =
"Connection1"

You can list all the active clients, connections, and topics for the MAVLink connection. Currently,
there is only one client connection and no topics have received messages.

listClients(mavlink)

ans=1×4 table
 SystemID ComponentID ComponentType AutopilotType
 ________ ___________ ______________ _______________________

 255 1 "MAV_TYPE_GCS" "MAV_AUTOPILOT_INVALID"

listConnections(mavlink)

ans=1×2 table
 ConnectionName ConnectionInfo
 ______________ ___________________

 "Connection1" "UDP@0.0.0.0:64030"

listTopics(mavlink)

ans =

 0x5 empty table

Create a subscriber for receiving messages on the client. This subscriber listens for the
"HEARTBEAT" message topic with ID equal to 0.

sub = mavlinksub(mavlink,0);

Create a "HEARTBEAT" message using the mavlinkdialect object. Specify payload information and
send the message over the MAVLink client.

msg = createmsg(dialect,"HEARTBEAT");
msg.Payload.type(:) = enum2num(dialect,'MAV_TYPE','MAV_TYPE_QUADROTOR');
sendmsg(mavlink,msg)

Disconnect from the client.

disconnect(mavlink)

Input Arguments
mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

 disconnect

2-125

connection — Connection name
string scalar

Connection name, specified as a string scalar.

See Also
connect | mavlinkio | mavlinkdialect | mavlinkclient | mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

External Websites
MAVLink Developer Guide

Introduced in R2019a

2 Methods

2-126

https://mavlink.io

listClients
List all connected MAVLink clients

Syntax
clientTable = listClients(mavlink)

Description
clientTable = listClients(mavlink) lists all active connections for the mavlinkio client
connection.

Examples

Work with MAVLink Connection

This example shows how to connect to MAVLink clients, inspect the list of topics, connections, and
clients, and send messages through UDP ports using the MAVLink communication protocol.

Connect to a MAVLink client using the "common.xml" dialect. This local client communicates with
any other clients through a UDP port.

dialect = mavlinkdialect("common.xml");
mavlink = mavlinkio(dialect);
connect(mavlink,"UDP")

ans =
"Connection1"

You can list all the active clients, connections, and topics for the MAVLink connection. Currently,
there is only one client connection and no topics have received messages.

listClients(mavlink)

ans=1×4 table
 SystemID ComponentID ComponentType AutopilotType
 ________ ___________ ______________ _______________________

 255 1 "MAV_TYPE_GCS" "MAV_AUTOPILOT_INVALID"

listConnections(mavlink)

ans=1×2 table
 ConnectionName ConnectionInfo
 ______________ ___________________

 "Connection1" "UDP@0.0.0.0:64030"

listTopics(mavlink)

 listClients

2-127

ans =

 0x5 empty table

Create a subscriber for receiving messages on the client. This subscriber listens for the
"HEARTBEAT" message topic with ID equal to 0.

sub = mavlinksub(mavlink,0);

Create a "HEARTBEAT" message using the mavlinkdialect object. Specify payload information and
send the message over the MAVLink client.

msg = createmsg(dialect,"HEARTBEAT");
msg.Payload.type(:) = enum2num(dialect,'MAV_TYPE','MAV_TYPE_QUADROTOR');
sendmsg(mavlink,msg)

Disconnect from the client.

disconnect(mavlink)

Input Arguments
mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

Output Arguments
clientTable — Active client info
table

Active connection info, returned as a table with SystemID, ComponentID, ConnectionType, and
AutopilotType fields for each active client.

See Also
connect | listConnections | listTopics | mavlinkio | mavlinkdialect | mavlinkclient |
mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

2 Methods

2-128

https://mavlink.io

listConnections
List all active MAVLink connections

Syntax
connectionTable = listConnections(mavlink)

Description
connectionTable = listConnections(mavlink) lists all active connections for the mavlinkio
client connection.

Examples

Work with MAVLink Connection

This example shows how to connect to MAVLink clients, inspect the list of topics, connections, and
clients, and send messages through UDP ports using the MAVLink communication protocol.

Connect to a MAVLink client using the "common.xml" dialect. This local client communicates with
any other clients through a UDP port.

dialect = mavlinkdialect("common.xml");
mavlink = mavlinkio(dialect);
connect(mavlink,"UDP")

ans =
"Connection1"

You can list all the active clients, connections, and topics for the MAVLink connection. Currently,
there is only one client connection and no topics have received messages.

listClients(mavlink)

ans=1×4 table
 SystemID ComponentID ComponentType AutopilotType
 ________ ___________ ______________ _______________________

 255 1 "MAV_TYPE_GCS" "MAV_AUTOPILOT_INVALID"

listConnections(mavlink)

ans=1×2 table
 ConnectionName ConnectionInfo
 ______________ ___________________

 "Connection1" "UDP@0.0.0.0:64030"

listTopics(mavlink)

 listConnections

2-129

ans =

 0x5 empty table

Create a subscriber for receiving messages on the client. This subscriber listens for the
"HEARTBEAT" message topic with ID equal to 0.

sub = mavlinksub(mavlink,0);

Create a "HEARTBEAT" message using the mavlinkdialect object. Specify payload information and
send the message over the MAVLink client.

msg = createmsg(dialect,"HEARTBEAT");
msg.Payload.type(:) = enum2num(dialect,'MAV_TYPE','MAV_TYPE_QUADROTOR');
sendmsg(mavlink,msg)

Disconnect from the client.

disconnect(mavlink)

Input Arguments
mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

Output Arguments
connectionTable — Active connection info
table

Active connection info, returned as a table with ConnectionName and ConnectionInfo fields for
each active connection.

See Also
connect | listClients | listTopics | mavlinkio | mavlinkdialect | mavlinkclient |
mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

2 Methods

2-130

https://mavlink.io

listTopics
List all topics received by MAVLink client

Syntax
topicTable = listTopics(mavlink)

Description
topicTable = listTopics(mavlink) returns a table of topics received on the connected
mavlinkio client with information on the message frequency.

Examples

Work with MAVLink Connection

This example shows how to connect to MAVLink clients, inspect the list of topics, connections, and
clients, and send messages through UDP ports using the MAVLink communication protocol.

Connect to a MAVLink client using the "common.xml" dialect. This local client communicates with
any other clients through a UDP port.

dialect = mavlinkdialect("common.xml");
mavlink = mavlinkio(dialect);
connect(mavlink,"UDP")

ans =
"Connection1"

You can list all the active clients, connections, and topics for the MAVLink connection. Currently,
there is only one client connection and no topics have received messages.

listClients(mavlink)

ans=1×4 table
 SystemID ComponentID ComponentType AutopilotType
 ________ ___________ ______________ _______________________

 255 1 "MAV_TYPE_GCS" "MAV_AUTOPILOT_INVALID"

listConnections(mavlink)

ans=1×2 table
 ConnectionName ConnectionInfo
 ______________ ___________________

 "Connection1" "UDP@0.0.0.0:64030"

listTopics(mavlink)

 listTopics

2-131

ans =

 0x5 empty table

Create a subscriber for receiving messages on the client. This subscriber listens for the
"HEARTBEAT" message topic with ID equal to 0.

sub = mavlinksub(mavlink,0);

Create a "HEARTBEAT" message using the mavlinkdialect object. Specify payload information and
send the message over the MAVLink client.

msg = createmsg(dialect,"HEARTBEAT");
msg.Payload.type(:) = enum2num(dialect,'MAV_TYPE','MAV_TYPE_QUADROTOR');
sendmsg(mavlink,msg)

Disconnect from the client.

disconnect(mavlink)

Input Arguments
mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

Output Arguments
topicTable — Topic info
table

Topic info, returned as a table with SystemID, ComponentID, MessageID, MessageName, and
MessageFrequency fields for each topic receiving messages on the client.

See Also
connect | listConnections | listClients | mavlinkio | mavlinkdialect | mavlinkclient |
mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

2 Methods

2-132

https://mavlink.io

sendmsg
Send MAVLink message

Syntax
sendmsg(mavlink,msg)
sendmsg(mavlink,msg,client)

Description
sendmsg(mavlink,msg) sends a message to all connected MAVLink clients in the mavlinkio
object.

sendmsg(mavlink,msg,client) sends a message to the MAVLink client specified as a
mavlinkclient object. If the client is not connected, no message is sent.

Examples

Work with MAVLink Connection

This example shows how to connect to MAVLink clients, inspect the list of topics, connections, and
clients, and send messages through UDP ports using the MAVLink communication protocol.

Connect to a MAVLink client using the "common.xml" dialect. This local client communicates with
any other clients through a UDP port.

dialect = mavlinkdialect("common.xml");
mavlink = mavlinkio(dialect);
connect(mavlink,"UDP")

ans =
"Connection1"

You can list all the active clients, connections, and topics for the MAVLink connection. Currently,
there is only one client connection and no topics have received messages.

listClients(mavlink)

ans=1×4 table
 SystemID ComponentID ComponentType AutopilotType
 ________ ___________ ______________ _______________________

 255 1 "MAV_TYPE_GCS" "MAV_AUTOPILOT_INVALID"

listConnections(mavlink)

ans=1×2 table
 ConnectionName ConnectionInfo
 ______________ ___________________

 sendmsg

2-133

 "Connection1" "UDP@0.0.0.0:64030"

listTopics(mavlink)

ans =

 0x5 empty table

Create a subscriber for receiving messages on the client. This subscriber listens for the
"HEARTBEAT" message topic with ID equal to 0.

sub = mavlinksub(mavlink,0);

Create a "HEARTBEAT" message using the mavlinkdialect object. Specify payload information and
send the message over the MAVLink client.

msg = createmsg(dialect,"HEARTBEAT");
msg.Payload.type(:) = enum2num(dialect,'MAV_TYPE','MAV_TYPE_QUADROTOR');
sendmsg(mavlink,msg)

Disconnect from the client.

disconnect(mavlink)

Input Arguments
mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

msg — MAVLink message
structure

MAVLink message, specified as a structure with the fields:

• MsgID: Positive integer for message ID.
• Payload: Structure containing fields for the specific message definition.

To create a blank message, use the createmsg with a mavlinkdialect object.

client — MAVLink client information
mavlinkclient object

MAVLink client information, specified as a mavlinkclient object.

See Also
connect | listConnections | listClients | mavlinkio | mavlinkdialect | mavlinkclient |
mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

2 Methods

2-134

External Websites
MAVLink Developer Guide

Introduced in R2019a

 sendmsg

2-135

https://mavlink.io

serializemsg
Serialize MAVLink message to binary buffer

Syntax
buffer = serializemsg(mavlink,msg)

Description
buffer = serializemsg(mavlink,msg) serializes a MAVLink message structure to a binary
buffer for transmission. This buffer is for manual transmission using your own communication
channel. To send over UDP, see sendmsg.

Input Arguments
mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

msg — MAVLink message
structure

MAVLink message, specified as a structure with the fields:

• MsgID: Positive integer for message ID.
• Payload: Structure containing fields for the specific message definition.

To create a blank message, use the createmsg with a mavlinkdialect object.

Output Arguments
buffer — Serialized message
vector of uint8 integers

Serialized messaged, returned as vector of uint8 integers.
Data Types: uint8

See Also
sendmsg | connect | listConnections | listClients | mavlinkio | mavlinkdialect |
mavlinkclient | mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

2 Methods

2-136

https://mavlink.io

sendudpmsg
Send MAVLink message to UDP port

Syntax
sendudpmsg(mavlink,msg,remoteHost,remotePort)

Description
sendudpmsg(mavlink,msg,remoteHost,remotePort) sends the message, msg, to the remote
UDP port specified by the host name, remoteHost, and port number, remotePort.

Input Arguments
mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

msg — MAVLink message
structure

MAVLink message, specified as a structure with the fields:

• MsgID: Positive integer for message ID.
• Payload: Structure containing fields for the specific message definition.

To create a blank message, use the createmsg with a mavlinkdialect object.

remoteHost — Remote host IP address
string

Remote host IP address, specified as a string.
Example: "192.168.1.10"

remotePort — Remote host port
five-digit numeric scalar

Remote host IP address, specified as a five-digit numeric scalar.
Example: 14550

See Also
sendmsg | connect | listConnections | listClients | mavlinkio | mavlinkdialect |
mavlinkclient | mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

 sendudpmsg

2-137

External Websites
MAVLink Developer Guide

Introduced in R2019a

2 Methods

2-138

https://mavlink.io

latestmsgs
Received messages from MAVLink subscriber

Syntax
msgs = latestmsgs(sub,count)

Description
msgs = latestmsgs(sub,count) returns the latest received messages for the mavlinksub
object. The messages are in a structure array in reverse-chronological order with the most recent
being first. If count is larger than the number of stored messages, the structure array contains only
the number of stored messages.

Examples

Subscribe to MAVLink Topic

Connect to a MAVLink client.

mavlink = mavlinkio("common.xml")

mavlink =
 mavlinkio with properties:

 Dialect: [1x1 mavlinkdialect]
 LocalClient: [1x1 struct]

connect(mavlink,"UDP")

ans =
"Connection1"

Get the client information.

client = mavlinkclient(mavlink,1,1);

Subscribe to the "HEARTBEAT" topic.

heartbeat = mavlinksub(mavlink,client,'HEARTBEAT');

Get the latest message. You must wait for a message to be received. Currently, no heartbeat message
has been received on the mavlink object.

latestmsgs(heartbeat,1)

ans =

 1x0 empty struct array with fields:

 MsgID

 latestmsgs

2-139

 SystemID
 ComponentID
 Payload
 Seq

Disconnect from client.

disconnect(mavlink)

Input Arguments
sub — MAVLink subscriber
mavlinksub object

MAVLink subscriber, specified as a mavlinksub object.

count — Number of messages
positive integer

Number of messages, specified as a positive integer. If count is larger than the number of stored
messages, the structure array is padded with empty structs.

Output Arguments
msgs — Recently received messages
structure array

Recently received messages, returned as a structure array. Each structure has the fields:

• MsgID
• SystemID
• ComponentID
• Payload

The Payload is a structure defined by the message definition for the MAVLink dialect.

If count is larger than the number of stored messages, the structure array contains only the number
of stored messages..

See Also
mavlinksub | mavlinkclient | mavlinkio | mavlinkdialect

Introduced in R2019a

2 Methods

2-140

num2enum
Enum entry for given value

Syntax
entry = num2enum(dialect,enum,enumValue)

Description
entry = num2enum(dialect,enum,enumValue) returns the value for the given entry in the
enum.

Examples

Parse and Use MAVLink Dialect

This example shows how to parse a MAVLink XML file and create messages and commands from the
definitions.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

Parse and store the MAVLink dialect XML. Specify the XML path. The default "common.xml" dialect
is provided. This XML file contains all the message and enum definitions.

dialect = mavlinkdialect("common.xml");

Create a MAVLink command from the MAV_CMD enum, which is an enum of MAVLink commands to
send to the UAV. Specify the setting as "int" or "long", and the type as an integer or string.

cmdMsg = createcmd(dialect,"long",22)

cmdMsg = struct with fields:
 MsgID: 76
 Payload: [1x1 struct]

Verify the command name using num2enum. Command 22 is a take-off command for the UAV. You can
convert back to an ID using enum2num. Your dialect can contain many different enums with different
names and IDs.

cmdName = num2enum(dialect,"MAV_CMD",22)

cmdName =
"MAV_CMD_NAV_TAKEOFF"

cmdID = enum2num(dialect,"MAV_CMD",cmdName)

cmdID = 22

Use enuminfo to view the table of the MAV_CMD enum entries.

 num2enum

2-141

info = enuminfo(dialect,"MAV_CMD");
info.Entries{:}

ans=148×3 table
 Name Value Description
 _____________________________________ _____ ___

 "MAV_CMD_NAV_WAYPOINT" 16 "Navigate to waypoint."
 "MAV_CMD_NAV_LOITER_UNLIM" 17 "Loiter around this waypoint an unlimited amount of time"
 "MAV_CMD_NAV_LOITER_TURNS" 18 "Loiter around this waypoint for X turns"
 "MAV_CMD_NAV_LOITER_TIME" 19 "Loiter at the specified latitude, longitude and altitude for a certain amount of time. Multicopter vehicles stop at the point (within a vehicle-specific acceptance radius). Forward-only moving vehicles (e.g. fixed-wing) circle the point with the specified radius/direction. If the Heading Required parameter (2) is non-zero forward moving aircraft will only leave the loiter circle once heading towards the next waypoint."
 "MAV_CMD_NAV_RETURN_TO_LAUNCH" 20 "Return to launch location"
 "MAV_CMD_NAV_LAND" 21 "Land at location."
 "MAV_CMD_NAV_TAKEOFF" 22 "Takeoff from ground / hand. Vehicles that support multiple takeoff modes (e.g. VTOL quadplane) should take off using the currently configured mode."
 "MAV_CMD_NAV_LAND_LOCAL" 23 "Land at local position (local frame only)"
 "MAV_CMD_NAV_TAKEOFF_LOCAL" 24 "Takeoff from local position (local frame only)"
 "MAV_CMD_NAV_FOLLOW" 25 "Vehicle following, i.e. this waypoint represents the position of a moving vehicle"
 "MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT" 30 "Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached."
 "MAV_CMD_NAV_LOITER_TO_ALT" 31 "Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint."
 "MAV_CMD_DO_FOLLOW" 32 "Begin following a target"
 "MAV_CMD_DO_FOLLOW_REPOSITION" 33 "Reposition the MAV after a follow target command has been sent"
 "MAV_CMD_DO_ORBIT" 34 "Start orbiting on the circumference of a circle defined by the parameters. Setting any value NaN results in using defaults."
 "MAV_CMD_NAV_ROI" 80 "Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicle's control system to control the vehicle attitude and the attitude of various sensors such as cameras."
 ⋮

Query the dialect for a specific message ID. Create a blank MAVLink message using the message ID.

info = msginfo(dialect,"HEARTBEAT")

info=1×4 table
 MessageID MessageName Description Fields
 _________ ___________ ___ ___________

 0 "HEARTBEAT" "The heartbeat message shows that a system or component is present and responding. The type and autopilot fields (along with the message component id), allow the receiving system to treat further messages from this system appropriately (e.g. by laying out the user interface based on the autopilot). This microservice is documented at https://mavlink.io/en/services/heartbeat.html" {6x6 table}

msg = createmsg(dialect,info.MessageID);

Input Arguments
dialect — MAVLink dialect
mavlinkdialect object

MAVLink dialect, specified as a mavlinkdialect object, which contains a parsed dialect XML for
MAVLink message definitions.

enum — MAVLink enum name
string

MAVLink enum name, specified as a string.

enumValue — Enum value
integer

Enum value, specified as an integer.

2 Methods

2-142

Output Arguments
entry — MAVLink enum entry name
string

MAVLink enum entry name, returned as a string.

See Also
enum2num | enuminfo | msginfo | mavlinkdialect | mavlinkio | mavlinkclient | mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

 num2enum

2-143

https://mavlink.io

readmsg
Read specific messages from TLOG file

Syntax
msgTable = readmsg(tlogReader)
msgTable = readmsg(tlogReader,Name,Value)

Description
msgTable = readmsg(tlogReader) reads all message data from the specified mavlinkdialect
object and returns a table, msgTable, that contains all the messages separated by message type,
system ID, and component ID.

msgTable = readmsg(tlogReader,Name,Value) reads specific messages based on the specified
name-value pairs for filtering specific properties of the messages. You can filter by message name,
system ID, component ID, and time.

Examples

Read Messages from MAVLink TLOG File

This example shows how to load a MAVLink TLOG file and select a specific message type.

Load the TLOG file. Specify the relative path of the file name.

tlogReader = mavlinktlog('flight.tlog');

Read the 'REQUEST_DATA_STREAM' messages from the file.

msgData = readmsg(result,'MessageName','REQUEST_DATA_STREAM');

Input Arguments
tlogReader — MAVLink TLOG reader
mavlinktlog object

MAVLink TLOG reader, specified as a mavlinktlog object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MessageID',22

2 Methods

2-144

MessageName — Name of message in tlog
string scalar | character vector

Name of message in TLOG, specified as string scalar or character vector.
Data Types: char | string

SystemID — MAVLink system ID
positive integer from 1 through 255

MAVLink system ID, specified as a positive integer from 1 through 255. MAVLink protocol only
supports up to 255 systems. Usually, each UAV has its own system ID, but multiple UAVs could be
considered one system.

ComponentID — MAVLink component ID
positive integer from 1 through 255

MAVLink system ID, specified as a positive integer from 1 through 255.

Time — Time interval
two-element vector

Time interval between which to select messages, specified as a two-element vector in seconds.

Output Arguments
msgTable — Table of messages
table

Table of messages with columns:

• MessageID
• MessageName
• ComponentID
• SystemID
• Messages

Each row of Messages is a timetable containing the message Payload and the associated
timestamp.

See Also
mavlinktlog | mavlinkdialect | mavlinkclient | mavlinkio

Topics
“Visualize and Playback MAVLink Flight Log”

Introduced in R2019a

 readmsg

2-145

deserializemsg
Deserialize MAVLink message from binary buffer

Syntax
msg = deserializemsg(dialect,buffer)

Description
msg = deserializemsg(dialect,buffer) deserializes binary buffer data specified in buffer
based on the specified MAVLink dialect. If a message is received as multiple buffers, you can combine
them by concatenating the vectors in the proper order to get a valid message.

Input Arguments
dialect — MAVLink dialect
mavlinkdialect object

MAVLink dialect, specified as a mavlinkdialect object, which contains a parsed dialect XML for
MAVLink message definitions.

buffer — Serialized message
vector of uint8 integers

Serialized messaged, specified as vector of uint8 integers.
Data Types: uint8

Output Arguments
msg — MAVLink message
structure

MAVLink message, returned as a structure with the fields:

• MsgID: Positive integer for message ID.
• Payload: Structure containing fields for the specific message definition.

See Also
Functions
createmsg | createcmd | msginfo | enuminfo | enum2num | num2enum

Objects
mavlinkdialect | mavlinkio | mavlinkclient | mavlinksub

Introduced in R2019a

2 Methods

2-146

angvel
Angular velocity from quaternion array

Syntax
AV = angvel(Q,dt,'frame')
AV = angvel(Q,dt,'point')
[AV,qf] = angvel(Q,dt,fp,qi)

Description
AV = angvel(Q,dt,'frame') returns the angular velocity array from an array of quaternions, Q.
The quaternions in Q correspond to frame rotation. The initial quaternion is assumed to represent
zero rotation.

AV = angvel(Q,dt,'point') returns the angular velocity array from an array of quaternions, Q.
The quaternions in Q correspond to point rotation. The initial quaternion is assumed to represent zero
rotation.

[AV,qf] = angvel(Q,dt,fp,qi) allows you to specify the initial quaternion, qi, and the type of
rotation, fp. It also returns the final quaternion, qf.

Examples

Generate Angular Velocity From Quaternion Array

Create an array of quaternions.

eulerAngles = [(0:10:90).',zeros(numel(0:10:90),2)];
q = quaternion(eulerAngles,'eulerd','ZYX','frame');

Specify the time step and generate the angular velocity array.

dt = 1;
av = angvel(q,dt,'frame') % units in rad/s

av = 10×3

 0 0 0
 0 0 0.1743
 0 0 0.1743
 0 0 0.1743
 0 0 0.1743
 0 0 0.1743
 0 0 0.1743
 0 0 0.1743
 0 0 0.1743
 0 0 0.1743

 angvel

2-147

Input Arguments
Q — Quaternions
N-by-1 vector of quaternions

Quaternions, specified as an N-by-1 vector of quaternions.
Data Types: quaternion

dt — Time step
nonnegative scalar

Time step, specified as a nonnegative scalar.
Data Types: single | double

fp — Type of rotation
'frame' | 'point'

Type of rotation, specified as 'frame' or 'point'.

qi — Initial quaternion
quaternion

Initial quaternion, specified as a quaternion.
Data Types: quaternion

Output Arguments
AV — Angular velocity
N-by-3 real matrix

Angular velocity, returned as an N-by-3 real matrix. N is the number of quaternions given in the input
Q. Each row of the matrix corresponds to an angular velocity vector.

qf — Final quaternion
quaternion

Final quaternion, returned as a quaternion. qf is the same as the last quaternion in the Q input.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion

Introduced in R2020b

2 Methods

2-148

classUnderlying
Class of parts within quaternion

Syntax
underlyingClass = classUnderlying(quat)

Description
underlyingClass = classUnderlying(quat) returns the name of the class of the parts of the
quaternion quat.

Examples

Get Underlying Class of Quaternion

A quaternion is a four-part hyper-complex number used in three-dimensional representations. The
four parts of the quaternion are of data type single or double.

Create two quaternions, one with an underlying data type of single, and one with an underlying
data type of double. Verify the underlying data types by calling classUnderlying on the
quaternions.

qSingle = quaternion(single([1,2,3,4]))

qSingle = quaternion
 1 + 2i + 3j + 4k

classUnderlying(qSingle)

ans =
'single'

qDouble = quaternion([1,2,3,4])

qDouble = quaternion
 1 + 2i + 3j + 4k

classUnderlying(qDouble)

ans =
'double'

You can separate quaternions into their parts using the parts function. Verify the parts of each
quaternion are the correct data type. Recall that double is the default MATLAB® type.

[aS,bS,cS,dS] = parts(qSingle)

aS = single
 1

 classUnderlying

2-149

bS = single
 2

cS = single
 3

dS = single
 4

[aD,bD,cD,dD] = parts(qDouble)

aD = 1

bD = 2

cD = 3

dD = 4

Quaternions follow the same implicit casting rules as other data types in MATLAB. That is, a
quaternion with underlying data type single that is combined with a quaternion with underlying
data type double results in a quaternion with underlying data type single. Multiply qDouble and
qSingle and verify the resulting underlying data type is single.

q = qDouble*qSingle;
classUnderlying(q)

ans =
'single'

Input Arguments
quat — Quaternion to investigate
scalar | vector | matrix | multi-dimensional array

Quaternion to investigate, specified as a quaternion or array of quaternions.
Data Types: quaternion

Output Arguments
underlyingClass — Underlying class of quaternion object
'single' | 'double'

Underlying class of quaternion, returned as the character vector 'single' or 'double'.
Data Types: char

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Methods

2-150

See Also
Functions
compact | parts

Objects
quaternion

Introduced in R2020b

 classUnderlying

2-151

compact
Convert quaternion array to N-by-4 matrix

Syntax
matrix = compact(quat)

Description
matrix = compact(quat) converts the quaternion array, quat, to an N-by-4 matrix. The columns
are made from the four quaternion parts. The ith row of the matrix corresponds to quat(i).

Examples

Convert Quaternion Array to Compact Representation of Parts

Create a scalar quaternion with random parts. Convert the parts to a 1-by-4 vector using compact.

randomParts = randn(1,4)

randomParts = 1×4

 0.5377 1.8339 -2.2588 0.8622

quat = quaternion(randomParts)

quat = quaternion
 0.53767 + 1.8339i - 2.2588j + 0.86217k

quatParts = compact(quat)

quatParts = 1×4

 0.5377 1.8339 -2.2588 0.8622

Create a 2-by-2 array of quaternions, then convert the representation to a matrix of quaternion parts.
The output rows correspond to the linear indices of the quaternion array.

quatArray = [quaternion([1:4;5:8]),quaternion([9:12;13:16])]

quatArray = 2x2 quaternion array
 1 + 2i + 3j + 4k 9 + 10i + 11j + 12k
 5 + 6i + 7j + 8k 13 + 14i + 15j + 16k

quatArrayParts = compact(quatArray)

quatArrayParts = 4×4

2 Methods

2-152

 1 2 3 4
 5 6 7 8
 9 10 11 12
 13 14 15 16

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Data Types: quaternion

Output Arguments
matrix — Quaternion in matrix form
N-by-4 matrix

Quaternion in matrix form, returned as an N-by-4 matrix, where N = numel(quat).
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
parts | classUnderlying

Objects
quaternion

Introduced in R2020b

 compact

2-153

conj
Complex conjugate of quaternion

Syntax
quatConjugate = conj(quat)

Description
quatConjugate = conj(quat) returns the complex conjugate of the quaternion, quat.

If q = a + bi + c j + dk, the complex conjugate of q is q* = a− bi− c j− dk. Considered as a rotation
operator, the conjugate performs the opposite rotation. For example,

q = quaternion(deg2rad([16 45 30]),'rotvec');
a = q*conj(q);
rotatepoint(a,[0,1,0])

ans =

 0 1 0

Examples

Complex Conjugate of Quaternion

Create a quaternion scalar and get the complex conjugate.

q = normalize(quaternion([0.9 0.3 0.3 0.25]))

q = quaternion
 0.87727 + 0.29242i + 0.29242j + 0.24369k

qConj = conj(q)

qConj = quaternion
 0.87727 - 0.29242i - 0.29242j - 0.24369k

Verify that a quaternion multiplied by its conjugate returns a quaternion one.

q*qConj

ans = quaternion
 1 + 0i + 0j + 0k

2 Methods

2-154

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to conjugate, specified as a scalar, vector, matrix, or array of quaternions.
Data Types: quaternion

Output Arguments
quatConjugate — Quaternion conjugate
scalar | vector | matrix | multidimensional array

Quaternion conjugate, returned as a quaternion or array of quaternions the same size as quat.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
norm | .*,times

Objects
quaternion

Introduced in R2020b

 conj

2-155

ctranspose, '
Complex conjugate transpose of quaternion array

Syntax
quatTransposed = quat'

Description
quatTransposed = quat' returns the complex conjugate transpose of the quaternion, quat.

Examples

Vector Complex Conjugate Transpose

Create a vector of quaternions and compute its complex conjugate transpose.

quat = quaternion(randn(4,4))

quat = 4x1 quaternion array
 0.53767 + 0.31877i + 3.5784j + 0.7254k
 1.8339 - 1.3077i + 2.7694j - 0.063055k
 -2.2588 - 0.43359i - 1.3499j + 0.71474k
 0.86217 + 0.34262i + 3.0349j - 0.20497k

quatTransposed = quat'

quatTransposed = 1x4 quaternion array
 0.53767 - 0.31877i - 3.5784j - 0.7254k 1.8339 + 1.3077i - 2.7694j + 0.063055k -2.2588 + 0.43359i + 1.3499j - 0.71474k 0.86217 - 0.34262i - 3.0349j + 0.20497k

Matrix Complex Conjugate Transpose

Create a matrix of quaternions and compute its complex conjugate transpose.

quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat = 2x2 quaternion array
 0.53767 - 2.2588i + 0.31877j - 0.43359k 3.5784 - 1.3499i + 0.7254j + 0.71474k
 1.8339 + 0.86217i - 1.3077j + 0.34262k 2.7694 + 3.0349i - 0.063055j - 0.20497k

quatTransposed = quat'

quatTransposed = 2x2 quaternion array
 0.53767 + 2.2588i - 0.31877j + 0.43359k 1.8339 - 0.86217i + 1.3077j - 0.34262k
 3.5784 + 1.3499i - 0.7254j - 0.71474k 2.7694 - 3.0349i + 0.063055j + 0.20497k

2 Methods

2-156

Input Arguments
quat — Quaternion to transpose
scalar | vector | matrix

Quaternion to transpose, specified as a vector or matrix or quaternions. The complex conjugate
transpose is defined for 1-D and 2-D arrays.
Data Types: quaternion

Output Arguments
quatTransposed — Conjugate transposed quaternion
scalar | vector | matrix

Conjugate transposed quaternion, returned as an N-by-M array, where quat was specified as an M-
by-N array.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
transpose, '

Objects
quaternion

Introduced in R2020b

 ctranspose, '

2-157

dist
Angular distance in radians

Syntax
distance = dist(quatA,quatB)

Description
distance = dist(quatA,quatB) returns the angular distance in radians between two
quaternions, quatA and quatB.

Examples

Calculate Quaternion Distance

Calculate the quaternion distance between a single quaternion and each element of a vector of
quaternions. Define the quaternions using Euler angles.

q = quaternion([0,0,0],'eulerd','zyx','frame')

q = quaternion
 1 + 0i + 0j + 0k

qArray = quaternion([0,45,0;0,90,0;0,180,0;0,-90,0;0,-45,0],'eulerd','zyx','frame')

qArray = 5x1 quaternion array
 0.92388 + 0i + 0.38268j + 0k
 0.70711 + 0i + 0.70711j + 0k
 6.1232e-17 + 0i + 1j + 0k
 0.70711 + 0i - 0.70711j + 0k
 0.92388 + 0i - 0.38268j + 0k

quaternionDistance = rad2deg(dist(q,qArray))

quaternionDistance = 5×1

 45.0000
 90.0000
 180.0000
 90.0000
 45.0000

If both arguments to dist are vectors, the quaternion distance is calculated between corresponding
elements. Calculate the quaternion distance between two quaternion vectors.

angles1 = [30,0,15; ...
 30,5,15; ...

2 Methods

2-158

 30,10,15; ...
 30,15,15];
angles2 = [30,6,15; ...
 31,11,15; ...
 30,16,14; ...
 30.5,21,15.5];

qVector1 = quaternion(angles1,'eulerd','zyx','frame');
qVector2 = quaternion(angles2,'eulerd','zyx','frame');

rad2deg(dist(qVector1,qVector2))

ans = 4×1

 6.0000
 6.0827
 6.0827
 6.0287

Note that a quaternion represents the same rotation as its negative. Calculate a quaternion and its
negative.

qPositive = quaternion([30,45,-60],'eulerd','zyx','frame')

qPositive = quaternion
 0.72332 - 0.53198i + 0.20056j + 0.3919k

qNegative = -qPositive

qNegative = quaternion
 -0.72332 + 0.53198i - 0.20056j - 0.3919k

Find the distance between the quaternion and its negative.

dist(qPositive,qNegative)

ans = 0

The components of a quaternion may look different from the components of its negative, but both
expressions represent the same rotation.

Input Arguments
quatA,quatB — Quaternions to calculate distance between
scalar | vector | matrix | multidimensional array

Quaternions to calculate distance between, specified as comma-separated quaternions or arrays of
quaternions. quatA and quatB must have compatible sizes:

• size(quatA) == size(quatB), or
• numel(quatA) == 1, or
• numel(quatB) == 1, or

 dist

2-159

• if [Adim1,…,AdimN] = size(quatA) and [Bdim1,…,BdimN] = size(quatB), then for i =
1:N, either Adimi==Bdimi or Adim==1 or Bdim==1.

If one of the quaternion arguments contains only one quaternion, then this function returns the
distances between that quaternion and every quaternion in the other argument.

Data Types: quaternion

Output Arguments
distance — Angular distance (radians)
scalar | vector | matrix | multidimensional array

Angular distance in radians, returned as an array. The dimensions are the maximum of the union of
size(quatA) and size(quatB).
Data Types: single | double

Algorithms
The dist function returns the angular distance between two quaternions.

A quaternion may be defined by an axis (ub,uc,ud) and angle of rotation θq:
q = cos θq 2 + sin θq 2 ubi + uc j + udk .

Given a quaternion in the form, q = a + bi + c j + dk, where a is the real part, you can solve for the
angle of q as θq = 2cos−1(a).

Consider two quaternions, p and q, and the product z = p * conjugate(q). As p approaches q, the angle
of z goes to 0, and z approaches the unit quaternion.

The angular distance between two quaternions can be expressed as θz = 2cos−1 real z .

Using the quaternion data type syntax, the angular distance is calculated as:

angularDistance = 2*acos(abs(parts(p*conj(q))));

2 Methods

2-160

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
parts | conj

Objects
quaternion

Introduced in R2020b

 dist

2-161

euler
Convert quaternion to Euler angles (radians)

Syntax
eulerAngles = euler(quat,rotationSequence,rotationType)

Description
eulerAngles = euler(quat,rotationSequence,rotationType) converts the quaternion,
quat, to an N-by-3 matrix of Euler angles.

Examples

Convert Quaternion to Euler Angles in Radians

Convert a quaternion frame rotation to Euler angles in radians using the 'ZYX' rotation sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesRandians = euler(quat,'ZYX','frame')

eulerAnglesRandians = 1×3

 0 0 1.5708

Input Arguments
quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array

Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.
Data Types: quaternion

rotationSequence — Rotation sequence
'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'XYZ' | 'XYX' | 'XZY' | 'XZX'

Rotation sequence of Euler representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you specify a
rotation sequence of 'YZX':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string

2 Methods

2-162

rotationType — Type of rotation
'point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point is static and
the frame moves. Point rotation and frame rotation define equivalent angular displacements but in
opposite directions.

Data Types: char | string

Output Arguments
eulerAngles — Euler angle representation (radians)
N-by-3 matrix

Euler angle representation in radians, returned as a N-by-3 matrix. N is the number of quaternions in
the quat argument.

For each row of eulerAngles, the first element corresponds to the first axis in the rotation
sequence, the second element corresponds to the second axis in the rotation sequence, and the third
element corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type of quat.
Data Types: single | double

 euler

2-163

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
eulerd | rotateframe | rotatepoint

Objects
quaternion

Introduced in R2020b

2 Methods

2-164

eulerd
Convert quaternion to Euler angles (degrees)

Syntax
eulerAngles = eulerd(quat,rotationSequence,rotationType)

Description
eulerAngles = eulerd(quat,rotationSequence,rotationType) converts the quaternion,
quat, to an N-by-3 matrix of Euler angles in degrees.

Examples

Convert Quaternion to Euler Angles in Degrees

Convert a quaternion frame rotation to Euler angles in degrees using the 'ZYX' rotation sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesDegrees = eulerd(quat,'ZYX','frame')

eulerAnglesDegrees = 1×3

 0 0 90.0000

Input Arguments
quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array

Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.
Data Types: quaternion

rotationSequence — Rotation sequence
'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'XYZ' | 'XYX' | 'XZY' | 'XZX'

Rotation sequence of Euler angle representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you specify a
rotation sequence of 'YZX':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string

 eulerd

2-165

rotationType — Type of rotation
'point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point is static and
the frame moves. Point rotation and frame rotation define equivalent angular displacements but in
opposite directions.

Data Types: char | string

Output Arguments
eulerAngles — Euler angle representation (degrees)
N-by-3 matrix

Euler angle representation in degrees, returned as a N-by-3 matrix. N is the number of quaternions in
the quat argument.

For each row of eulerAngles, the first column corresponds to the first axis in the rotation sequence,
the second column corresponds to the second axis in the rotation sequence, and the third column
corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type of quat.
Data Types: single | double

2 Methods

2-166

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
euler | rotateframe | rotatepoint

Objects
quaternion

Introduced in R2020b

 eulerd

2-167

exp
Exponential of quaternion array

Syntax
B = exp(A)

Description
B = exp(A) computes the exponential of the elements of the quaternion array A.

Examples

Exponential of Quaternion Array

Create a 4-by-1 quaternion array A.

A = quaternion(magic(4))

A = 4x1 quaternion array
 16 + 2i + 3j + 13k
 5 + 11i + 10j + 8k
 9 + 7i + 6j + 12k
 4 + 14i + 15j + 1k

Compute the exponential of A.

B = exp(A)

B = 4x1 quaternion array
 5.3525e+06 + 1.0516e+06i + 1.5774e+06j + 6.8352e+06k
 -57.359 - 89.189i - 81.081j - 64.865k
 -6799.1 + 2039.1i + 1747.8j + 3495.6k
 -6.66 + 36.931i + 39.569j + 2.6379k

Input Arguments
A — Input quaternion
scalar | vector | matrix | multidimensional array

Input quaternion, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
B — Result
scalar | vector | matrix | multidimensional array

2 Methods

2-168

Result of quaternion exponential, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Given a quaternion A = a + bi + c j + dk = a + v, the exponential is computed by

exp(A) = ea cos v + v
v sin v

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
.^,power | log

Objects
quaternion

Introduced in R2020b

 exp

2-169

ldivide, .\
Element-wise quaternion left division

Syntax
C = A.\B

Description
C = A.\B performs quaternion element-wise division by dividing each element of quaternion B by
the corresponding element of quaternion A.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A = 2x1 quaternion array
 1 + 2i + 3j + 4k
 5 + 6i + 7j + 8k

B = 2;
C = A.\B

C = 2x1 quaternion array
 0.066667 - 0.13333i - 0.2j - 0.26667k
 0.057471 - 0.068966i - 0.08046j - 0.091954k

Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion
array.

q1 = quaternion([1:4;2:5;4:7;5:8]);
A = reshape(q1,2,2)

A = 2x2 quaternion array
 1 + 2i + 3j + 4k 4 + 5i + 6j + 7k
 2 + 3i + 4j + 5k 5 + 6i + 7j + 8k

q2 = quaternion(magic(4));
B = reshape(q2,2,2)

2 Methods

2-170

B = 2x2 quaternion array
 16 + 2i + 3j + 13k 9 + 7i + 6j + 12k
 5 + 11i + 10j + 8k 4 + 14i + 15j + 1k

C = A.\B

C = 2x2 quaternion array
 2.7 - 1.9i - 0.9j - 1.7k 1.5159 - 0.37302i - 0.15079j - 0.02381k
 2.2778 + 0.46296i - 0.57407j + 0.092593k 1.2471 + 0.91379i - 0.33908j - 0.1092k

Input Arguments
A — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

B — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Division

Given a quaternion A = a1 + a2i + a3 j + a4k and a real scalar p,

C = p . \A =
a1
p +

a2
p i +

a3
p j +

a4
p k

 ldivide, .\

2-171

Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes, then

C = A . \B = A−1 . * B = con j(A)
norm(A)2

. * B

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
.*,times | conj | norm | ./,ldivide

Objects
quaternion

Introduced in R2020b

2 Methods

2-172

log
Natural logarithm of quaternion array

Syntax
B = log(A)

Description
B = log(A) computes the natural logarithm of the elements of the quaternion array A.

Examples

Logarithmic Values of Quaternion Array

Create a 3-by-1 quaternion array A.

A = quaternion(randn(3,4))

A = 3x1 quaternion array
 0.53767 + 0.86217i - 0.43359j + 2.7694k
 1.8339 + 0.31877i + 0.34262j - 1.3499k
 -2.2588 - 1.3077i + 3.5784j + 3.0349k

Compute the logarithmic values of A.

B = log(A)

B = 3x1 quaternion array
 1.0925 + 0.40848i - 0.20543j + 1.3121k
 0.8436 + 0.14767i + 0.15872j - 0.62533k
 1.6807 - 0.53829i + 1.473j + 1.2493k

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
B — Logarithm values
scalar | vector | matrix | multidimensional array

 log

2-173

Quaternion natural logarithm values, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Given a quaternion A = a + v = a + bi + c j + dk, the logarithm is computed by

log(A) = log A + v
v arccos a

A

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
exp | .^,power

Objects
quaternion

Introduced in R2020b

2 Methods

2-174

meanrot
Quaternion mean rotation

Syntax
quatAverage = meanrot(quat)
quatAverage = meanrot(quat,dim)
quatAverage = meanrot(___ ,nanflag)

Description
quatAverage = meanrot(quat) returns the average rotation of the elements of quat along the
first array dimension whose size not does equal 1.

• If quat is a vector, meanrot(quat) returns the average rotation of the elements.
• If quat is a matrix, meanrot(quat) returns a row vector containing the average rotation of each

column.
• If quat is a multidimensional array, then mearot(quat) operates along the first array dimension

whose size does not equal 1, treating the elements as vectors. This dimension becomes 1 while the
sizes of all other dimensions remain the same.

The meanrot function normalizes the input quaternions, quat, before calculating the mean.

quatAverage = meanrot(quat,dim) return the average rotation along dimension dim. For
example, if quat is a matrix, then meanrot(quat,2) is a column vector containing the mean of each
row.

quatAverage = meanrot(___ ,nanflag) specifies whether to include or omit NaN values from
the calculation for any of the previous syntaxes. meanrot(quat,'includenan') includes all NaN
values in the calculation while mean(quat,'omitnan') ignores them.

Examples

Quaternion Mean Rotation

Create a matrix of quaternions corresponding to three sets of Euler angles.

eulerAngles = [40 20 10; ...
 50 10 5; ...
 45 70 1];

quat = quaternion(eulerAngles,'eulerd','ZYX','frame');

Determine the average rotation represented by the quaternions. Convert the average rotation to
Euler angles in degrees for readability.

quatAverage = meanrot(quat)

 meanrot

2-175

quatAverage = quaternion
 0.88863 - 0.062598i + 0.27822j + 0.35918k

eulerAverage = eulerd(quatAverage,'ZYX','frame')

eulerAverage = 1×3

 45.7876 32.6452 6.0407

Average Out Rotational Noise

Use meanrot over a sequence of quaternions to average out additive noise.

Create a vector of 1e6 quaternions whose distance, as defined by the dist function, from
quaternion(1,0,0,0) is normally distributed. Plot the Euler angles corresponding to the noisy
quaternion vector.

nrows = 1e6;
ax = 2*rand(nrows,3) - 1;
ax = ax./sqrt(sum(ax.^2,2));
ang = 0.5*randn(size(ax,1),1);
q = quaternion(ax.*ang ,'rotvec');

noisyEulerAngles = eulerd(q,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(noisyEulerAngles(:,1))
title('Z-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,2)
plot(noisyEulerAngles(:,2))
title('Y-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,3)
plot(noisyEulerAngles(:,3))
title('X-Axis')
ylabel('Rotation (degrees)')
hold on

2 Methods

2-176

Use meanrot to determine the average quaternion given the vector of quaternions. Convert to Euler
angles and plot the results.

qAverage = meanrot(q);

qAverageInEulerAngles = eulerd(qAverage,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(ones(nrows,1)*qAverageInEulerAngles(:,1))
title('Z-Axis')

subplot(3,1,2)
plot(ones(nrows,1)*qAverageInEulerAngles(:,2))
title('Y-Axis')

subplot(3,1,3)
plot(ones(nrows,1)*qAverageInEulerAngles(:,3))
title('X-Axis')

 meanrot

2-177

The meanrot Algorithm and Limitations

The meanrot Algorithm

The meanrot function outputs a quaternion that minimizes the squared Frobenius norm of the
difference between rotation matrices. Consider two quaternions:

• q0 represents no rotation.
• q90 represents a 90 degree rotation about the x-axis.

q0 = quaternion([0 0 0],'eulerd','ZYX','frame');
q90 = quaternion([0 0 90],'eulerd','ZYX','frame');

Create a quaternion sweep, qSweep, that represents rotations from 0 to 180 degrees about the x-axis.

eulerSweep = (0:1:180)';
qSweep = quaternion([zeros(numel(eulerSweep),2),eulerSweep], ...
 'eulerd','ZYX','frame');

Convert q0, q90, and qSweep to rotation matrices. In a loop, calculate the metric to minimize for
each member of the quaternion sweep. Plot the results and return the value of the Euler sweep that
corresponds to the minimum of the metric.

r0 = rotmat(q0,'frame');
r90 = rotmat(q90,'frame');

2 Methods

2-178

rSweep = rotmat(qSweep,'frame');

metricToMinimize = zeros(size(rSweep,3),1);
for i = 1:numel(qSweep)
 metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
 norm((rSweep(:,:,i) - r90),'fro').^2;
end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 45

The minimum of the metric corresponds to the Euler angle sweep at 45 degrees. That is, meanrot
defines the average between quaterion([0 0 0],'ZYX','frame') and quaternion([0 0
90],'ZYX','frame') as quaternion([0 0 45],'ZYX','frame'). Call meanrot with q0 and
q90 to verify the same result.

eulerd(meanrot([q0,q90]),'ZYX','frame')

ans = 1×3

 meanrot

2-179

 0 0 45.0000

Limitations

The metric that meanrot uses to determine the mean rotation is not unique for quaternions
significantly far apart. Repeat the experiment above for quaternions that are separated by 180
degrees.

q180 = quaternion([0 0 180],'eulerd','ZYX','frame');
r180 = rotmat(q180,'frame');

for i = 1:numel(qSweep)
 metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
 norm((rSweep(:,:,i) - r180),'fro').^2;
end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 159

2 Methods

2-180

Quaternion means are usually calculated for rotations that are close to each other, which makes the
edge case shown in this example unlikely in real-world applications. To average two quaternions that
are significantly far apart, use the slerp function. Repeat the experiment using slerp and verify
that the quaternion mean returned is more intuitive for large distances.

qMean = slerp(q0,q180,0.5);
q0_q180 = eulerd(qMean,'ZYX','frame')

q0_q180 = 1×3

 0 0 90.0000

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the mean, specified as a scalar, vector, matrix, or multidimensional
array of quaternions.
Data Types: quaternion

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified, then the
default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(quatAverage,dim) is
1, while the sizes of all other dimensions remain the same.
Data Types: double | single

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' –– Include NaN values when computing the mean rotation, resulting in NaN.
• 'omitnan' –– Ignore all NaN values in the input.

Data Types: char | string

Output Arguments
quatAverage — Quaternion average rotation
scalar | vector | matrix | multidimensional array

Quaternion average rotation, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

 meanrot

2-181

Algorithms
meanrot determines a quaternion mean, q, according to [1]. q is the quaternion that minimizes the
squared Frobenius norm of the difference between rotation matrices:

q = arg
min

q ∈ S3 ∑i = 1

n
A q − A qi F

2

References
[1] Markley, F. Landis, Yang Chen, John Lucas Crassidis, and Yaakov Oshman. "Average Quaternions."

Journal of Guidance, Control, and Dynamics. Vol. 30, Issue 4, 2007, pp. 1193-1197.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | slerp

Objects
quaternion

Introduced in R2020b

2 Methods

2-182

minus, -
Quaternion subtraction

Syntax
C = A - B

Description
C = A - B subtracts quaternion B from quaternion A using quaternion subtraction. Either A or B
may be a real number, in which case subtraction is performed with the real part of the quaternion
argument.

Examples

Subtract a Quaternion from a Quaternion

Quaternion subtraction is defined as the subtraction of the corresponding parts of each quaternion.
Create two quaternions and perform subtraction.

Q1 = quaternion([1,0,-2,7]);
Q2 = quaternion([1,2,3,4]);

Q1minusQ2 = Q1 - Q2

Q1minusQ2 = quaternion
 0 - 2i - 5j + 3k

Subtract a Real Number from a Quaternion

Addition and subtraction of real numbers is defined for quaternions as acting on the real part of the
quaternion. Create a quaternion and then subtract 1 from the real part.

Q = quaternion([1,1,1,1])

Q = quaternion
 1 + 1i + 1j + 1k

Qminus1 = Q - 1

Qminus1 = quaternion
 0 + 1i + 1j + 1k

 minus, -

2-183

Input Arguments
A — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real numbers.
Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real numbers.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion subtraction, returned as a scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
-,uminus | .*,times | *,mtimes

Objects
quaternion

Introduced in R2020b

2 Methods

2-184

mtimes, *
Quaternion multiplication

Syntax
quatC = A*B

Description
quatC = A*B implements quaternion multiplication if either A or B is a quaternion. Either A or B
must be a scalar.

You can use quaternion multiplication to compose rotation operators:

• To compose a sequence of frame rotations, multiply the quaternions in the order of the desired
sequence of rotations. For example, to apply a p quaternion followed by a q quaternion, multiply in
the order pq. The rotation operator becomes pq ∗v pq , where v represents the object to rotate
specified in quaternion form. * represents conjugation.

• To compose a sequence of point rotations, multiply the quaternions in the reverse order of the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the reverse order, qp. The rotation operator becomes qp v qp ∗.

Examples

Multiply Quaternion Scalar and Quaternion Vector

Create a 4-by-1 column vector, A, and a scalar, b. Multiply A times b.

A = quaternion(randn(4,4))

A = 4x1 quaternion array
 0.53767 + 0.31877i + 3.5784j + 0.7254k
 1.8339 - 1.3077i + 2.7694j - 0.063055k
 -2.2588 - 0.43359i - 1.3499j + 0.71474k
 0.86217 + 0.34262i + 3.0349j - 0.20497k

b = quaternion(randn(1,4))

b = quaternion
 -0.12414 + 1.4897i + 1.409j + 1.4172k

C = A*b

C = 4x1 quaternion array
 -6.6117 + 4.8105i + 0.94224j - 4.2097k
 -2.0925 + 6.9079i + 3.9995j - 3.3614k
 1.8155 - 6.2313i - 1.336j - 1.89k
 -4.6033 + 5.8317i + 0.047161j - 2.791k

 mtimes, *

2-185

Input Arguments
A — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of real scalars.

If B is nonscalar, then A must be scalar.
Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of real scalars.

If A is nonscalar, then B must be scalar.
Data Types: quaternion | single | double

Output Arguments
quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a quaternion or array of quaternions.
Data Types: quaternion

Algorithms
Quaternion Multiplication by a Real Scalar

Given a quaternion

q = aq + bqi + cq j + dqk,

the product of q and a real scalar β is

βq = βaq + βbqi + βcq j + βdqk

Quaternion Multiplication by a Quaternion Scalar

The definition of the basis elements for quaternions,

i2 = j2 = k2 = ijk = − 1 ,

can be expanded to populate a table summarizing quaternion basis element multiplication:

 1 i j k
1 1 i j k
i i −1 k −j

2 Methods

2-186

j j −k −1 i
k k j −i −1

When reading the table, the rows are read first, for example: ij = k and ji = −k.

Given two quaternions, q = aq + bqi + cq j + dqk, and p = ap + bpi + cp j + dpk, the multiplication can be
expanded as:

z = pq = ap + bpi + cp j + dpk aq + bqi + cq j + dqk
= apaq + apbqi + apcq j + apdqk

+bpaqi + bpbqi2 + bpcqij + bpdqik

+cpaq j + cpbq ji + cpcq j2 + cpdq jk

+dpaqk + dpbqki + dpcqkj + dpdqk2

You can simplify the equation using the quaternion multiplication table:

z = pq = apaq + apbqi + apcq j + apdqk
+bpaqi− bpbq + bpcqk − bpdq j
+cpaq j− cpbqk − cpcq + cpdqi
+dpaqk + dpbq j− dpcqi− dpdq

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
.*,times

Objects
quaternion

Introduced in R2020b

 mtimes, *

2-187

norm
Quaternion norm

Syntax
N = norm(quat)

Description
N = norm(quat) returns the norm of the quaternion, quat.

Given a quaternion of the form Q = a + bi + c j + dk, the norm of the quaternion is defined as
norm(Q) = a2 + b2 + c2 + d2.

Examples

Calculate Quaternion Norm

Create a scalar quaternion and calculate its norm.

quat = quaternion(1,2,3,4);
norm(quat)

ans = 5.4772

The quaternion norm is defined as the square root of the sum of the quaternion parts squared.
Calculate the quaternion norm explicitly to verify the result of the norm function.

[a,b,c,d] = parts(quat);
sqrt(a^2+b^2+c^2+d^2)

ans = 5.4772

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the norm, specified as a scalar, vector, matrix, or multidimensional
array of quaternions.
Data Types: quaternion

Output Arguments
N — Quaternion norm
scalar | vector | matrix | multidimensional array

2 Methods

2-188

Quaternion norm. If the input quat is an array, the output is returned as an array the same size as
quat. Elements of the array are real numbers with the same data type as the underlying data type of
the quaternion, quat.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
normalize | parts | conj

Objects
quaternion

Introduced in R2020b

 norm

2-189

normalize
Quaternion normalization

Syntax
quatNormalized = normalize(quat)

Description
quatNormalized = normalize(quat) normalizes the quaternion.

Given a quaternion of the form Q = a + bi + c j + dk, the normalized quaternion is defined as
Q/ a2 + b2 + c2 + d2.

Examples

Normalize Elements of Quaternion Vector

Quaternions can represent rotations when normalized. You can use normalize to normalize a scalar,
elements of a matrix, or elements of a multi-dimensional array of quaternions. Create a column vector
of quaternions, then normalize them.

quatArray = quaternion([1,2,3,4; ...
 2,3,4,1; ...
 3,4,1,2]);
quatArrayNormalized = normalize(quatArray)

quatArrayNormalized = 3x1 quaternion array
 0.18257 + 0.36515i + 0.54772j + 0.7303k
 0.36515 + 0.54772i + 0.7303j + 0.18257k
 0.54772 + 0.7303i + 0.18257j + 0.36515k

Input Arguments
quat — Quaternion to normalize
scalar | vector | matrix | multidimensional array

Quaternion to normalize, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
quatNormalized — Normalized quaternion
scalar | vector | matrix | multidimensional array

2 Methods

2-190

Normalized quaternion, returned as a quaternion or array of quaternions the same size as quat.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
norm | .*,times | conj

Objects
quaternion

Introduced in R2020b

 normalize

2-191

ones
Create quaternion array with real parts set to one and imaginary parts set to zero

Syntax
quatOnes = ones('quaternion')
quatOnes = ones(n,'quaternion')
quatOnes = ones(sz,'quaternion')
quatOnes = ones(sz1,...,szN,'quaternion')

quatOnes = ones(___ ,'like',prototype,'quaternion')

Description
quatOnes = ones('quaternion') returns a scalar quaternion with the real part set to 1 and the
imaginary parts set to 0.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion one is defined as
Q = 1 + 0i + 0j + 0k.

quatOnes = ones(n,'quaternion') returns an n-by-n quaternion matrix with the real parts set
to 1 and the imaginary parts set to 0.

quatOnes = ones(sz,'quaternion') returns an array of quaternion ones where the size vector,
sz, defines size(qOnes).
Example: ones([1,4,2],'quaternion') returns a 1-by-4-by-2 array of quaternions with the real
parts set to 1 and the imaginary parts set to 0.

quatOnes = ones(sz1,...,szN,'quaternion') returns a sz1-by-...-by-szN array of ones where
sz1,…,szN indicates the size of each dimension.

quatOnes = ones(___ ,'like',prototype,'quaternion') specifies the underlying class of
the returned quaternion array to be the same as the underlying class of the quaternion prototype.

Examples

Quaternion Scalar One

Create a quaternion scalar one.

quatOnes = ones('quaternion')

quatOnes = quaternion
 1 + 0i + 0j + 0k

2 Methods

2-192

Square Matrix of Quaternion Ones

Create an n-by-n matrix of quaternion ones.

n = 3;
quatOnes = ones(n,'quaternion')

quatOnes = 3x3 quaternion array
 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k
 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k
 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k

Multidimensional Array of Quaternion Ones

Create a multidimensional array of quaternion ones by defining array dimensions in order. In this
example, you create a 3-by-1-by-2 array. You can specify dimensions using a row vector or comma-
separated integers. Specify the dimensions using a row vector and display the results:

dims = [3,1,2];
quatOnesSyntax1 = ones(dims,'quaternion')

quatOnesSyntax1 = 3x1x2 quaternion array
quatOnesSyntax1(:,:,1) =

 1 + 0i + 0j + 0k
 1 + 0i + 0j + 0k
 1 + 0i + 0j + 0k

quatOnesSyntax1(:,:,2) =

 1 + 0i + 0j + 0k
 1 + 0i + 0j + 0k
 1 + 0i + 0j + 0k

Specify the dimensions using comma-separated integers, and then verify the equivalency of the two
syntaxes:

quatOnesSyntax2 = ones(3,1,2,'quaternion');
isequal(quatOnesSyntax1,quatOnesSyntax2)

ans = logical
 1

Underlying Class of Quaternion Ones

A quaternion is a four-part hyper-complex number used in three-dimensional rotations and
orientations. You can specify the underlying data type of the parts as single or double. The default
is double.

 ones

2-193

Create a quaternion array of ones with the underlying data type set to single.

quatOnes = ones(2,'like',single(1),'quaternion')

quatOnes = 2x2 quaternion array
 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k
 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k

Verify the underlying class using the classUnderlying function.

classUnderlying(quatOnes)

ans =
'single'

Input Arguments
n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value.

If n is zero or negative, then quatOnes is returned as an empty matrix.
Example: ones(4,'quaternion') returns a 4-by-4 matrix of quaternions with the real parts set to
1 and the imaginary parts set to 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the size of the
corresponding dimension in quatOnes. If the size of any dimension is 0 or negative, then quatOnes
is returned as an empty array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.
Example: ones(2,'like',quat,'quaternion') returns a 2-by-2 matrix of quaternions with the
same underlying class as the prototype quaternion, quat.
Data Types: quaternion

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers. If the size of any dimension is 0 or
negative, then quatOnes is returned as an empty array.
Example: ones(2,3,'quaternion') returns a 2-by-3 matrix of quaternions with the real parts set
to 1 and the imaginary parts set to 0.

2 Methods

2-194

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatOnes — Quaternion ones
scalar | vector | matrix | multidimensional array

Quaternion ones, returned as a scalar, vector, matrix, or multidimensional array of quaternions.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion one is defined as
Q = 1 + 0i + 0j + 0k.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
zeros

Objects
quaternion

Introduced in R2020b

 ones

2-195

parts
Extract quaternion parts

Syntax
[a,b,c,d] = parts(quat)

Description
[a,b,c,d] = parts(quat) returns the parts of the quaternion array as arrays, each the same size
as quat.

Examples

Convert Quaternion to Matrix of Quaternion Parts

Convert a quaternion representation to parts using the parts function.

Create a two-element column vector of quaternions by specifying the parts.

quat = quaternion([1:4;5:8])

quat = 2x1 quaternion array
 1 + 2i + 3j + 4k
 5 + 6i + 7j + 8k

Recover the parts from the quaternion matrix using the parts function. The parts are returned as
separate output arguments, each the same size as the input 2-by-1 column vector of quaternions.

[qA,qB,qC,qD] = parts(quat)

qA = 2×1

 1
 5

qB = 2×1

 2
 6

qC = 2×1

 3
 7

qD = 2×1

2 Methods

2-196

 4
 8

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as a quaternion or array of quaternions.
Data Types: quaternion

Output Arguments
[a,b,c,d] — Quaternion parts
scalar | vector | matrix | multidimensional array

Quaternion parts, returned as four arrays: a, b, c, and d. Each part is the same size as quat.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
classUnderlying | compact

Objects
quaternion

Introduced in R2020b

 parts

2-197

power, .^
Element-wise quaternion power

Syntax
C = A.^b

Description
C = A.^b raises each element of A to the corresponding power in b.

Examples

Raise a Quaternion to a Real Scalar Power

Create a quaternion and raise it to a real scalar power.

A = quaternion(1,2,3,4)

A = quaternion
 1 + 2i + 3j + 4k

b = 3;
C = A.^b

C = quaternion
 -86 - 52i - 78j - 104k

Raise a Quaternion Array to Powers from a Multidimensional Array

Create a 2-by-1 quaternion array and raise it to powers from a 2-D array.

A = quaternion([1:4;5:8])

A = 2x1 quaternion array
 1 + 2i + 3j + 4k
 5 + 6i + 7j + 8k

b = [1 0 2; 3 2 1]

b = 2×3

 1 0 2
 3 2 1

C = A.^b

2 Methods

2-198

C = 2x3 quaternion array
 1 + 2i + 3j + 4k 1 + 0i + 0j + 0k -28 + 4i + 6j + 8k
 -2110 - 444i - 518j - 592k -124 + 60i + 70j + 80k 5 + 6i + 7j + 8k

Input Arguments
A — Base
scalar | vector | matrix | multidimensional array

Base, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion | single | double

b — Exponent
scalar | vector | matrix | multidimensional array

Exponent, specified as a real scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Each element of quaternion A raised to the corresponding power in b, returned as a scalar, vector,
matrix, or multidimensional array.
Data Types: quaternion

Algorithms
The polar representation of a quaternion A = a + bi + c j + dk is given by

A = A cosθ + u sinθ

where θ is the angle of rotation, and û is the unit quaternion.

Quaternion A raised by a real exponent b is given by

P = A . ^b = A b cos bθ + u sin bθ

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
log | exp

 power, .^

2-199

Objects
quaternion

Introduced in R2020b

2 Methods

2-200

prod
Product of a quaternion array

Syntax
quatProd = prod(quat)
quatProd = prod(quat,dim)

Description
quatProd = prod(quat) returns the quaternion product of the elements of the array.

quatProd = prod(quat,dim) calculates the quaternion product along dimension dim.

Examples

Product of Quaternions in Each Column

Create a 3-by-3 array whose elements correspond to their linear indices.

A = reshape(quaternion(randn(9,4)),3,3)

A = 3x3 quaternion array
 0.53767 + 2.7694i + 1.409j - 0.30344k 0.86217 + 0.7254i - 1.2075j + 0.8884k -0.43359 - 0.20497i + 0.48889j - 0.8095k
 1.8339 - 1.3499i + 1.4172j + 0.29387k 0.31877 - 0.063055i + 0.71724j - 1.1471k 0.34262 - 0.12414i + 1.0347j - 2.9443k
 -2.2588 + 3.0349i + 0.6715j - 0.78728k -1.3077 + 0.71474i + 1.6302j - 1.0689k 3.5784 + 1.4897i + 0.72689j + 1.4384k

Find the product of the quaternions in each column. The length of the first dimension is 1, and the
length of the second dimension matches size(A,2).

B = prod(A)

B = 1x3 quaternion array
 -19.837 - 9.1521i + 15.813j - 19.918k -5.4708 - 0.28535i + 3.077j - 1.2295k -10.69 - 8.5199i - 2.8801j - 0.65338k

Product of Specified Dimension of Quaternion Array

You can specify which dimension of a quaternion array to take the product of.

Create a 2-by-2-by-2 quaternion array.

A = reshape(quaternion(randn(8,4)),2,2,2);

Find the product of the elements in each page of the array. The length of the first dimension matches
size(A,1), the length of the second dimension matches size(A,2), and the length of the third
dimension is 1.

 prod

2-201

dim = 3;
B = prod(A,dim)

B = 2x2 quaternion array
 -2.4847 + 1.1659i - 0.37547j + 2.8068k 0.28786 - 0.29876i - 0.51231j - 4.2972k
 0.38986 - 3.6606i - 2.0474j - 6.047k -1.741 - 0.26782i + 5.4346j + 4.1452k

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Example: qProd = prod(quat) calculates the quaternion product along the first non-singleton
dimension of quat.
Data Types: quaternion

dim — Dimension
first non-singleton dimension (default) | positive integer

Dimension along which to calculate the quaternion product, specified as a positive integer. If dim is
not specified, prod operates along the first non-singleton dimension of quat.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatProd — Quaternion product
positive integer

Quaternion product, returned as quaternion array with one less non-singleton dimension than quat.

For example, if quat is a 2-by-2-by-5 array,

• prod(quat,1) returns a 1-by-2-by-5 array.
• prod(quat,2) returns a 2-by-1-by-5 array.
• prod(quat,3) returns a 2-by-2 array.

Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
mtimes | .*,times

2 Methods

2-202

Objects
quaternion

Introduced in R2020b

 prod

2-203

rdivide, ./
Element-wise quaternion right division

Syntax
C = A./B

Description
C = A./B performs quaternion element-wise division by dividing each element of quaternion A by
the corresponding element of quaternion B.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A = 2x1 quaternion array
 1 + 2i + 3j + 4k
 5 + 6i + 7j + 8k

B = 2;
C = A./B

C = 2x1 quaternion array
 0.5 + 1i + 1.5j + 2k
 2.5 + 3i + 3.5j + 4k

Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion
array.

q1 = quaternion(magic(4));
A = reshape(q1,2,2)

A = 2x2 quaternion array
 16 + 2i + 3j + 13k 9 + 7i + 6j + 12k
 5 + 11i + 10j + 8k 4 + 14i + 15j + 1k

q2 = quaternion([1:4;3:6;2:5;4:7]);
B = reshape(q2,2,2)

2 Methods

2-204

B = 2x2 quaternion array
 1 + 2i + 3j + 4k 2 + 3i + 4j + 5k
 3 + 4i + 5j + 6k 4 + 5i + 6j + 7k

C = A./B

C = 2x2 quaternion array
 2.7 - 0.1i - 2.1j - 1.7k 2.2778 + 0.092593i - 0.46296j - 0.57407k
 1.8256 - 0.081395i + 0.45349j - 0.24419k 1.4524 - 0.5i + 1.0238j - 0.2619k

Input Arguments
A — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

B — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Division

Given a quaternion A = a1 + a2i + a3 j + a4k and a real scalar p,

C = A . /p =
a1
p +

a2
p i +

a3
p j +

a4
p k

 rdivide, ./

2-205

Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes,

C = A . /B = A . * B−1 = A . * con j(B)
norm(B)2

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | ./,ldivide | norm | .*,times

Objects
quaternion

Introduced in R2020b

2 Methods

2-206

randrot
Uniformly distributed random rotations

Syntax
R = randrot
R = randrot(m)
R = randrot(m1,...,mN)
R = randrot([m1,...,mN])

Description
R = randrot returns a unit quaternion drawn from a uniform distribution of random rotations.

R = randrot(m) returns an m-by-m matrix of unit quaternions drawn from a uniform distribution of
random rotations.

R = randrot(m1,...,mN) returns an m1-by-...-by-mN array of random unit quaternions, where m1,
…, mN indicate the size of each dimension. For example, randrot(3,4) returns a 3-by-4 matrix of
random unit quaternions.

R = randrot([m1,...,mN]) returns an m1-by-...-by-mN array of random unit quaternions, where
m1,…, mN indicate the size of each dimension. For example, randrot([3,4]) returns a 3-by-4 matrix
of random unit quaternions.

Examples

Matrix of Random Rotations

Generate a 3-by-3 matrix of uniformly distributed random rotations.

r = randrot(3)

r = 3x3 quaternion array
 0.17446 + 0.59506i - 0.73295j + 0.27976k 0.69704 - 0.060589i + 0.68679j - 0.19695k 0.35191 + 0.74478i + 0.52322j - 0.21842k
 0.21908 - 0.89875i - 0.298j + 0.23548k -0.049744 + 0.59691i + 0.56459j + 0.56786k 0.17527 - 0.46955i + 0.52986j - 0.68414k
 0.6375 + 0.49338i - 0.24049j + 0.54068k 0.2979 - 0.53568i + 0.31819j + 0.72323k -0.30189 - 0.22864i - 0.83159j + 0.40626k

Create Uniform Distribution of Random Rotations

Create a vector of 500 random quaternions. Use rotatepoint to visualize the distribution of the
random rotations applied to point (1, 0, 0).

q = randrot(500,1);

pt = rotatepoint(q, [1 0 0]);

 randrot

2-207

figure
scatter3(pt(:,1), pt(:,2), pt(:,3))
axis equal

Input Arguments
m — Size of square matrix
integer

Size of square quaternion matrix, specified as an integer value. If m is 0 or negative, then R is
returned as an empty matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

m1,...,mN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values. If the size of any dimension is 0 or
negative, then R is returned as an empty array.
Example: randrot(2,3) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

[m1,...,mN] — Vector of size of each dimension
row vector of integer values

2 Methods

2-208

Vector of size of each dimension, specified as a row vector of two or more integer values. If the size of
any dimension is 0 or negative, then R is returned as an empty array.
Example: randrot([2,3]) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
R — Random quaternions
scalar | vector | matrix | multidimensional array

Random quaternions, returned as a quaternion or array of quaternions.
Data Types: quaternion

References
[1] Shoemake, K. "Uniform Random Rotations." Graphics Gems III (K. David, ed.). New York:

Academic Press, 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion

Introduced in R2020b

 randrot

2-209

rotateframe
Quaternion frame rotation

Syntax
rotationResult = rotateframe(quat,cartesianPoints)

Description
rotationResult = rotateframe(quat,cartesianPoints) rotates the frame of reference for
the Cartesian points using the quaternion, quat. The elements of the quaternion are normalized
before use in the rotation.

Examples

Rotate Frame Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in the order x, y,
and z. For convenient visualization, define the point on the x-y plane.

x = 0.5;
y = 0.5;
z = 0;
plot(x,y,'ko')
hold on
axis([-1 1 -1 1])

2 Methods

2-210

Create a quaternion vector specifying two separate rotations, one to rotate the frame 45 degrees and
another to rotate the point -90 degrees about the z-axis. Use rotateframe to perform the rotations.

quat = quaternion([0,0,pi/4; ...
 0,0,-pi/2],'euler','XYZ','frame');

rereferencedPoint = rotateframe(quat,[x,y,z])

rereferencedPoint = 2×3

 0.7071 -0.0000 0
 -0.5000 0.5000 0

Plot the rereferenced points.

plot(rereferencedPoint(1,1),rereferencedPoint(1,2),'bo')
plot(rereferencedPoint(2,1),rereferencedPoint(2,2),'go')

 rotateframe

2-211

Rereference Group of Points using Quaternion

Define two points in three-dimensional space. Define a quaternion to rereference the points by first
rotating the reference frame about the z-axis 30 degrees and then about the new y-axis 45 degrees.

a = [1,0,0];
b = [0,1,0];
quat = quaternion([30,45,0],'eulerd','ZYX','point');

Use rotateframe to reference both points using the quaternion rotation operator. Display the result.

rP = rotateframe(quat,[a;b])

rP = 2×3

 0.6124 -0.3536 0.7071
 0.5000 0.8660 -0.0000

Visualize the original orientation and the rotated orientation of the points. Draw lines from the origin
to each of the points for visualization purposes.

plot3(a(1),a(2),a(3),'bo');

hold on

2 Methods

2-212

grid on
axis([-1 1 -1 1 -1 1])
xlabel('x')
ylabel('y')
zlabel('z')

plot3(b(1),b(2),b(3),'ro');
plot3(rP(1,1),rP(1,2),rP(1,3),'bd')
plot3(rP(2,1),rP(2,2),rP(2,3),'rd')

plot3([0;rP(1,1)],[0;rP(1,2)],[0;rP(1,3)],'k')
plot3([0;rP(2,1)],[0;rP(2,2)],[0;rP(2,3)],'k')
plot3([0;a(1)],[0;a(2)],[0;a(3)],'k')
plot3([0;b(1)],[0;b(2)],[0;b(3)],'k')

Input Arguments
quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion or vector of quaternions.
Data Types: quaternion

cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix

 rotateframe

2-213

Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.
Data Types: single | double

Output Arguments
rotationResult — Re-referenced Cartesian points
vector | matrix

Cartesian points defined in reference to rotated reference frame, returned as a vector or matrix the
same size as cartesianPoints.

The data type of the re-referenced Cartesian points is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
Quaternion frame rotation re-references a point specified in R3 by rotating the original frame of
reference according to a specified quaternion:

Lq u = q*uq

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified as a
quaternion.

For convenience, the rotateframe function takes a point in R3 and returns a point in R3. Given a
function call with some arbitrary quaternion, q = a + bi + cj + dk, and arbitrary coordinate, [x,y,z],

point = [x,y,z];
rereferencedPoint = rotateframe(q,point)

the rotateframe function performs the following operations:

1 Converts point [x,y,z] to a quaternion:

uq = 0 + xi + y j + zk
2 Normalizes the quaternion, q:

qn = q
a2 + b2 + c2 + d2

3 Applies the rotation:

vq = q*uqq
4 Converts the quaternion output, vq, back to R3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Methods

2-214

See Also
Functions
rotatepoint

Objects
quaternion

Introduced in R2020b

 rotateframe

2-215

rotatepoint
Quaternion point rotation

Syntax
rotationResult = rotatepoint(quat,cartesianPoints)

Description
rotationResult = rotatepoint(quat,cartesianPoints) rotates the Cartesian points using
the quaternion, quat. The elements of the quaternion are normalized before use in the rotation.

Examples

Rotate Point Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in order x, y, z. For
convenient visualization, define the point on the x-y plane.

x = 0.5;
y = 0.5;
z = 0;

plot(x,y,'ko')
hold on
axis([-1 1 -1 1])

2 Methods

2-216

Create a quaternion vector specifying two separate rotations, one to rotate the point 45 and another
to rotate the point -90 degrees about the z-axis. Use rotatepoint to perform the rotation.

quat = quaternion([0,0,pi/4; ...
 0,0,-pi/2],'euler','XYZ','point');

rotatedPoint = rotatepoint(quat,[x,y,z])

rotatedPoint = 2×3

 -0.0000 0.7071 0
 0.5000 -0.5000 0

Plot the rotated points.

plot(rotatedPoint(1,1),rotatedPoint(1,2),'bo')
plot(rotatedPoint(2,1),rotatedPoint(2,2),'go')

 rotatepoint

2-217

Rotate Group of Points Using Quaternion

Define two points in three-dimensional space. Define a quaternion to rotate the point by first rotating
about the z-axis 30 degrees and then about the new y-axis 45 degrees.

a = [1,0,0];
b = [0,1,0];
quat = quaternion([30,45,0],'eulerd','ZYX','point');

Use rotatepoint to rotate both points using the quaternion rotation operator. Display the result.

rP = rotatepoint(quat,[a;b])

rP = 2×3

 0.6124 0.5000 -0.6124
 -0.3536 0.8660 0.3536

Visualize the original orientation and the rotated orientation of the points. Draw lines from the origin
to each of the points for visualization purposes.

plot3(a(1),a(2),a(3),'bo');

hold on

2 Methods

2-218

grid on
axis([-1 1 -1 1 -1 1])
xlabel('x')
ylabel('y')
zlabel('z')

plot3(b(1),b(2),b(3),'ro');
plot3(rP(1,1),rP(1,2),rP(1,3),'bd')
plot3(rP(2,1),rP(2,2),rP(2,3),'rd')

plot3([0;rP(1,1)],[0;rP(1,2)],[0;rP(1,3)],'k')
plot3([0;rP(2,1)],[0;rP(2,2)],[0;rP(2,3)],'k')
plot3([0;a(1)],[0;a(2)],[0;a(3)],'k')
plot3([0;b(1)],[0;b(2)],[0;b(3)],'k')

Input Arguments
quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion, row vector of quaternions, or
column vector of quaternions.
Data Types: quaternion

 rotatepoint

2-219

cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix

Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.
Data Types: single | double

Output Arguments
rotationResult — Repositioned Cartesian points
vector | matrix

Rotated Cartesian points defined using the quaternion rotation, returned as a vector or matrix the
same size as cartesianPoints.
Data Types: single | double

Algorithms
Quaternion point rotation rotates a point specified in R3 according to a specified quaternion:

Lq(u) = quq*

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified as a
quaternion.

For convenience, the rotatepoint function takes in a point in R3 and returns a point in R3. Given a
function call with some arbitrary quaternion, q = a + bi + cj + dk, and arbitrary coordinate, [x,y,z],
for example,

rereferencedPoint = rotatepoint(q,[x,y,z])

the rotatepoint function performs the following operations:

1 Converts point [x,y,z] to a quaternion:

uq = 0 + xi + y j + zk
2 Normalizes the quaternion, q:

qn = q
a2 + b2 + c2 + d2

3 Applies the rotation:

vq = quqq*
4 Converts the quaternion output, vq, back to R3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Methods

2-220

See Also
Functions
rotateframe

Objects
quaternion

Introduced in R2020b

 rotatepoint

2-221

rotmat
Convert quaternion to rotation matrix

Syntax
rotationMatrix = rotmat(quat,rotationType)

Description
rotationMatrix = rotmat(quat,rotationType) converts the quaternion, quat, to an
equivalent rotation matrix representation.

Examples

Convert Quaternion to Rotation Matrix for Point Rotation

Define a quaternion for use in point rotation.

theta = 45;
gamma = 30;
quat = quaternion([0,theta,gamma],'eulerd','ZYX','point')

quat = quaternion
 0.8924 + 0.23912i + 0.36964j + 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix = rotmat(quat,'point')

rotationMatrix = 3×3

 0.7071 -0.0000 0.7071
 0.3536 0.8660 -0.3536
 -0.6124 0.5000 0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the rotations
about the y- and x-axes. Multiply the rotation matrices and compare to the output of rotmat.

theta = 45;
gamma = 30;

ry = [cosd(theta) 0 sind(theta) ; ...
 0 1 0 ; ...
 -sind(theta) 0 cosd(theta)];

rx = [1 0 0 ; ...
 0 cosd(gamma) -sind(gamma) ; ...
 0 sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry

2 Methods

2-222

rotationMatrixVerification = 3×3

 0.7071 0 0.7071
 0.3536 0.8660 -0.3536
 -0.6124 0.5000 0.6124

Convert Quaternion to Rotation Matrix for Frame Rotation

Define a quaternion for use in frame rotation.

theta = 45;
gamma = 30;
quat = quaternion([0,theta,gamma],'eulerd','ZYX','frame')

quat = quaternion
 0.8924 + 0.23912i + 0.36964j - 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix = rotmat(quat,'frame')

rotationMatrix = 3×3

 0.7071 -0.0000 -0.7071
 0.3536 0.8660 0.3536
 0.6124 -0.5000 0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the rotations
about the y- and x-axes. Multiply the rotation matrices and compare to the output of rotmat.

theta = 45;
gamma = 30;

ry = [cosd(theta) 0 -sind(theta) ; ...
 0 1 0 ; ...
 sind(theta) 0 cosd(theta)];

rx = [1 0 0 ; ...
 0 cosd(gamma) sind(gamma) ; ...
 0 -sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry

rotationMatrixVerification = 3×3

 0.7071 0 -0.7071
 0.3536 0.8660 0.3536
 0.6124 -0.5000 0.6124

 rotmat

2-223

Convert Quaternion Vector to Rotation Matrices

Create a 3-by-1 normalized quaternion vector.

qVec = normalize(quaternion(randn(3,4)));

Convert the quaternion array to rotation matrices. The pages of rotmatArray correspond to the
linear index of qVec.

rotmatArray = rotmat(qVec,'frame');

Assume qVec and rotmatArray correspond to a sequence of rotations. Combine the quaternion
rotations into a single representation, then apply the quaternion rotation to arbitrarily initialized
Cartesian points.

loc = normalize(randn(1,3));
quat = prod(qVec);
rotateframe(quat,loc)

ans = 1×3

 0.9524 0.5297 0.9013

Combine the rotation matrices into a single representation, then apply the rotation matrix to the
same initial Cartesian points. Verify the quaternion rotation and rotation matrix result in the same
orientation.

totalRotMat = eye(3);
for i = 1:size(rotmatArray,3)
 totalRotMat = rotmatArray(:,:,i)*totalRotMat;
end
totalRotMat*loc'

ans = 3×1

 0.9524
 0.5297
 0.9013

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

rotationType — Type or rotation
'frame' | 'point'

Type of rotation represented by the rotationMatrix output, specified as 'frame' or 'point'.
Data Types: char | string

2 Methods

2-224

Output Arguments
rotationMatrix — Rotation matrix representation
3-by-3 matrix | 3-by-3-by-N multidimensional array

Rotation matrix representation, returned as a 3-by-3 matrix or 3-by-3-by-N multidimensional array.

• If quat is a scalar, rotationMatrix is returned as a 3-by-3 matrix.
• If quat is non-scalar, rotationMatrix is returned as a 3-by-3-by-N multidimensional array,

where rotationMatrix(:,:,i) is the rotation matrix corresponding to quat(i).

The data type of the rotation matrix is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
Given a quaternion of the form

q = a + bi + c j + dk ,

the equivalent rotation matrix for frame rotation is defined as

2a2− 1 + 2b2 2bc + 2ad 2bd− 2ac
2bc− 2ad 2a2− 1 + 2c2 2cd + 2ab

2bd + 2ac 2cd− 2ab 2a2− 1 + 2d2

.

The equivalent rotation matrix for point rotation is the transpose of the frame rotation matrix:

2a2− 1 + 2b2 2bc− 2ad 2bd + 2ac
2bc + 2ad 2a2− 1 + 2c2 2cd− 2ab

2bd− 2ac 2cd + 2ab 2a2− 1 + 2d2

.

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
rotvec | rotvecd | euler | eulerd

Objects
quaternion

 rotmat

2-225

Introduced in R2020b

2 Methods

2-226

rotvec
Convert quaternion to rotation vector (radians)

Syntax
rotationVector = rotvec(quat)

Description
rotationVector = rotvec(quat) converts the quaternion array, quat, to an N-by-3 matrix of
equivalent rotation vectors in radians. The elements of quat are normalized before conversion.

Examples

Convert Quaternion to Rotation Vector in Radians

Convert a random quaternion scalar to a rotation vector in radians

quat = quaternion(randn(1,4));
rotvec(quat)

ans = 1×3

 1.6866 -2.0774 0.7929

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar quaternion, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
rotationVector — Rotation vector (radians)
N-by-3 matrix

Rotation vector representation, returned as an N-by-3 matrix of rotations vectors, where each row
represents the [X Y Z] angles of the rotation vectors in radians. The ith row of rotationVector
corresponds to the element quat(i).

The data type of the rotation vector is the same as the underlying data type of quat.
Data Types: single | double

 rotvec

2-227

Algorithms
All rotations in 3-D can be represented by a three-element axis of rotation and a rotation angle, for a
total of four elements. If the rotation axis is constrained to be unit length, the rotation angle can be
distributed over the vector elements to reduce the representation to three elements.

Recall that a quaternion can be represented in axis-angle form

q = cos θ 2 + sin θ 2 xi+y j + zk ,

where θ is the angle of rotation and [x,y,z] represent the axis of rotation.

Given a quaternion of the form

q = a + bi + c j + dk ,

you can solve for the rotation angle using the axis-angle form of quaternions:

θ = 2cos−1 a .

Assuming a normalized axis, you can rewrite the quaternion as a rotation vector without loss of
information by distributing θ over the parts b, c, and d. The rotation vector representation of q is

qrv = θ
sin θ 2

[b, c, d] .

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
rotvecd | euler | eulerd

Objects
quaternion

Introduced in R2020b

2 Methods

2-228

rotvecd
Convert quaternion to rotation vector (degrees)

Syntax
rotationVector = rotvecd(quat)

Description
rotationVector = rotvecd(quat) converts the quaternion array, quat, to an N-by-3 matrix of
equivalent rotation vectors in degrees. The elements of quat are normalized before conversion.

Examples

Convert Quaternion to Rotation Vector in Degrees

Convert a random quaternion scalar to a rotation vector in degrees.

quat = quaternion(randn(1,4));
rotvecd(quat)

ans = 1×3

 96.6345 -119.0274 45.4312

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Data Types: quaternion

Output Arguments
rotationVector — Rotation vector (degrees)
N-by-3 matrix

Rotation vector representation, returned as an N-by-3 matrix of rotation vectors, where each row
represents the [x y z] angles of the rotation vectors in degrees. The ith row of rotationVector
corresponds to the element quat(i).

The data type of the rotation vector is the same as the underlying data type of quat.
Data Types: single | double

 rotvecd

2-229

Algorithms
All rotations in 3-D can be represented by four elements: a three-element axis of rotation and a
rotation angle. If the rotation axis is constrained to be unit length, the rotation angle can be
distributed over the vector elements to reduce the representation to three elements.

Recall that a quaternion can be represented in axis-angle form

q = cos θ 2 + sin θ 2 xi+y j + zk ,

where θ is the angle of rotation in degrees, and [x,y,z] represent the axis of rotation.

Given a quaternion of the form

q = a + bi + c j + dk ,

you can solve for the rotation angle using the axis-angle form of quaternions:

θ = 2cos−1 a .

Assuming a normalized axis, you can rewrite the quaternion as a rotation vector without loss of
information by distributing θ over the parts b, c, and d. The rotation vector representation of q is

qrv = θ
sin θ 2

[b, c, d] .

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
rotvec | euler | eulerd

Objects
quaternion

Introduced in R2020b

2 Methods

2-230

slerp
Spherical linear interpolation

Syntax
q0 = slerp(q1,q2,T)

Description
q0 = slerp(q1,q2,T) spherically interpolates between q1 and q2 by the interpolation coefficient
T. The function always chooses the shorter interpolation path between q1 and q2.

Examples

Interpolate Between Two Quaternions

Create two quaternions with the following interpretation:

1 a = 45 degree rotation around the z-axis
2 c = -45 degree rotation around the z-axis

a = quaternion([45,0,0],'eulerd','ZYX','frame');
c = quaternion([-45,0,0],'eulerd','ZYX','frame');

Call slerp with the quaternions a and c and specify an interpolation coefficient of 0.5.

interpolationCoefficient = 0.5;

b = slerp(a,c,interpolationCoefficient);

The output of slerp, b, represents an average rotation of a and c. To verify, convert b to Euler angles
in degrees.

averageRotation = eulerd(b,'ZYX','frame')

averageRotation = 1×3

 0 0 0

The interpolation coefficient is specified as a normalized value between 0 and 1, inclusive. An
interpolation coefficient of 0 corresponds to the a quaternion, and an interpolation coefficient of 1
corresponds to the c quaternion. Call slerp with coefficients 0 and 1 to confirm.

b = slerp(a,c,[0,1]);
eulerd(b,'ZYX','frame')

ans = 2×3

 45.0000 0 0

 slerp

2-231

 -45.0000 0 0

You can create smooth paths between quaternions by specifying arrays of equally spaced
interpolation coefficients.

path = 0:0.1:1;

interpolatedQuaternions = slerp(a,c,path);

For quaternions that represent rotation only about a single axis, specifying interpolation coefficients
as equally spaced results in quaternions equally spaced in Euler angles. Convert
interpolatedQuaternions to Euler angles and verify that the difference between the angles in
the path is constant.

k = eulerd(interpolatedQuaternions,'ZYX','frame');
abc = abs(diff(k))

abc = 10×3

 9.0000 0 0
 9.0000 0 0
 9.0000 0 0
 9.0000 0 0
 9.0000 0 0
 9.0000 0 0
 9.0000 0 0
 9.0000 0 0
 9.0000 0 0
 9.0000 0 0

Alternatively, you can use the dist function to verify that the distance between the interpolated
quaternions is consistent. The dist function returns angular distance in radians; convert to degrees
for easy comparison.

def = rad2deg(dist(interpolatedQuaternions(2:end),interpolatedQuaternions(1:end-1)))

def = 1×10

 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000

SLERP Minimizes Great Circle Path

The SLERP algorithm interpolates along a great circle path connecting two quaternions. This
example shows how the SLERP algorithm minimizes the great circle path.

Define three quaternions:

1 q0 - quaternion indicating no rotation from the global frame
2 q179 - quaternion indicating a 179 degree rotation about the z-axis
3 q180 - quaternion indicating a 180 degree rotation about the z-axis

2 Methods

2-232

4 q181 - quaternion indicating a 181 degree rotation about the z-axis

q0 = ones(1,'quaternion');

q179 = quaternion([179,0,0],'eulerd','ZYX','frame');

q180 = quaternion([180,0,0],'eulerd','ZYX','frame');

q181 = quaternion([181,0,0],'eulerd','ZYX','frame');

Use slerp to interpolate between q0 and the three quaternion rotations. Specify that the paths are
traveled in 10 steps.

T = linspace(0,1,10);

q179path = slerp(q0,q179,T);
q180path = slerp(q0,q180,T);
q181path = slerp(q0,q181,T);

Plot each path in terms of Euler angles in degrees.

q179pathEuler = eulerd(q179path,'ZYX','frame');
q180pathEuler = eulerd(q180path,'ZYX','frame');
q181pathEuler = eulerd(q181path,'ZYX','frame');

plot(T,q179pathEuler(:,1),'bo', ...
 T,q180pathEuler(:,1),'r*', ...
 T,q181pathEuler(:,1),'gd');
legend('Path to 179 degrees', ...
 'Path to 180 degrees', ...
 'Path to 181 degrees')
xlabel('Interpolation Coefficient')
ylabel('Z-Axis Rotation (Degrees)')

 slerp

2-233

The path between q0 and q179 is clockwise to minimize the great circle distance. The path between
q0 and q181 is counterclockwise to minimize the great circle distance. The path between q0 and
q180 can be either clockwise or counterclockwise, depending on numerical rounding.

Show Interpolated Quaternions on Sphere

Create two quaternions.

q1 = quaternion([75,-20,-10],'eulerd','ZYX','frame');
q2 = quaternion([-45,20,30],'eulerd','ZYX','frame');

Define the interpolation coefficient.

T = 0:0.01:1;

Obtain the interpolated quaternions.

quats = slerp(q1,q2,T);

Obtain the corresponding rotate points.

pts = rotatepoint(quats,[1 0 0]);

Show the interpolated quaternions on a unit sphere.

figure
[X,Y,Z] = sphere;

2 Methods

2-234

surf(X,Y,Z,'FaceColor',[0.57 0.57 0.57])
hold on;

scatter3(pts(:,1),pts(:,2),pts(:,3))
view([69.23 36.60])
axis equal

Note that the interpolated quaternions follow the shorter path from q1 to q2.

Input Arguments
q1 — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to interpolate, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of them is 1.
Data Types: quaternion

q2 — Quaternion
scalar | vector | matrix | multidimensional array

 slerp

2-235

Quaternion to interpolate, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of the dimension sizes is 1.
Data Types: quaternion

T — Interpolation coefficient
scalar | vector | matrix | multidimensional array

Interpolation coefficient, specified as a scalar, vector, matrix, or multidimensional array of numbers
with each element in the range [0,1].

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of the dimension sizes is 1.
Data Types: single | double

Output Arguments
q0 — Interpolated quaternion
scalar | vector | matrix | multidimensional array

Interpolated quaternion, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion spherical linear interpolation (SLERP) is an extension of linear interpolation along a
plane to spherical interpolation in three dimensions. The algorithm was first proposed in [1]. Given
two quaternions, q1 and q2, SLERP interpolates a new quaternion, q0, along the great circle that
connects q1 and q2. The interpolation coefficient, T, determines how close the output quaternion is to
either q1 and q2.

The SLERP algorithm can be described in terms of sinusoids:

q0 = sin (1− T)θ
sin θ q1 + sin Tθ

sin θ q2

where q1 and q2 are normalized quaternions, and θ is half the angular distance between q1 and q2.

References
[1] Shoemake, Ken. "Animating Rotation with Quaternion Curves." ACM SIGGRAPH Computer

Graphics Vol. 19, Issue 3, 1985, pp. 345–354.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Methods

2-236

See Also
Functions
dist | meanrot

Objects
quaternion

Introduced in R2020b

 slerp

2-237

times, .*
Element-wise quaternion multiplication

Syntax
quatC = A.*B

Description
quatC = A.*B returns the element-by-element quaternion multiplication of quaternion arrays.

You can use quaternion multiplication to compose rotation operators:

• To compose a sequence of frame rotations, multiply the quaternions in the same order as the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the order pq. The rotation operator becomes pq ∗v pq , where v represents the object
to rotate in quaternion form. * represents conjugation.

• To compose a sequence of point rotations, multiply the quaternions in the reverse order of the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the reverse order, qp. The rotation operator becomes qp v qp ∗.

Examples

Multiply Two Quaternion Vectors

Create two vectors, A and B, and multiply them element by element.

A = quaternion([1:4;5:8]);
B = A;
C = A.*B

C = 2x1 quaternion array
 -28 + 4i + 6j + 8k
 -124 + 60i + 70j + 80k

Multiply Two Quaternion Arrays

Create two 3-by-3 arrays, A and B, and multiply them element by element.

A = reshape(quaternion(randn(9,4)),3,3);
B = reshape(quaternion(randn(9,4)),3,3);
C = A.*B

C = 3x3 quaternion array
 0.60169 + 2.4332i - 2.5844j + 0.51646k -0.49513 + 1.1722i + 4.4401j - 1.217k 2.3126 + 0.16856i + 1.0474j - 1.0921k
 -4.2329 + 2.4547i + 3.7768j + 0.77484k -0.65232 - 0.43112i - 1.4645j - 0.90073k -1.8897 - 0.99593i + 3.8331j + 0.12013k

2 Methods

2-238

 -4.4159 + 2.1926i + 1.9037j - 4.0303k -2.0232 + 0.4205i - 0.17288j + 3.8529k -2.9137 - 5.5239i - 1.3676j + 3.0654k

Note that quaternion multiplication is not commutative:

isequal(C,B.*A)

ans = logical
 0

Multiply Quaternion Row and Column Vectors

Create a row vector a and a column vector b, then multiply them. The 1-by-3 row vector and 4-by-1
column vector combine to produce a 4-by-3 matrix with all combinations of elements multiplied.

a = [zeros('quaternion'),ones('quaternion'),quaternion(randn(1,4))]

a = 1x3 quaternion array
 0 + 0i + 0j + 0k 1 + 0i + 0j + 0k 0.53767 + 1.8339i - 2.2588j + 0.86217k

b = quaternion(randn(4,4))

b = 4x1 quaternion array
 0.31877 + 3.5784i + 0.7254j - 0.12414k
 -1.3077 + 2.7694i - 0.063055j + 1.4897k
 -0.43359 - 1.3499i + 0.71474j + 1.409k
 0.34262 + 3.0349i - 0.20497j + 1.4172k

a.*b

ans = 4x3 quaternion array
 0 + 0i + 0j + 0k 0.31877 + 3.5784i + 0.7254j - 0.12414k -4.6454 + 2.1636i + 2.9828j + 9.6214k
 0 + 0i + 0j + 0k -1.3077 + 2.7694i - 0.063055j + 1.4897k -7.2087 - 4.2197i + 2.5758j + 5.8136k
 0 + 0i + 0j + 0k -0.43359 - 1.3499i + 0.71474j + 1.409k 2.6421 - 5.32i - 2.3841j - 1.3547k
 0 + 0i + 0j + 0k 0.34262 + 3.0349i - 0.20497j + 1.4172k -7.0663 - 0.76439i - 0.86648j + 7.5369k

Input Arguments
A — Array to multiply
scalar | vector | matrix | multidimensional array

Array to multiply, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of them is 1.
Data Types: quaternion | single | double

 times, .*

2-239

B — Array to multiply
scalar | vector | matrix | multidimensional array

Array to multiply, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of them is 1.
Data Types: quaternion | single | double

Output Arguments
quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Multiplication by a Real Scalar

Given a quaternion,

q = aq + bqi + cq j + dqk,

the product of q and a real scalar β is

βq = βaq + βbqi + βcq j + βdqk

Quaternion Multiplication by a Quaternion Scalar

The definition of the basis elements for quaternions,

i2 = j2 = k2 = ijk = − 1 ,

can be expanded to populate a table summarizing quaternion basis element multiplication:

 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

When reading the table, the rows are read first, for example: ij = k and ji = −k.

Given two quaternions, q = aq + bqi + cq j + dqk, and p = ap + bpi + cp j + dpk, the multiplication can be
expanded as:

2 Methods

2-240

z = pq = ap + bpi + cp j + dpk aq + bqi + cq j + dqk
= apaq + apbqi + apcq j + apdqk

+bpaqi + bpbqi2 + bpcqij + bpdqik

+cpaq j + cpbq ji + cpcq j2 + cpdq jk

+dpaqk + dpbqki + dpcqkj + dpdqk2

You can simplify the equation using the quaternion multiplication table.

z = pq = apaq + apbqi + apcq j + apdqk
+bpaqi− bpbq + bpcqk − bpdq j
+cpaq j− cpbqk − cpcq + cpdqi
+dpaqk + dpbq j− dpcqi− dpdq

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
prod | mtimes, *

Objects
quaternion

Introduced in R2020b

 times, .*

2-241

transpose, .'
Transpose a quaternion array

Syntax
Y = quat.'

Description
Y = quat.' returns the non-conjugate transpose of the quaternion array, quat.

Examples

Vector Transpose

Create a vector of quaternions and compute its nonconjugate transpose.

quat = quaternion(randn(4,4))

quat = 4x1 quaternion array
 0.53767 + 0.31877i + 3.5784j + 0.7254k
 1.8339 - 1.3077i + 2.7694j - 0.063055k
 -2.2588 - 0.43359i - 1.3499j + 0.71474k
 0.86217 + 0.34262i + 3.0349j - 0.20497k

quatTransposed = quat.'

quatTransposed = 1x4 quaternion array
 0.53767 + 0.31877i + 3.5784j + 0.7254k 1.8339 - 1.3077i + 2.7694j - 0.063055k -2.2588 - 0.43359i - 1.3499j + 0.71474k 0.86217 + 0.34262i + 3.0349j - 0.20497k

Matrix Transpose

Create a matrix of quaternions and compute its nonconjugate transpose.

quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat = 2x2 quaternion array
 0.53767 - 2.2588i + 0.31877j - 0.43359k 3.5784 - 1.3499i + 0.7254j + 0.71474k
 1.8339 + 0.86217i - 1.3077j + 0.34262k 2.7694 + 3.0349i - 0.063055j - 0.20497k

quatTransposed = quat.'

quatTransposed = 2x2 quaternion array
 0.53767 - 2.2588i + 0.31877j - 0.43359k 1.8339 + 0.86217i - 1.3077j + 0.34262k
 3.5784 - 1.3499i + 0.7254j + 0.71474k 2.7694 + 3.0349i - 0.063055j - 0.20497k

2 Methods

2-242

Input Arguments
quat — Quaternion array to transpose
vector | matrix

Quaternion array to transpose, specified as a vector or matrix of quaternions. transpose is defined
for 1-D and 2-D arrays. For higher-order arrays, use permute.
Data Types: quaternion

Output Arguments
Y — Transposed quaternion array
vector | matrix

Transposed quaternion array, returned as an N-by-M array, where quat was specified as an M-by-N
array.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ctranspose, '

Objects
quaternion

Introduced in R2020b

 transpose, .'

2-243

uminus, -
Quaternion unary minus

Syntax
mQuat = -quat

Description
mQuat = -quat negates the elements of quat and stores the result in mQuat.

Examples

Negate Elements of Quaternion Matrix

Unary minus negates each part of a the quaternion. Create a 2-by-2 matrix, Q.

Q = quaternion(randn(2),randn(2),randn(2),randn(2))

Q = 2x2 quaternion array
 0.53767 + 0.31877i + 3.5784j + 0.7254k -2.2588 - 0.43359i - 1.3499j + 0.71474k
 1.8339 - 1.3077i + 2.7694j - 0.063055k 0.86217 + 0.34262i + 3.0349j - 0.20497k

Negate the parts of each quaternion in Q.

R = -Q

R = 2x2 quaternion array
 -0.53767 - 0.31877i - 3.5784j - 0.7254k 2.2588 + 0.43359i + 1.3499j - 0.71474k
 -1.8339 + 1.3077i - 2.7694j + 0.063055k -0.86217 - 0.34262i - 3.0349j + 0.20497k

Input Arguments
quat — Quaternion array
scalar | vector | matrix | multidimensional array

Quaternion array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
mQuat — Negated quaternion array
scalar | vector | matrix | multidimensional array

Negated quaternion array, returned as the same size as quat.
Data Types: quaternion

2 Methods

2-244

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
minus, -

Objects
quaternion

Introduced in R2020b

 uminus, -

2-245

zeros
Create quaternion array with all parts set to zero

Syntax
quatZeros = zeros('quaternion')
quatZeros = zeros(n,'quaternion')
quatZeros = zeros(sz,'quaternion')
quatZeros = zeros(sz1,...,szN,'quaternion')

quatZeros = zeros(___ ,'like',prototype,'quaternion')

Description
quatZeros = zeros('quaternion') returns a scalar quaternion with all parts set to zero.

quatZeros = zeros(n,'quaternion') returns an n-by-n matrix of quaternions.

quatZeros = zeros(sz,'quaternion') returns an array of quaternions where the size vector,
sz, defines size(quatZeros).

quatZeros = zeros(sz1,...,szN,'quaternion') returns a sz1-by-...-by-szN array of
quaternions where sz1,…,szN indicates the size of each dimension.

quatZeros = zeros(___ ,'like',prototype,'quaternion') specifies the underlying class of
the returned quaternion array to be the same as the underlying class of the quaternion prototype.

Examples

Quaternion Scalar Zero

Create a quaternion scalar zero.

quatZeros = zeros('quaternion')

quatZeros = quaternion
 0 + 0i + 0j + 0k

Square Matrix of Quaternions

Create an n-by-n array of quaternion zeros.

n = 3;
quatZeros = zeros(n,'quaternion')

quatZeros = 3x3 quaternion array
 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k

2 Methods

2-246

 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k
 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k

Multidimensional Array of Quaternion Zeros

Create a multidimensional array of quaternion zeros by defining array dimensions in order. In this
example, you create a 3-by-1-by-2 array. You can specify dimensions using a row vector or comma-
separated integers.

Specify the dimensions using a row vector and display the results:

dims = [3,1,2];
quatZerosSyntax1 = zeros(dims,'quaternion')

quatZerosSyntax1 = 3x1x2 quaternion array
quatZerosSyntax1(:,:,1) =

 0 + 0i + 0j + 0k
 0 + 0i + 0j + 0k
 0 + 0i + 0j + 0k

quatZerosSyntax1(:,:,2) =

 0 + 0i + 0j + 0k
 0 + 0i + 0j + 0k
 0 + 0i + 0j + 0k

Specify the dimensions using comma-separated integers, and then verify the equivalence of the two
syntaxes:

quatZerosSyntax2 = zeros(3,1,2,'quaternion');
isequal(quatZerosSyntax1,quatZerosSyntax2)

ans = logical
 1

Underlying Class of Quaternion Zeros

A quaternion is a four-part hyper-complex number used in three-dimensional representations. You can
specify the underlying data type of the parts as single or double. The default is double.

Create a quaternion array of zeros with the underlying data type set to single.

quatZeros = zeros(2,'like',single(1),'quaternion')

quatZeros = 2x2 quaternion array
 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k
 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k

 zeros

2-247

Verify the underlying class using the classUnderlying function.

classUnderlying(quatZeros)

ans =
'single'

Input Arguments
n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value. If n is 0 or negative, then quatZeros
is returned as an empty matrix.
Example: zeros(4,'quaternion') returns a 4-by-4 matrix of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the size of the
corresponding dimension in quatZeros. If the size of any dimension is 0 or negative, then
quatZeros is returned as an empty array.
Example: zeros([1,4,2],'quaternion') returns a 1-by-4-by-2 array of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.
Example: zeros(2,'like',quat,'quaternion') returns a 2-by-2 matrix of quaternions with the
same underlying class as the prototype quaternion, quat.
Data Types: quaternion

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers.

• If the size of any dimension is 0, then quatZeros is returned as an empty array.
• If the size of any dimension is negative, then it is treated as 0.

Example: zeros(2,3,'quaternion') returns a 2-by-3 matrix of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatZeros — Quaternion zeros
scalar | vector | matrix | multidimensional array

2 Methods

2-248

Quaternion zeros, returned as a quaternion or array of quaternions.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion zero is defined as
Q = 0 + 0i + 0j + 0k.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ones

Objects
quaternion

Introduced in R2020b

 zeros

2-249

open
Open the Unreal Editor

Syntax
[status,result]=open(sim3dEditorObj)

Description
[status,result]=open(sim3dEditorObj) opens the Unreal Engine project in the Unreal Editor.

To develop scenes with the Unreal Editor and co-simulate with Simulink, you need the UAV Toolbox
Interface for Unreal Engine Projects support package. The support package contains an Unreal
Engine project that allows you to customize the UAV Toolbox scenes. For information about the
support package, see “Customize Unreal Engine Scenes for UAVs”.

Input Arguments
sim3dEditorObj — sim3d.Editor object
sim3d.Editor object

sim3d.Editor object for the Unreal Engine project.

Output Arguments
status — Command exit status
0 | nonzero integer

Command exit status, returned as either 0 or a nonzero integer. When the command is successful,
status is 0. Otherwise, status is a nonzero integer.

• If command includes the ampersand character (&), then status is the exit status when command
starts

• If command does not include the ampersand character (&), then status is the exit status upon
command completion.

result — Output of operating system command
character vector

Output of the operating system command, returned as a character vector. The system shell might not
properly represent non-Unicode® characters.

See Also
sim3d.Editor

2 Methods

2-250

https://www.mathworks.com/matlabcentral/fileexchange/80275-uav-toolbox-interface-for-unreal-engine-projects
https://www.mathworks.com/matlabcentral/fileexchange/80275-uav-toolbox-interface-for-unreal-engine-projects

getGraph
Graph object representing tree structure

Syntax
g = getGraph(frames)
g = getGraph(frames,timestamp)

Description
g = getGraph(frames) returns a MATLAB graph object showing the child-parent relationships
between frames at the last timestamp in the frames transformTree object.

g = getGraph(frames,timestamp) returns a MATLAB graph object showing the child-parent
relationships between frames at the specified timestamp.

Input Arguments
frames — Transform tree defining the child-parent frame relationship at given timestamps
transformTree object

Transform tree defining the child-parent frame relationship at given timestamps, specified as a
transformTree object.

timestamp — Time for querying the frames
scalar in seconds

Time for querying the frames, specified as a scalar in seconds.

Output Arguments
g — MATLAB graph
graph object

MATLAB graph, specified as a graph object. This graph reflects the parent-child relationship of the
transforms defined in the transform tree object, frames.

See Also
Objects
transformTree | fixedwing | multirotor | uavDubinsPathSegment

Functions
getTransform | info | removeTransform | show | updateTransform

Introduced in R2020b

 getGraph

2-251

getTransform
Get relative transform between frames

Syntax
tform = getTransform(frames,targetframe,sourceframe)
tform = getTransform(frames,targetframe,sourceframe,timestamp)

Description
tform = getTransform(frames,targetframe,sourceframe) returns the relative transforms
that convert points in the sourceFrame coordinate frame to the targetFrame. By default, this
function uses the last timestamp for both frames specified in frames.

tform = getTransform(frames,targetframe,sourceframe,timestamp) returns the relative
transforms at the given timestamp. If the given time is not specified in the transform tree, frames,
the function performs interpolation using a constant velocity assumption for linear motion, and
spherical linear interpolation (SLERP) for angular motion.

Input Arguments
frames — Transform tree defining the child-parent frame relationship at given timestamps
transformTree object

Transform tree defining the child-parent frame relationship at given timestamps, specified as a
transformTree object.

sourceframe — Source frame names
string scalar | character vector | string array | cell array character vector

Source frame names specified as a string scalar, character vector, string array, or cell array of
character vectors. The source frame is the frame you have coordinates in, and the target frame is the
frame you want to convert those coordinates to. Each element of the array corresponds to the same
element in targetframe and the length matches the n-dimension of tform.
Data Types: char | string | cell

targetframe — Target frame names
string scalar | character vector | string array | cell array character vector

Target frame names specified as a string scalar, character vector, string array, or cell array of
character vectors. The source frame is the frame you have coordinates in, and the target frame is the
frame you want to convert those coordinates to. Each element of the array corresponds to the same
element in sourceframe and the length matches the n-dimension of tform.
Data Types: char | string | cell

timestamp — Time for querying the frames
scalar in seconds | vector

2 Methods

2-252

Time for querying the frames, specified as a scalar or vector of scalars in seconds. For timestamps
specified before the first timestamp in frames, the function returns NaN values. For timestamps
specified after the last timestamp, the most recent (largest timestamp) transformation is returned.

Output Arguments
tform — Transformations that converts points from source frames to target frames
4-by-4 homogenous transformation matrix | 4-by-4-by-n matrix array

Transformations that converts points from the source frames to the target frames specified as a 4-
by-4 transformation matrix or a 4-by-4-by-n matrix array. Each matrix in the array corresponds to the
same element of targetframe, sourceframe, and timestamp.

See Also
Objects
transformTree | fixedwing | multirotor | uavDubinsPathSegment

Functions
getGraph | info | removeTransform | show | updateTransform

Introduced in R2020b

 getTransform

2-253

info
List all frame names and stored timestamps

Syntax
list = info(frames)

Description
list = info(frames) returns a structure array with an element for each frame containing the
frame name, parent frame, and all stored timestamps.

Input Arguments
frames — Transform tree defining the child-parent frame relationship at given timestamps
transformTree object

Transform tree defining the child-parent frame relationship at given timestamps, specified as a
transformTree object.

Output Arguments
list — List of frame names, parents, and timestamps
structure array

List of frame names, parents, and timestamps, specified as a structure array. The elements of the
structure array are:

• FrameNames –– String scalars listing each frame name.
• ParentNames –– String scalars listing the parent of each frame. The base frame returns an empty

string.
• Timestamps –– Vectors of timestamps for each frame. Each vector is padded with NaNs based on

the MaxNumTransforms property of frames.

See Also
Objects
transformTree | fixedwing | multirotor | uavDubinsPathSegment

Functions
getGraph | getTransform | removeTransform | show | updateTransform

Introduced in R2020b

2 Methods

2-254

removeTransform
Remove frame transform relative to its parent

Syntax
removeTransform(frames,framename,timestamp)
removeTransform(frames,framename,timeStart,timeEnd)

Description
removeTransform(frames,framename,timestamp) removes the frame transforms between the
given frame name and their parent frame at the specified timestamps.

removeTransform(frames,framename,timeStart,timeEnd) removes all the frame transforms
for the given frame name in the time interval, [timeStart timeEnd].

Input Arguments
frames — Transform tree defining the child-parent frame relationship at given timestamps
transformTree object

Transform tree defining the child-parent frame relationship at given timestamps, specified as a
transformTree object.

framename — Frame name
string scalar | character vector

Frame name with transforms you want to remove, specified as a string scalar or character vector.
Data Types: char | string | cell

timestamp — Times for removing transforms
scalar in seconds | vector

Times for removing transforms, specified as a scalar or vector of scalars in seconds. These
timestamps must be specified for each of the frame transforms that you want to remove.

timeStart — Initial time for removing transforms
scalar in seconds

Initial time for removing transforms, specified as a scalar in seconds. All transforms for the given
framename are removed from timeStart to timeEnd.

timeEnd — Final time for removing transforms
scalar in seconds

Final time for removing transforms, specified as a scalar in seconds. All transforms for the given
framename are removed from timeStart to timeEnd.

 removeTransform

2-255

See Also
Objects
transformTree | fixedwing | multirotor | uavDubinsPathSegment

Functions
getGraph | getTransform | info | show | updateTransform

Introduced in R2020b

2 Methods

2-256

show
Show transform tree

Syntax
hAx = show(frames)
hAx = show(frames,timestamp)
hAx = show(___ ,Name,Value)

Description
hAx = show(frames) displays the transform tree at the last timestamp in the sequence.

hAx = show(frames,timestamp) displays the transform tree at the specified timestamp. If the
specified time is not specified in the transform tree, frames, the function performs interpolation
using a constant velocity assumption for linear motion, and spherical linear interpolation (SLERP) for
angular motion.

hAx = show(___ ,Name,Value) specifies additional options specified by one or more name-value
pair arguments.

Input Arguments
frames — Transform tree defining the child-parent frame relationship at given timestamps
transformTree object

Transform tree defining the child-parent frame relationship at given timestamps, specified as a
transformTree object.

timestamp — Time for querying the frames
scalar in seconds | vector

Time for querying the frames, specified as a scalar or vector of scalars in seconds. If the given time is
not specified in the transform tree, frames, the function performs interpolation using a constant
velocity assumption for linear motion, and spherical linear interpolation (SLERP) for angular motion.
For timestamps specified after the last timestamp, the most recent (largest timestamp)
transformation is returned.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ShowArrow',true draws arrows between parent to child frames

ShowArrow — Draw arrows from parent to child frames
false (default) | true

 show

2-257

Draw arrows from parent to child frames, specified as true or false.
Data Types: logical

FrameSizes — Axis sizes for frames
struct("root",1) (default) | structure

Axis sizes for frames, specified as a structure. Specify each frame name as a the field with a scalar for
that frame's relative size.
Example: struct("root",2,"frameA",5)
Data Types: struct

FrameNames — Frames to plot
all frames (default) | string scalar | character vector | string array | cell array of character vectors

Frames to plot, specified as a string, character vector, string array, or cell array of character vectors.
Use this argument to specify a subset of frame names to display in the figure.
Example: ["Frame1","Frame3","Frame9"]
Data Types: char | string | cell

Parent — Axes on which to plot
Axes object

Axes on which to plot, specified as an Axes object.

Output Arguments
hAx — Axes
Axes object

Axes under which the transform tree is shown, returned as an Axes object. For more information, see
Axes Properties.

See Also
Objects
transformTree | fixedwing | multirotor | uavDubinsPathSegment

Functions
getGraph | getTransform | info | removeTransform | updateTransform

Introduced in R2020b

2 Methods

2-258

updateTransform
Update frame transform relative to its parent

Syntax
updateTransform(frames,parentframe,childframe,position,orientation,timestamp)
updateTransform(frames,parentframe,childframe,tform,timestamp)

Description
updateTransform(frames,parentframe,childframe,position,orientation,timestamp)
updates the relative transforms between child frames and their parents with a given position and
orientation at the specified time stamps. The position and orientation are given in the parent
reference frame.

updateTransform(frames,parentframe,childframe,tform,timestamp) updates the relative
transforms between child frames and their parents with a given 4-by-4 homogenous transform,
tform.

Input Arguments
frames — Transform tree defining the child-parent frame relationship at given timestamps
transformTree object

Transform tree defining the child-parent frame relationship at given timestamps, specified as a
transformTree object.

parentframe — Parent frame names
string scalar | character vector | string array | cell array character vector

Parent frame names specified as a string scalar, character vector, string array, or cell array of
character vectors. Transformations specified in tform or position and orientation are relative
to the parent frame. Each element of parentframe corresponds to the same element in
childframe.
Data Types: char | string | cell

childframe — Child frame names
string scalar | character vector | string array | cell array character vector

Child frame names specified as a string scalar, character vector, string array, or cell array of
character vectors. The function attaches the child frame to the parent frame. Transformations
specified in tform or position and orientation are relative to the parent frame. Each element of
parentframe corresponds to the same element in childframe.
Data Types: char | string | cell

position — Relative position of child frame to parent
three-element [x y z] vector

 updateTransform

2-259

Relative position of child frame to parent, specified as a three-element [x y z] vector. Specify the
relative orientation in orientation.

orientation — Relative orientation of child frame to parent
three-element [x y z] vector

Relative orientation of child frame to parent, specified as a three-element [x y z] vector. Specify
the relative position in position.

tform — Relative transform of child frame to parent
4-by-4 homogenous transformation matrix

Relative transform of child frame to parent, specified as a 4-by-4 homogenous transformation matrix.

timestamp — Time for querying the frames
scalar in seconds | vector

Time for querying the frames, specified as a scalar or vector of scalars in seconds. If the specified
time is not specified in the transform tree, frames, the function performs interpolation using a
constant velocity assumption for linear motion, and spherical linear interpolation (SLERP) for angular
motion. For timestamps specified after the last timestamp, the most recent (largest timestamp)
transformation is returned.

See Also
Objects
transformTree | fixedwing | multirotor | uavDubinsPathSegment

Functions
getGraph | getTransform | info | removeTransform | show | updateTransform

Introduced in R2020b

2 Methods

2-260

connect
Connect poses with UAV Dubins connection path

Syntax
[pathSegObj,pathCost] = connect(connectionObj,start,goal)
[pathSegObj,pathCost] = connect(connectionObj,start,
goal,'PathSegments','all')

Description
[pathSegObj,pathCost] = connect(connectionObj,start,goal) connects the start and
goal poses using the specified uavDubinsConnection object. The path segment object with the
lowest cost is returned.

[pathSegObj,pathCost] = connect(connectionObj,start,
goal,'PathSegments','all') returns all possible path segments as a cell array with their
associated costs.

Examples

Connect Poses of All Valid UAV Dubins Paths

This example shows how to calculate all valid UAV Dubins path segments and connect poses using the
uavDubinsConnection object.

Calculate All Possible Path Segments

Create a uavDubinsConnection object.

connectionObj = uavDubinsConnection;

Define start and goal poses as [x, y, z, headingAngle] vectors.

startPose = [0 0 0 0]; % [meters, meters, meters, radians]
goalPose = [0 0 20 pi];

Calculate all possible path segments and connect the poses.

[pathSegObj,pathCosts] = connect(connectionObj,startPose,goalPose,'PathSegments','all');

Path Validation and Visualization

Check the validity of all the possible path segments and display the valid paths along with their
motion type and path cost.

for i = 1:length(pathSegObj)
 if ~isnan(pathSegObj{i}.Length)
 figure
 show(pathSegObj{i})
 fprintf('Motion Type: %s\nPath Cost: %f\n',strjoin(pathSegObj{i}.MotionTypes),pathCosts(i));

 connect

2-261

 end
end

Motion Type: L S L N
Path Cost: 214.332271

2 Methods

2-262

Motion Type: R S R N
Path Cost: 214.332271

 connect

2-263

Motion Type: R L R N
Path Cost: 138.373157

2 Methods

2-264

Motion Type: L R L N
Path Cost: 138.373157

Input Arguments
connectionObj — Path connection type
uavDubinsConnection object

Path connection type, specified as a uavDubinsConnection object. This object defines the
parameters of the connection.

start — Initial pose of UAV
four-element numeric vector or matrix

Initial pose of the UAV at the start of the path segment, specified as a four-element numeric vector or
matrix [x, y, z, headingAngle].

x, y, and z specify the position in meters. headingAngle specifies the heading angle in radians. The
heading angle is measured clockwise from north to east. Each row of the matrix corresponds to a
different start pose.

The pose follows the north-east-down coordinate system.

The start and goal pose inputs can be any of these combinations:

 connect

2-265

• Single start pose with single goal pose.
• Multiple start poses with single goal pose.
• Single start pose with multiple goal poses.
• Multiple start poses with multiple goal poses.

goal — Goal pose of UAV
four-element numeric vector or matrix

Goal pose of the UAV at the end of the path segment, specified as a four-element numeric vector or
matrix [x, y, z, headingAngle].

x, y, and z specify the position in meters. headingAngle specifies the heading angle in radians. The
heading angle is measured clockwise from north to east. Each row of the matrix corresponds to a
different goal pose.

The pose follows the north-east-down coordinate system.

The start and goal pose inputs can be any of these combinations:

• Single start pose with single goal pose.
• Multiple start poses with single goal pose.
• Single start pose with multiple goal poses.
• Multiple start poses with multiple goal poses.

Output Arguments
pathSegObj — Path segments
cell array of uavDubinsPathSegment objects

Path segments, returned as a cell array of uavDubinsPathSegment objects. The type of object
depends on the input connectionObj. The size of the cell array depends on whether you use single
or multiple start and goal poses.

By default, the function returns the path with the lowest cost for each start and goal pose.

When calling the connect function using the 'PathSegments','all' name-value pair, the cell
array contains all valid path segments between the specified start and goal poses.

pathCost — Cost of path segment
positive numeric scalar | positive numeric vector | positive numeric matrix

Cost of path segments, returned either as a positive numeric scalar, vector, or matrix. Each element
of the cost vector corresponds to a path segment in pathSegObj.

By default, the function returns the path with the lowest cost for each start and goal pose.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Methods

2-266

See Also
uavDubinsPathSegment | uavDubinsConnection

Introduced in R2019b

 connect

2-267

interpolate
Interpolate poses along UAV Dubins path segment

Syntax
poses = interpolate(pathSegObj,lengths)

Description
poses = interpolate(pathSegObj,lengths) interpolates poses along the path segment at the
specified path lengths. Transitions between motion types are always included.

Examples

Interpolate Poses for UAV Dubins Path

This example shows how to connect poses using the uavDubinsConnection object and interpolate
the poses along the path segment at the specified path lengths.

Connect Poses Using UAV Dubins Connection Path

Create a uavDubinsConnection object.

connectionObj = uavDubinsConnection;

Define start and goal poses as [x, y, z, headingAngle] vectors.

startPose = [0 0 0 0]; % [meters, meters, meters, radians]
goalPose = [0 0 20 pi];

Calculate a valid path segment and connect the poses.

[pathSegObj,pathCost] = connect(connectionObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})

2 Methods

2-268

Interpolate the Poses

Specify the interval to interpolate along the path.

stepSize = pathSegObj{1}.Length/10;
lengths = 0:stepSize:pathSegObj{1}.Length;

Interpolate the poses along the path segment at the specified path lengths.

poses = interpolate(pathSegObj{1},lengths); % [x, y, z, headingAngle, flightPathAngle, rollAngle]

Visualize the Transition Poses

Compute the translation and rotation matrix of the transition poses, excluding the start and goal
poses. The posesTranslation matrix consists of the first three columns of the poses matrix
specifying the position x, y, and z.

posesTranslation = poses(2:end-1,1:3); % [x, y, z]

Increment the elements of the fourth column of the poses matrix representing the headingAngle
by pi and assign it as the first column of the rotation matrix posesEulRot in ZYX Euler angle
representation. A column of pi and a column of zeros forms the second and the third columns of the
posesEulRot matrix, respectively. Convert the posesEulRot matrix from Euler angles to
quaternion and assign to posesRotation.

N = size(poses,1)-2;
posesEulRot = [poses(2:end-1,4)+pi,ones(N,1)*pi,zeros(N,1)]; % [headingAngle + pi, pi, 0]
posesRotation = quaternion(eul2quat(posesEulRot,'ZYX'));

 interpolate

2-269

Plot transform frame of the transition poses by specifying their translations and rotations using
plotTransforms.

hold on
plotTransforms(posesTranslation,posesRotation,'MeshFilePath','fixedwing.stl','MeshColor','cyan')

Input Arguments
pathSegObj — Path segment
uavDubinsPathSegment object

Path segment, specified as a uavDubinsPathSegment object.

lengths — Lengths along path to interpolate poses
positive numeric vector

Lengths along path to interpolate poses, specified as a positive numeric vector in meters.

For example, specify 0:stepSize:pathSegObj{1}.Length to interpolate at the interval specified
by stepSize along the path. Transitions between motion types are always included.
Data Types: double

2 Methods

2-270

Output Arguments
poses — Interpolated poses
six-element numeric matrix

Interpolated poses along the path segment, returned as a six-element numeric matrix [x, y, z,
headingAngle, flightPathAngle, rollAngle]. Each row of the matrix corresponds to a different
interpolated pose along the path.

x, y, and z specify the position in meters. headingAngle, flightPathAngle, and rollAngle specify the
orientation in radians.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
uavDubinsPathSegment | show

Introduced in R2019b

 interpolate

2-271

show
Visualize UAV Dubins path segment

Syntax
axHandle = show(pathSegObj)
axHandle = show(pathSegObj,Name,Value)

Description
axHandle = show(pathSegObj) plots the path segment with start and goal positions and the
transitions between the motion types.

Note Plotting uses only the position and the yaw angle.

axHandle = show(pathSegObj,Name,Value) specifies additional name-value pair arguments to
control display settings.

Examples

Connect Poses Using UAV Dubins Connection Path

This example shows how to calculate a UAV Dubins path segment and connect poses using the
uavDubinsConnection object.

Create a uavDubinsConnection object.

connectionObj = uavDubinsConnection;

Define start and goal poses as [x, y, z, headingAngle] vectors.

startPose = [0 0 0 0]; % [meters, meters, meters, radians]
goalPose = [0 0 20 pi];

Calculate a valid path segment and connect the poses. Returns a path segment object with the lowest
path cost.

[pathSegObj,pathCosts] = connect(connectionObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})

2 Methods

2-272

Display the motion type and the path cost of the generated path.

fprintf('Motion Type: %s\nPath Cost: %f\n',strjoin(pathSegObj{1}.MotionTypes),pathCosts);

Motion Type: R L R N
Path Cost: 138.373157

Input Arguments
pathSegObj — Path segment
uavDubinsPathSegment object

Path segment, specified as a uavDubinsPathSegment object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Positions',{'start','goal'}

Parent — Axes used to plot path
Axes object

 show

2-273

Axes used to plot path, specified as the comma-separated pair consisting of 'Parent' and an axes
object.
Example: 'Parent',axHandle

Positions — Positions to display
{'start','goal','transitions'} (default) | cell array of string or character vectors or vector of
string scalars

Positions to display, specified as the comma-separated pair consisting of 'Positions' and a cell
array of string or character vectors or a vector of string scalars.

Options are any combination of 'start', 'goal', and 'transitions'.

To disable all position displays, specify either as an empty cell array {} or empty vector [].

Output Arguments
axHandle — Axes used to plot path
Axes object

Axes used to plot path, returned as an axes object.

See Also
uavDubinsPathSegment | plotTransforms

Introduced in R2019b

2 Methods

2-274

addGeoFence
Add geographical fencing to UAV platform

Syntax
addGeoFence(platform,type,geometries,permission)
addGeoFence(___ ,Name,Value)

Description
addGeoFence(platform,type,geometries,permission) adds a geofence specified in ENU
coordinates to the scenario.

addGeoFence(___ ,Name,Value) specifies options using one or more name-value pair arguments
in addition to the input arguments in the previous syntax. For example, 'UseLatLon',true uses
latitude and longitude coordinates for the xy-coordinates of the geometries input.

Input Arguments
platform — UAV platform
uavPlatform object

UAV platform in a scenario, specified as a uavPlatform object.

type — Type of mesh
"cylinder" | "polygon"

Type of mesh, specified as "cylinder" or "polygon".
Data Types: char | string

geometries — Geometric parameters of mesh
cell array

Geometric parameters of the mesh, specified as a cell array with options that depend on the type
input:

Geometry Parameters

type Input Geometry Parameters Description
"cylinder" {[x y height]} Three-element vector of the xy-

position and height of the cylinder.
"polygon" {[endptsX endptsY] [zmin

zmax]}
End points of the polygon, specified in
either clockwise or counterclockwise
order. z-coordinates specify the
minimum and maximum elevation of
the polygon.

permission — Geofence permission
false or 0 | true or 1

 addGeoFence

2-275

Geofence permission, specified as a 0 (false) or 1 (true), which indicates whether the UAV platform
is permitted inside the geofence (true) or not permitted (false).
Data Types: logical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'UseLatLon',true uses latitude and longitude coordinates for the xy-coordinates of the
geometries input.

UseLatLon — Use latitude-longitude coordinates for geofence geometry
false or 0 | true or 1

Use latitude-longitude coordinates for the geofence geometry, specified as the comma-separated pair
consisting of 'UseLatLon' and a logical 0 (false) or 1(true).
Data Types: logical

ReferenceFrame — Reference frame for computing UAV platform motion
string scalar

Reference frame for computing UAV platform motion, specified as the comma-separated pair
consisting of 'ReferenceFrame' and a string scalar, which matches any reference frame in the
uavScenario.
Data Types: char | string

See Also
Functions
move | read | updateMesh | checkPermission

Objects
uavScenario | uavPlatform | uavSensor

Topics
“UAV Scenario Tutorial”

Introduced in R2020b

2 Methods

2-276

checkPermission
Check UAV platform permission based on geofencing

Syntax
permission = checkPermission(platform)
permission = checkPermission(platform,position)
permission = checkPermission(platform,position,Name,Value)

Description
permission = checkPermission(platform) checks whether the current UAV platform position
is permitted according to the geofences.

permission = checkPermission(platform,position) checks whether a specific position in
the scenario inertial frame is permitted.

permission = checkPermission(platform,position,Name,Value) specifies options using
one or more name-value pair arguments. For example, 'UseLatLon',true uses latitude, longitude,
and altitude coordinates for the positions input.

Input Arguments
platform — UAV platform
uavPlatform object

UAV platform in a scenario, specified as a uavPlatform object.

position — UAV platform position in scenario inertial frame
[0 0 0] (default) | vector of the form [x y z]

UAV platform position in the scenario inertial frame, specified as a vector of the form [x y z].
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'UseLatLon',trueuses latitude, longitude, and altitude coordinates for the positions
input.

UseLatLon — Use latitude, longitude, and altitude coordinates for platform position
0 or false (default) | 1 or true

Use latitude, longitude, and altitude coordinates for platform position, specified as the comma-
separated pair 'UseLatLon' and a logical 0 (false) or 1(true).

 checkPermission

2-277

Data Types: logical

ReferenceFrame — Reference frame for computing UAV platform motion
string scalar

Reference frame for computing UAV platform motion, specified as the comma-separated pair
consisting of 'ReferenceFrame' and a string scalar, which matches any reference frame in the
uavScenario.
Data Types: char | string

Output Arguments
permission — Geofence permission for platform
false or 0 | true or 1

Geofence permission for platform, returned as a 0 (false) or 1 (true), which indicates whether the
UAV platform is permitted inside the geofence (true) or not permitted (false).
Data Types: logical

See Also
Functions
move | read | updateMesh | addGeoFence

Objects
uavScenario | uavPlatform | uavSensor

Topics
“UAV Scenario Tutorial”

Introduced in R2020b

2 Methods

2-278

move
Move UAV platform in scenario

Syntax
move(platform,motion)

Description
move(platform,motion) moves the UAV platform in the scenario according to the specified motion
motion.

Input Arguments
platform — UAV platform
uavPlatform object

UAV platform in a scenario, specified as a uavPlatform object.

motion — UAV platform motion at current instance in scenario
16-element vector

UAV platform motion at the current instance in a UAV scenario, specified as a 16-element vector with
these elements in order:

• [x y z] — Positions in xyz-axes in meters
• [vx vy vz] — Velocities in xyz-directions in meters per second
• [ax ay az] — Accelerations in xyz-directions in meters per second
• [qw qx qy qz] — Quaternion vector for orientation
• [wx wy wz] — Angular velocities in radians per second

Data Types: double

See Also
Functions
read | updateMesh | addGeoFence | checkPermission

Objects
uavScenario | uavPlatform | uavSensor

Topics
“UAV Scenario Tutorial”

Introduced in R2020b

 move

2-279

read
Read UAV motion vector

Syntax
[motion,LLA] = read(platform)

Description
[motion,LLA] = read(platform) reads the latest motion of the UAV platform in the scenario.

Input Arguments
platform — UAV platform
uavPlatform object

UAV platform in a scenario, specified as a uavPlatform object.

Output Arguments
motion — UAV platform motion at current instance in scenario
16-element vector

UAV platform motion at the current instance in a UAV scenario, returned as a 16-element vector with
these elements in order:

• [x y z] — Positions in xyz-axes in meters
• [vx vy vz] — Velocities in xyz-directions in meters per second
• [ax ay az] — Accelerations in xyz-directions in meters per second
• [qw qx qy qz] — Quaternion vector for orientation
• [wx wy wz] — Angular velocities in radians per second

Data Types: double

LLA — Latitude, longitude, and altitude coordinates of UAV platform
three-element vector of the form [lat long alt]

Latitude, longitude, and altitude coordinates of the UAV platform at the current instance in a UAV
scenario, returned as a three-element vector of the form [lat long alt].
Data Types: double

See Also
Functions
move | updateMesh | addGeoFence | checkPermission

2 Methods

2-280

Objects
uavScenario | uavPlatform | uavSensor

Topics
“UAV Scenario Tutorial”

Introduced in R2020b

 read

2-281

updateMesh
Update body mesh for UAV platform

Syntax
updateMesh(platform,type,geometries,color,position,orientation)
updateMesh(platform,type,geometries,color,offset)

Description
updateMesh(platform,type,geometries,color,position,orientation) updates the body
mesh of the UAV platform with the specified mesh type, geometry, color, position, and orientation.

updateMesh(platform,type,geometries,color,offset) specifies the relative mesh frame
position and orientation as a homogeneous transformation matrix offset.

Input Arguments
platform — UAV platform
uavPlatform object

UAV platform in a scenario, specified as a uavPlatform object.

type — Type of mesh
"fixedwing" | "quadrotor" | "cuboid" | "custom"

Type of mesh, specified as "fixedwing", "quadrotor", "cuboid", or "custom".
Data Types: string | char

geometries — Geometric parameters of mesh
cell array

Geometric parameters of the mesh, specified as a cell array with options that depend on the type
input:

2 Methods

2-282

Geometry Parameters

input Type Geometry Parameters Description
"fixedwing" {scale} Positive scalar specifying the relative

size of the fixed-wing mesh. Scale is
unitless.

"quadrotor" {scale} Positive scalar specifying the relative
size of the multirotor mesh. Scale is
unitless.

"cuboid" {[x y height]} Three-element vector of the xy-
position and height of the cuboid,
specified in meters.

"custom" {vertices faces} Vertices and faces that define the
mesh as two three-element vectors.
Each vertex is a row of [x y z]
points in meters. Each face is a row of
[a b c] indices of vertex IDs, where
a vertex ID is the row number of a
vertex in vertices.

color — UAV platform body mesh color
RGB triplet

UAV platform body mesh color, specified as an RGB triplet.
Data Types: double

position — Relative mesh position
[0 0 0] (default) | vector of the form [x y z]

Relative mesh position in the body frame, specified as a vector of the form [x y z].
Data Types: double

orientation — Relative mesh orientation
[1 0 0 0] (default) | quaternion vector of the form [w x y z] | quaternion object

Relative mesh orientation, specified as a quaternion vector of the form [w x y z] or a quaternion
object.
Data Types: double

offset — Transformation of mesh relative to body frame
4-by-4 homogeneous transformation matrix

Transform of mesh relative to the body frame, specified as a 4-by-4 homogeneous transformation
matrix. The matrix maps points in the platform mesh frame to points in the body frame.
Data Types: double

See Also
Functions
move | read | addGeoFence | checkPermission

 updateMesh

2-283

Objects
uavScenario | uavPlatform | uavSensor

Topics
“UAV Scenario Tutorial”

Introduced in R2020b

2 Methods

2-284

addInertialFrame
Define new inertial frame in UAV scenario

Syntax
addInertialFrame(scene,base,name,position,orientation)
addInertialFrame(scene,base,name,transformMatrix)

Description
addInertialFrame(scene,base,name,position,orientation) adds a new inertial frame to
the UAV scenario scene by specifying the base, name, position, and orientation of the new inertial
frame.

addInertialFrame(scene,base,name,transformMatrix) adds a new inertial frame to the UAV
scenario scene by specifying the base, name, and transformation matrix of the new inertial frame.

Examples

Add an Inertial Frame to UAV Scenario

Create a UAV scenario. By default, the inertial frames are the ENU and the NED frames.

scene = uavScenario()

scene =
 uavScenario with properties:

 UpdateRate: 10
 StopTime: Inf
 HistoryBufferSize: 100
 ReferenceLocation: [0 0 0]
 MaxNumFrames: 10
 CurrentTime: 0
 IsRunning: 0
 TransformTree: [1x1 transformTree]
 InertialFrames: ["ENU" "NED"]
 Meshes: {}
 Platforms: [0x0 uavPlatform]

Add a new inertial frame named Map to the scenario.

addInertialFrame(scene,"NED","Map",[100 100 100],[1 0 0 0]);

You can now use the Map frame as a reference frame to define other objects in the scenario.

scene.InertialFrames(3)

ans =
"Map"

 addInertialFrame

2-285

Input Arguments
scene — UAV scenario
uavScenario object

UAV scenario, specified as a uavScenario object.

base — Base of new inertial frame
string scalar

Base of the new inertial frame, specified as a string scalar. The base frame must be defined in the
scenario in advance.
Example: "ENU"

name — Name of new inertial frame
string scalar

Name of the new inertial frame, specified as a string scalar.
Example: "newFrame"

position — Position of new inertial frame
1-by-3 vector of scalar

Position of the new inertial frame with respect to the base frame (specified in the base argument),
specified as a 1-by-3 vector of scalars in meters.

orientation — Orientation of new inertial frame
quaternion | 1-by-4 quaternion vector of scalar

Orientation of the new inertial frame with respect to the base frame (specified in the base
argument), specified as a quaternion or a 1-by-4 quaternion vector of scalars. The specified
orientation is from the base frame to the new inertial frame.

transformMatrix — Transformation matrix of new inertial frame
4-by-4 homogeneous transform matrix

Transformation matrix that maps points in the new frame (specified in the base argument) to the
base frame, specified as a 4-by-4 homogeneous transform matrix that maps points in the base frame
to the new inertial frame.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

See Also

Introduced in R2020b

2 Methods

2-286

addMesh
Add new static mesh to UAV scenario

Syntax
addMesh(scene,type,geometry,color)
addMesh(___ ,Name=Value)

Description
addMesh(scene,type,geometry,color) adds a static mesh, or imports meshes from an OSM file,
to the UAV scenario scene by specifying the mesh type, geometry, and color.

addMesh(___ ,Name=Value) specifies additional options using name-value arguments.

Examples

Add Meshes to UAV Scenario

Create a UAV Scenario.

scene = uavScenario("UpdateRate",100,"StopTime",1);

Add the ground and a building as meshes.

addMesh(scene,"Polygon", {[-50 0; 50 0; 50 50; -50 50], [-3 0]}, [0.3 0.3 0.3]);
addMesh(scene,"Cylinder", {[10 5 5], [0 10]}, [0 1 1]);

Visualize the scenario.

show3D(scene);

 addMesh

2-287

Import OSM Building Meshes and Terrain Mesh into UAV Scenario

Create a UAV scenario centered on New York City, and add a terrain mesh based on the Global Multi-
Resolution Terrain Elevation Data (GMTED2010) data set.

scene = uavScenario(ReferenceLocation=[40.707088 -74.012146 0]);
xlimits = [-1000 1000];
ylimits = [-1000 1000];
color = [0.6 0.6 0.6];
addMesh(scene,"terrain",{"gmted2010",xlimits,ylimits},color);
show3D(scene);

2 Methods

2-288

Add buildings by importing them from an OSM file that contains the buildings of Manhatten,
manhatten.osm.[1] on page 2-0

xlimits = [-800 800];
ylimits = [-800 800];
color = [0 1 0];
addMesh(scene,"buildings",{"manhattan.osm",xlimits,ylimits,"auto"},color);
show3D(scene);

 addMesh

2-289

[1] The file was downloaded from https://www.openstreetmap.org, which provides access to
crowd-sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Input Arguments
scene — UAV scenario
uavScenario object

UAV scenario, specified as a uavScenario object.

type — Mesh type
"cylinder" | "surface" | "terrain" | "polygon" | "buildings" | "custom"

Mesh type, specified as "cylinder", "surface", "terrain", "polygon", "buildings",
or"custom". Specify the geometric parameters of the mesh using the geometry input.
Data Types: string | char

geometry — Mesh geometry
cell array

Mesh geometry, specified as a cell array of geometry parameters. Depending on the type input, the
geometry parameters have different forms:

2 Methods

2-290

https://www.openstreetmap.org
https://opendatacommons.org/licenses/odbl/

type Input Argument Geometry Parameters Description
"cylinder" {[centerx, centery,

radius],[zmin, zmax]}
centerx and centery are the
x- and y-coordinates of the
center of the cylinder,
respectively. radius is the
radius of the cylinder in meters.
zmin and zmax are the
minimum and maximum z-axis
coordinates of the cylinder in
meters, respectively.

"surface" {meshGridX,meshGridY,z} meshGridX, meshGridY and z
are all 2-D matrices of the same
size that define the xyz-points of
the surface mesh.

"terrain" {terrainName,XLimits,YLi
mits}

You must first call the
addCustomTerrain function to
load the terrain data and specify
a terrain name. Specify the
minimum and maximum xy-
limits as two separate two-
element vectors in local
coordinates, or latitude-
longitude coordinates if the
'UseLatLon' name-value pair
is true. The xy-coordinates
must be specified in the ENU
reference frame.

"polygon" {cornerPoints,[zmin,
zmax]}

zmin and zmax are the
minimum and maximum z-axis
coordinates of the polygon in
meters, respectively.
cornerPoints contains the
corner points of the polygon,
specified as a N-by-2 matrix,
where N is the number of
corner points. The first column
contains the x-coordinates and
the second column contains the
y-coordinates in meters.

 addMesh

2-291

type Input Argument Geometry Parameters Description
"buildings" {osmFile,xBound,yBound,a

ltitude}
• osmFile — File name of the

OSM file in the current
folder or on the MATLAB
path, or the full or relative
path to the OSM file,
specified as a character
vector or string scalar.

• xBound — x-axis boundaries
of the imported OSM
buildings, specified as a two-
element row vector in
meters.

• yBound — y-axis boundaries
of the imported OSM
buildings, specified as a two-
element row vector in
meters.

• altitude — Height of the
bases for all imported
buildings, specified as a
scalar or "auto". If
specified as "auto", the
base heights of the buildings
are defined by the height of
the terrain in the scene. If
the scene has no terrain, this
value is 0.

"custom" {vertices,faces} vertices is an n-by-3 matrix of
mesh points in local
coordinates. faces is an n-by-3
integer matrix of indexes
indicating the triangular faces
of the mesh.

color — Mesh color
RGB triplet

Mesh color, specified as a RGB triplet.
Example: [1 0 0]

Name=Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: addMesh(scene,"Cylinder",{[46 42 5],[0 20]},[0 1 0],UseLatLon=true)

2 Methods

2-292

UseLatLon — Enable latitude and longitude coordinates
false (default) | true

Enable latitude and longitude coordinates, specified as true or false.

• When specified as true, the x and y coordinates in the geometry input are interpreted as
longitude and latitude, respectively.

• When specified as false, the x and y coordinates in the geometry input are interpreted as
Cartesian coordinates.

ReferenceFrame — Reference frame of geometry input
"ENU" (default) | name of defined inertial frame

Reference frame of the geometry input, specified as an inertial frame name defined in the
InertialFrames property of the uavScenario object scene. You can add new inertial frames to
the scenario using the addInertialFrame object function.

The scenario only accepts frames that have z-axis rotation with respect to the "ENU" frame.

For terrain and building import, the reference frame must be "ENU".

See Also
uavScenario | addCustomTerrain | removeCustomTerrain | terrainHeight

Introduced in R2020b

 addMesh

2-293

advance
Advance UAV scenario simulation by one time step

Syntax
isrunning = advance(scene)

Description
isrunning = advance(scene) advances the UAV scenario simulation scene by one time step.
The UpdateRate property of the uavScenario object determines the time step during simulation.
The function returns the running status of the simulation. The function only updates a platform
location if the platform has an assigned trajectory.

Examples

Simulate Simple UAV Scenario

Create a UAV scenario.

scene = uavScenario("UpdateRate",100,"StopTime",1);

Add the ground and a building as meshes.

addMesh(scene,"Polygon", {[-50 0; 50 0; 50 50; -50 50], [-3 0]}, [0.3 0.3 0.3]);
addMesh(scene,"Cylinder", {[10 5 5], [0 10]}, [1 1 0]);

Create a UAV platform with a specified waypoint trajectory in the scenario. Define the mesh for the
UAV platform.

traj = waypointTrajectory("Waypoints", [0 -20 -5; 20 0 -5], "TimeOfArrival", [0 1]);
uavPlat = uavPlatform("UAV",scene,"Trajectory", traj);
updateMesh(uavPlat,"quadrotor",{10},[1 0 0],eul2tform([0 0 0]));

Simulate and visualize the scenario.

setup(scene);
while advance(scene)
 show3D(scene);
 drawnow update
end

2 Methods

2-294

restart(scene);

Input Arguments
scene — UAV scenario
uavScenario object

UAV scenario, specified as a uavScenario object.

Output Arguments
isrunning — Running state of simulation
true | false

Running state of the simulation, returned as true or false. If isrunning is returned as true, then
the simulation is running. If isrunning is returned as false, the simulation has stopped. A
simulation stops when the stop time is reached.

See Also

Introduced in R2020b

 advance

2-295

restart
Reset simulation of UAV scenario

Syntax
restart(scene)

Description
restart(scene) resets the simulation of the UAV scenario scene. The function resets platforms'
poses and sensor readings to NaN, resets the CurrentTime property of the scenario to zero, and
resets the IsRunning property of the scenario to false.

Examples

Simulate Simple UAV Scenario

Create a UAV scenario.

scene = uavScenario("UpdateRate",100,"StopTime",1);

Add the ground and a building as meshes.

addMesh(scene,"Polygon", {[-50 0; 50 0; 50 50; -50 50], [-3 0]}, [0.3 0.3 0.3]);
addMesh(scene,"Cylinder", {[10 5 5], [0 10]}, [1 1 0]);

Create a UAV platform with a specified waypoint trajectory in the scenario. Define the mesh for the
UAV platform.

traj = waypointTrajectory("Waypoints", [0 -20 -5; 20 0 -5], "TimeOfArrival", [0 1]);
uavPlat = uavPlatform("UAV",scene,"Trajectory", traj);
updateMesh(uavPlat,"quadrotor",{10},[1 0 0],eul2tform([0 0 0]));

Simulate and visualize the scenario.

setup(scene);
while advance(scene)
 show3D(scene);
 drawnow update
end

2 Methods

2-296

restart(scene);

Input Arguments
scene — UAV scenario
uavScenario object

UAV scenario, specified as a uavScenario object.

See Also

Introduced in R2020b

 restart

2-297

setup
Prepare UAV scenario for simulation

Syntax
setup(scene)

Description
setup(scene) prepares the UAV scenario scene for simulation and generates initial sensor
readings.

Examples

Simulate Simple UAV Scenario

Create a UAV scenario.

scene = uavScenario("UpdateRate",100,"StopTime",1);

Add the ground and a building as meshes.

addMesh(scene,"Polygon", {[-50 0; 50 0; 50 50; -50 50], [-3 0]}, [0.3 0.3 0.3]);
addMesh(scene,"Cylinder", {[10 5 5], [0 10]}, [1 1 0]);

Create a UAV platform with a specified waypoint trajectory in the scenario. Define the mesh for the
UAV platform.

traj = waypointTrajectory("Waypoints", [0 -20 -5; 20 0 -5], "TimeOfArrival", [0 1]);
uavPlat = uavPlatform("UAV",scene,"Trajectory", traj);
updateMesh(uavPlat,"quadrotor",{10},[1 0 0],eul2tform([0 0 0]));

Simulate and visualize the scenario.

setup(scene);
while advance(scene)
 show3D(scene);
 drawnow update
end

2 Methods

2-298

restart(scene);

Input Arguments
scene — UAV scenario
uavScenario object

UAV scenario, specified as a uavScenario object.

See Also

Introduced in R2020b

 setup

2-299

show
Visualize UAV scenario in 2-D

Syntax
ax = show(scene)
ax = show(scene,times)
ax = show(___ ,Name,Value)

Description
ax = show(scene) visualizes the UAV scenario scene in 2-D with latest states of the platforms and
returns the axes on which the scenario is plotted.

ax = show(scene,times) visualizes the UAV scenario scene at timestamps specified by the
times input.

ax = show(___ ,Name,Value) specifies additional options using Name-Value pairs. Enclose each
Name in quotes.

Examples

Visualize UAV Scenario in 2D

Create a UAV scenario.

scene = uavScenario("UpdateRate",1,"StopTime",1000,"HistoryBufferSize",1000);

Create a UAV platform with a specified waypoint trajectory in the scenario.

traj = waypointTrajectory("Waypoints", [0 -20000 -50; 10000 100000 -50; 20000 0 -50], "TimeOfArrival", [0 500 1000]);
uavPlat = uavPlatform("UAV",scene,"Trajectory", traj);

Visualize the trajectory in 2D.

setup(scene);
while advance(scene)
end
show(scene,0:1:1000)

2 Methods

2-300

ans =
 GeographicAxes with properties:

 Basemap: 'streets-light'
 Position: [0.1300 0.1100 0.7750 0.8150]
 Units: 'normalized'

 Show all properties

Input Arguments
scene — UAV scenario
uavScenario object

UAV scenario, specified as a uavScenario object.

times — Time stamps
vector of nonnegative scalars

Time stamps at which to show the scenario, specified as a vector of nonnegative scalars. The
specified time stamps must be saved in the scenario. To change the number of saved time stamps, use
the HistoryBufferSize property of the uavScenario object.

 show

2-301

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ax = show(scene,"MarkerSize",38)

Parent — Parent axes for plotting
geoaxes

Parent axes for plotting the scenario, specified as a geoaxes object.

MarkerSize — Marker size
36 (default) | positive scalar

Marker size, specified as a positive scalar in points, where 1 point = 1/72 of an inch.

ShowPlatformName — Enable showing platform name
true (default) | false

Enable showing platform name, specified as true or false.

Output Arguments
ax — Axes on which the scenario is plotted
geoaxes object

Axes on which the scenario is plotted, returned as a geoaxes object.

See Also

Introduced in R2020b

2 Methods

2-302

show3D
Visualize UAV scenario in 3-D

Syntax
[ax,plottedFrames] = show3D(scene)
[ax,plottedFrames] = show3D(scene,time)
[ax,plottedFrames] = show3D(___ ,Name,Value)

Description
[ax,plottedFrames] = show3D(scene) visualizes latest states of the platforms and sensors in
the UAV scenario scene along with all static meshes. The function also returns the axes on which the
scene is plotted and the frames on which each object is plotted.

[ax,plottedFrames] = show3D(scene,time) visualizes the UAV scenario at the specified time.

[ax,plottedFrames] = show3D(___ ,Name,Value) specifies additional options using Name-
Value pairs. Enclose each Name in quotes.

Examples

Create and Simulate UAV Scenario

Create a UAV scenario and set its local origin.

scene = uavScenario("UpdateRate",200,"StopTime",2,"ReferenceLocation",[46, 42, 0]);

Add an inertial frame called MAP to the scenario.

scene.addInertialFrame("ENU","MAP",trvec2tform([1 0 0]));

Add one ground mesh and two cylindrical obstacle meshes to the scenario.

scene.addMesh("Polygon", {[-100 0; 100 0; 100 100; -100 100],[-5 0]},[0.3 0.3 0.3]);
scene.addMesh("Cylinder", {[20 10 10],[0 30]}, [0 1 0]);
scene.addMesh("Cylinder", {[46 42 5],[0 20]}, [0 1 0], "UseLatLon", true);

Create a UAV platform with a specified waypoint trajectory in the scenario. Define the mesh for the
UAV platform.

traj = waypointTrajectory("Waypoints", [0 -20 -5; 20 -20 -5; 20 0 -5],"TimeOfArrival",[0 1 2]);
uavPlat = uavPlatform("UAV",scene,"Trajectory",traj);
updateMesh(uavPlat,"quadrotor", {4}, [1 0 0],eul2tform([0 0 pi]));
addGeoFence(uavPlat,"Polygon", {[-50 0; 50 0; 50 50; -50 50],[0 100]},true,"ReferenceFrame","ENU");

Attach an INS sensor to the front of the UAV platform.

insModel = insSensor();
ins = uavSensor("INS",uavPlat,insModel,"MountingLocation",[4 0 0]);

 show3D

2-303

Visualize the scenario in 3-D.

ax = show3D(scene);
axis(ax,"equal");

Simulate the scenario.

setup(scene);
while advance(scene)
 % Update sensor readings
 updateSensors(scene);

 % Visualize the scenario
 show3D(scene,"Parent",ax,"FastUpdate",true);
 drawnow limitrate
end

2 Methods

2-304

Input Arguments
scene — UAV scenario
uavScenario object

UAV scenario, specified as a uavScenario object.

time — Time stamp
nonnegative scalar

Time stamp at which to show the scenario, specified as a nonnegative scalar. The time stamp must
already be saved in the scenario. To change the number of saved time stamps, use the
HistoryBufferSize property of the uavScenario object, scene.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ax = show3D(scene,"FastUpdate",true)

Parent — Parent axes for plotting
axes | uiaxes

Parent axes for plotting, specified as an axes object or a uiaxes object.

FastUpdate — Enable updating from previous map
false (default) | true

Enable updating from previous map, specified as true or false. When specified as true, the
function plots the map via a lightweight update to the previous map in the figure. When specified as
false, the function plots the whole scene on the figure every time.

Output Arguments
ax — Axes on which the scenario is plotted
axes object | uiaxes object

Axes on which the scenario is plotted, returned as an axes object or a uiaxes object.

plottedFrames — Plotted frame information
structure

Plotted frame information, returned as a structure of hgtransform objects. The struct has two types
of field names:

• Inertial frame names — The corresponding field value is a hgtransform object which contains
the transform information from the ego frame to the ENU frame.

• UAV platform names — The corresponding field value is a structure which contains the
hgtransform information for all frames defined on the platform.

 show3D

2-305

See Also

Introduced in R2020b

2 Methods

2-306

terrainHeight
Returns terrain height in UAV scenarios

Syntax
heights = terrainHeight(scene,x,y)
heights = terrainHeight(___ ,Name,Value)

Description
heights = terrainHeight(scene,x,y) returns the terrain heights of the specified xy-positions
for the terrain data for a uavScenario object.

heights = terrainHeight(___ ,Name,Value) specifies additional options using name-value
arguments. Enclose each Name in quotes.

Examples

Add Terrain and Buildings to UAV Scenario

This example shows how to add terrain and custom building mesh to a UAV scenario.

Add Terrain Surface

Add terrain surface based on terrain elevation data from the n39_w106_3arc_v2.dt1 DTED file.

addCustomTerrain("CustomTerrain","n39_w106_3arc_v2.dt1");
scenario = uavScenario("ReferenceLocation", [39.5 -105.5 0]);
addMesh(scenario,"terrain", {"CustomTerrain", [-200 200], [-200 200]}, [0.6 0.6 0.6]);
show3D(scenario);

 terrainHeight

2-307

Add Buildings

Add a couple custom building meshes using vertices and polygon meshes into the scenario. Use the
terrainHeight function to get ground height for each build base.

buildingCenters = [-50, -50; 100 100];

buildingHeights = [30 100];
buildingBoundary = [-25 -25; -25 50; 50 50; 50 -25];
for idx = 1:size(buildingCenters,1)
 buildingVertices = buildingBoundary+buildingCenters(idx,:);
 buildingBase = min(terrainHeight(scenario,buildingVertices(:,1),buildingVertices(:,2)));
 addMesh(scenario,"polygon", {buildingVertices, buildingBase+[0 buildingHeights(idx)]}, [0.3922 0.8314 0.0745]);
end

show3D(scenario);
view([0 15])

2 Methods

2-308

Remove Custom Terrain

Remove the custom terrain that was imported.

removeCustomTerrain("CustomTerrain")

Input Arguments
scene — UAV scenario
uavScenario object

UAV scenario, specified as a uavScenario object.

x — x-positions in scenario
vector | matrix

x-positions in scenario specified as a vector or matrix of scalar values in meters. If specified as a
matrix, the y input and heights output are also a matrix of the same size.
Example: [1 2 0.5 -0.97]
Data Types: double

y — y-positions in scenario
vector | matrix

 terrainHeight

2-309

y-positions in scenario specified as a vector or matrix of scalar values in meters. If specified as a
matrix, the x input and heights output are also a matrix of the same size.
Example: [1 2 0.5 -0.97]
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: h = terrainHeight(scene,x,y,"UseLatLon",true) uses latitude and longitude for
the x and y inputs.

UseLatLon — Enable latitude and longitude coordinates
false (default) | true

Enable latitude and longitude coordinates, specified as true or false.

• When specified as true, the x and y coordinates are interpreted as longitude and latitude,
respectively.

• When specified as false, the x and y coordinates are interpreted as Cartesian coordinates.

ReferenceFrame — Reference frame of coordinates
"ENU" (default) | name of defined inertial frame

Reference frame of coordinates, specified as an inertial frame name defined in the InertialFrames
property of the uavScenario object scene. You can add new inertial frames to the scenario using
the addInertialFrame object function.

Output Arguments
heights — Terrain heights at each position
vector | matrix

Terrain heights at each position, returned as a vector or matrix of scalar values in meters. If returned
as a matrix, the x and y inputs are also a matrix of the same size.
Example: [1 2 0.5 -0.97]
Data Types: double

See Also
uavScenario | addMesh | addCustomTerrain | removeCustomTerrain

Introduced in R2021a

2 Methods

2-310

updateSensors
Update sensor readings in UAV scenario

Syntax
updateSensors(scene)

Description
updateSensors(scene) updates all sensor readings based on latest states of all platforms in the
UAV scenario, scene.

Examples

Create and Simulate UAV Scenario

Create a UAV scenario and set its local origin.

scene = uavScenario("UpdateRate",200,"StopTime",2,"ReferenceLocation",[46, 42, 0]);

Add an inertial frame called MAP to the scenario.

scene.addInertialFrame("ENU","MAP",trvec2tform([1 0 0]));

Add one ground mesh and two cylindrical obstacle meshes to the scenario.

scene.addMesh("Polygon", {[-100 0; 100 0; 100 100; -100 100],[-5 0]},[0.3 0.3 0.3]);
scene.addMesh("Cylinder", {[20 10 10],[0 30]}, [0 1 0]);
scene.addMesh("Cylinder", {[46 42 5],[0 20]}, [0 1 0], "UseLatLon", true);

Create a UAV platform with a specified waypoint trajectory in the scenario. Define the mesh for the
UAV platform.

traj = waypointTrajectory("Waypoints", [0 -20 -5; 20 -20 -5; 20 0 -5],"TimeOfArrival",[0 1 2]);
uavPlat = uavPlatform("UAV",scene,"Trajectory",traj);
updateMesh(uavPlat,"quadrotor", {4}, [1 0 0],eul2tform([0 0 pi]));
addGeoFence(uavPlat,"Polygon", {[-50 0; 50 0; 50 50; -50 50],[0 100]},true,"ReferenceFrame","ENU");

Attach an INS sensor to the front of the UAV platform.

insModel = insSensor();
ins = uavSensor("INS",uavPlat,insModel,"MountingLocation",[4 0 0]);

Visualize the scenario in 3-D.

ax = show3D(scene);
axis(ax,"equal");

Simulate the scenario.

setup(scene);
while advance(scene)

 updateSensors

2-311

 % Update sensor readings
 updateSensors(scene);

 % Visualize the scenario
 show3D(scene,"Parent",ax,"FastUpdate",true);
 drawnow limitrate
end

Input Arguments
scene — UAV scenario
uavScenario object

UAV scenario, specified as a uavScenario object.

See Also
insSensor | gpsSensor | uavSensor

2 Methods

2-312

Introduced in R2020b

 updateSensors

2-313

read
Gather latest reading from UAV sensor

Syntax
[isUpdated,t,sensorReadings] = read(sensor)

Description
[isUpdated,t,sensorReadings] = read(sensor) gathers the simulated sensor output sensor
readings from the latest update of the UAV platform associated with the specified sensor sensor. The
function returns an indicator isUpdated of whether the reading was updated at the simulation step
in the scenario with timestamp t.

Input Arguments
sensor — UAV sensor added to platform in scenario
uavSensor object

UAV sensor added to a platform in a scenario, specified as a uavSensor object.

Output Arguments
isUpdated — Sensor reading update indicator
0 or false | 1 or true

Sensor reading update indicator, returned as a logical 0 (false) or 1(true). If the sensor reading
updated at the current simulation step, the function returns this argument as true.
Data Types: logical

t — Timestamp of the generated sensor reading
scalar in seconds

Timestamp of the generated sensor reading, returned as a scalar in seconds.
Data Types: double

sensorReadings — Simulated sensor readings
insSensor output | gpsSensor output | uavLidarPointCloudGenerator output

Simulated sensor readings, which depends on the type of sensor specified in the sensor input
argument. See the Usage syntax for the appropriate insSensor, gpsSensor, or
uavLidarPointCloudGenerator System object.

See Also
Objects
uavScenario | uavPlatform | uavSensor

2 Methods

2-314

Topics
“UAV Scenario Tutorial”

Introduced in R2020b

 read

2-315

getEmptyOutputs
Class: uav.SensorAdaptor
Package: uav

Return empty sensor outputs without sensor inputs

Syntax
out = getEmptyOutputs(sensorObj)

Description
out = getEmptyOutputs(sensorObj) gets empty outputs when the sensor is not initialized using
setup.

Input Arguments
sensorObj — UAV sensor model
object of subclass of uav.SensorAdaptor

UAV sensor object, specified as an object of a subclass of uav.SensorAdaptor.

Output Arguments
out — Empty sensor outputs
cell array

Empty sensor outputs, returned as a cell array of variables that matches the varargout output of
the read function.

See Also
Functions
uav.SensorAdaptor.getMotion | reset | setup | read

Objects
uav.SensorAdaptor | uavSensor | uavPlatform | uavScenario

Topics
“Simulate Radar Sensor Mounted On UAV”

Introduced in R2021a

2 Methods

2-316

uav.SensorAdaptor.getMotion
Class: uav.SensorAdaptor
Package: uav

Get sensor motion in platform reference frame

Syntax
motion = getMotion(scenario,platform,sensor,t)

Description
motion = getMotion(scenario,platform,sensor,t) return the sensor motion in the platform
reference frame for the given time t.

Input Arguments
scenario — UAV scenario
uavScenario object

UAV scenario, specified as a uavScenario object. This scenario contains the uavPlatform object
platform, which also contains the sensor object sensorObj, which is a subclass of
uav.SensorAdaptor.

platform — UAV platform
uavPlatform object

UAV scenario, specified as a uavPlatform object. This platform contains the sensor object
sensorObj, which is a subclass of uav.SensorAdaptor.

sensor — UAV sensor to add to platform in scenario
uavSensor object

UAV sensor to add to a platform in a scenario, specified as a uavSensor object.

t — Simulation time
positive scalar

Simulation time, specified as a positive scalar.

Output Arguments
motion — UAV platform motion at current instance in scenario
16-element vector

UAV platform motion at the current instance in a UAV scenario, returned as a 16-element vector with
these elements in this order:

• [x y z] — Positions in the xyz-axes in meters

 uav.SensorAdaptor.getMotion

2-317

• [vx vy vz] — Velocities in the xyz-directions in meters per second
• [ax ay az] — Accelerations in the xyz-directions in meters per second
• [qw qx qy qz] — Quaternion vector for orientation
• [wx wy wz] — Angular velocities in radians per second

Data Types: double

See Also
Functions
getEmptyOutputs | reset | setup | read

Objects
uav.SensorAdaptor | uavSensor | uavPlatform | uavScenario

Topics
“Simulate Radar Sensor Mounted On UAV”

Introduced in R2021a

2 Methods

2-318

read
Class: uav.SensorAdaptor
Package: uav

Read from custom sensor model

Syntax
varargout = read(sensorObj,scenario,platform,sensor,t)

Description
varargout = read(sensorObj,scenario,platform,sensor,t) reads sensor data from the
sensor model sensorObj. Specify the UAV scenario, platform, sensor, and simulation time t. The
function returns the sensor readings from the implemented sensor model.

Input Arguments
sensorObj — UAV sensor model
object of subclass of uav.SensorAdaptor

UAV sensor object, specified as an object of a subclass of uav.SensorAdaptor.

scenario — UAV scenario
uavScenario object

UAV scenario, specified as a uavScenario object. This scenario contains the uavPlatform object
platform, which also contains the sensor object sensorObj, which is a subclass of
uav.SensorAdaptor.

platform — UAV platform
uavPlatform object

UAV scenario, specified as a uavPlatform object. This platform contains the sensor object
sensorObj, which is a subclass of uav.SensorAdaptor.

sensor — UAV sensor to add to platform in scenario
uavSensor object

UAV sensor to add to a platform in a scenario, specified as a uavSensor object.

t — Simulation time
positive scalar

Simulation time, specified as a positive scalar.

Output Arguments
varargout — Variable-length output argument list
varargout

 read

2-319

Variable-length output argument list, returned as varargout.

See Also
Functions
uav.SensorAdaptor.getMotion | getEmptyOutputs | reset | setup

Objects
uav.SensorAdaptor | uavSensor | uavPlatform | uavScenario

Topics
“Simulate Radar Sensor Mounted On UAV”

Introduced in R2021a

2 Methods

2-320

reset
Class: uav.SensorAdaptor
Package: uav

Reset custom sensor model

Syntax
reset(sensorObj)

Description
reset(sensorObj) resets the sensor model state and releases internal resources if needed.

Input Arguments
sensorObj — UAV sensor model
object of subclass of uav.SensorAdaptor

UAV sensor object, specified as an object of a subclass of uav.SensorAdaptor.

See Also
Functions
uav.SensorAdaptor.getMotion | getEmptyOutputs | setup | read

Objects
uav.SensorAdaptor | uavSensor | uavPlatform | uavScenario

Topics
“Simulate Radar Sensor Mounted On UAV”

Introduced in R2021a

 reset

2-321

setup
Class: uav.SensorAdaptor
Package: uav

Set up custom sensor model

Syntax
setup(sensorObj,scenario,platform)

Description
setup(sensorObj,scenario,platform) initializes the sensor model with information from the
UAV scenario and platform that the sensor is attached to.

Input Arguments
sensorObj — UAV sensor model
object of subclass of uav.SensorAdaptor

UAV sensor object, specified as an object of a subclass of uav.SensorAdaptor.

scenario — UAV scenario
uavScenario object

UAV scenario, specified as a uavScenario object. This scenario contains the uavPlatform object
platform, which also contains the sensor object sensorObj, which is a subclass of
uav.SensorAdaptor.

platform — UAV platform
uavPlatform object

UAV scenario, specified as a uavPlatform object. This platform contains the sensor object
sensorObj, which is a subclass of uav.SensorAdaptor.

See Also
Functions
uav.SensorAdaptor.getMotion | getEmptyOutputs | reset | setup | read

Objects
uav.SensorAdaptor | uavSensor | uavPlatform | uavScenario

Topics
“Simulate Radar Sensor Mounted On UAV”

Introduced in R2021a

2 Methods

2-322

readLoggedOutput
Read logged output messages

Syntax
logTable = readLoggedOutput(ulogOBJ)
logTable = readLoggedOutput(ulogOBJ,Name,Value)

Description
logTable = readLoggedOutput(ulogOBJ) reads the data of all logged output messages from the
specified ulogreader object and returns a timetable that contains log levels and messages.

logTable = readLoggedOutput(ulogOBJ,Name,Value) reads specific logged output messages
based on the specified name-value pairs.
Example: readLoggedOutput(ulog,'Time',[d1 d2])

Examples

Read Messages from ULOG File

Load the ULOG file. Specify the relative path of the file.

ulog = ulogreader('flight.ulg');

Read all topic messages.

msg = readTopicMsgs(ulog);

Specify the time interval between which to select messages.

d1 = ulog.StartTime;
d2 = d1 + duration([0 0 55],'Format','hh:mm:ss.SSSSSS');

Read messages from the topic 'vehicle_attitude' with an instance ID of 0 in the time interval
[d1 d2].

data = readTopicMsgs(ulog,'TopicNames',{'vehicle_attitude'}, ...
'InstanceID',{0},'Time',[d1 d2]);

Extract topic messages for the topic.

vehicle_attitude = data.TopicMessages{1,1};

Read all system information.

systeminfo = readSystemInformation(ulog);

Read all initial parameter values.

params = readParameters(ulog);

 readLoggedOutput

2-323

Read all logged output messages.

loggedoutput = readLoggedOutput(ulog);

Read logged output messages in the time interval.

log = readLoggedOutput(ulog,'Time',[d1 d2]);

Input Arguments
ulogOBJ — ULOG file reader
ulogreader object

ULOG file reader, specified as a ulogreader object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Time',[d1 d2]

Time — Time interval
two-element vector

Time interval between which to select messages, specified as a two-element vector of duration, or a
double array. The duration array is specified in the 'hh:mm:ss.SSSSSS' format. The double array is
specified in microseconds.
Example: 'Time',[d1 d2]

Output Arguments
logTable — Logged output messages
timetable

Logged output messages, returned as a timetable with the columns:

• LogLevel
• Messages

See Also
Objects
ulogreader

Functions
readSystemInformation | readParameters | readTopicMsgs

Introduced in R2020b

2 Methods

2-324

readParameters
Read parameter values

Syntax
paramsTable = readParameters(ulogOBJ)

Description
paramsTable = readParameters(ulogOBJ) reads the data of all initial parameters from the
specified ulogreader object and returns a table that contains all the parameter names with their
respective values.

Examples

Read Messages from ULOG File

Load the ULOG file. Specify the relative path of the file.

ulog = ulogreader('flight.ulg');

Read all topic messages.

msg = readTopicMsgs(ulog);

Specify the time interval between which to select messages.

d1 = ulog.StartTime;
d2 = d1 + duration([0 0 55],'Format','hh:mm:ss.SSSSSS');

Read messages from the topic 'vehicle_attitude' with an instance ID of 0 in the time interval
[d1 d2].

data = readTopicMsgs(ulog,'TopicNames',{'vehicle_attitude'}, ...
'InstanceID',{0},'Time',[d1 d2]);

Extract topic messages for the topic.

vehicle_attitude = data.TopicMessages{1,1};

Read all system information.

systeminfo = readSystemInformation(ulog);

Read all initial parameter values.

params = readParameters(ulog);

Read all logged output messages.

loggedoutput = readLoggedOutput(ulog);

 readParameters

2-325

Read logged output messages in the time interval.

log = readLoggedOutput(ulog,'Time',[d1 d2]);

Input Arguments
ulogOBJ — ULOG file reader
ulogreader object

ULOG file reader, specified as a ulogreader object.

Output Arguments
paramsTable — Initial parameters
table

Initial parameters, returned as a table with the columns:

• Parameters
• Value

See Also
Objects
ulogreader

Functions
readSystemInformation | readLoggedOutput | readTopicMsgs

Introduced in R2020b

2 Methods

2-326

readSystemInformation
Read information messages

Syntax
infoTable = readSystemInformation(ulogOBJ)

Description
infoTable = readSystemInformation(ulogOBJ) reads the data of information messages from
the specified ulogreader object and returns a table that contains all the information fields with their
respective values.

Examples

Read Messages from ULOG File

Load the ULOG file. Specify the relative path of the file.

ulog = ulogreader('flight.ulg');

Read all topic messages.

msg = readTopicMsgs(ulog);

Specify the time interval between which to select messages.

d1 = ulog.StartTime;
d2 = d1 + duration([0 0 55],'Format','hh:mm:ss.SSSSSS');

Read messages from the topic 'vehicle_attitude' with an instance ID of 0 in the time interval
[d1 d2].

data = readTopicMsgs(ulog,'TopicNames',{'vehicle_attitude'}, ...
'InstanceID',{0},'Time',[d1 d2]);

Extract topic messages for the topic.

vehicle_attitude = data.TopicMessages{1,1};

Read all system information.

systeminfo = readSystemInformation(ulog);

Read all initial parameter values.

params = readParameters(ulog);

Read all logged output messages.

loggedoutput = readLoggedOutput(ulog);

 readSystemInformation

2-327

Read logged output messages in the time interval.

log = readLoggedOutput(ulog,'Time',[d1 d2]);

Input Arguments
ulogOBJ — ULOG file reader
ulogreader object

ULOG file reader, specified as a ulogreader object.

Output Arguments
infoTable — System information
table

System information, returned as a table with the columns:

• InformationField
• Value

See Also
Objects
ulogreader

Functions
readParameters | readLoggedOutput | readTopicMsgs

Introduced in R2020b

2 Methods

2-328

readTopicMsgs
Read topic messages

Syntax
msgTable = readTopicMsgs(ulogOBJ)
msgTable = readTopicMsgs(ulogOBJ,Name,Value)

Description
msgTable = readTopicMsgs(ulogOBJ) reads the data of all topic messages from the specified
ulogreader object and returns a table that contains topic names, instance ID, start timestamp, last
timestamp, topic messages, and message format for all available topics.

msgTable = readTopicMsgs(ulogOBJ,Name,Value) reads the data pertaining to the specified
name-value pairs.
Example: readTopicMsgs(ulog,'TopicNames',{'vehicle_attitude'},'InstanceID',
{0},'Time',[d1 d2])

Examples

Read Messages from ULOG File

Load the ULOG file. Specify the relative path of the file.

ulog = ulogreader('flight.ulg');

Read all topic messages.

msg = readTopicMsgs(ulog);

Specify the time interval between which to select messages.

d1 = ulog.StartTime;
d2 = d1 + duration([0 0 55],'Format','hh:mm:ss.SSSSSS');

Read messages from the topic 'vehicle_attitude' with an instance ID of 0 in the time interval
[d1 d2].

data = readTopicMsgs(ulog,'TopicNames',{'vehicle_attitude'}, ...
'InstanceID',{0},'Time',[d1 d2]);

Extract topic messages for the topic.

vehicle_attitude = data.TopicMessages{1,1};

Read all system information.

systeminfo = readSystemInformation(ulog);

Read all initial parameter values.

 readTopicMsgs

2-329

params = readParameters(ulog);

Read all logged output messages.

loggedoutput = readLoggedOutput(ulog);

Read logged output messages in the time interval.

log = readLoggedOutput(ulog,'Time',[d1 d2]);

Input Arguments
ulogOBJ — ULOG file reader
ulogreader object

ULOG file reader, specified as a ulogreader object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Time',[d1 d2]

TopicNames — Topic names of desired messages
cell array of character vectors | string array

Topic names of the desired messages, specified as a cell array of character vectors or a string array.
Example: 'TopicNames',{'sensor_combined','actuator_outputs'} or 'TopicNames',
["actuator_outputs","ekf2_timestamps"]

InstanceID — Instance ID of topic of desired messages
cell array of positive integer scalars or vectors

Instance ID of the topic of the desired messages, specified as a cell array of positive integer scalars or
vectors. Specify this name-value pair along with its corresponding 'TopicNames' name-value pair.
Example: 'TopicNames',{'vehicle_attitude','actuator_outputs'},'InstanceID',{0,
[0 1]}

Time — Time interval
two-element vector

Time interval between which to select messages, specified as a two-element vector of duration, or a
double array. The duration array is specified in the 'hh:mm:ss.SSSSSS' format. The double array is
specified in microseconds.
Example: 'Time',[d1 d2]

Output Arguments
msgTable — Topic messages information
table

2 Methods

2-330

Topic messages information, returned as a table with the columns:

• TopicNames
• InstanceID
• StartTimestamp
• LastTimestamp
• TopicMessages
• MsgFormat

See Also
Objects
ulogreader

Functions
readSystemInformation | readParameters | readLoggedOutput

Introduced in R2020b

 readTopicMsgs

2-331

lookupPose
Obtain pose information for certain time

Syntax
[position,orientation,velocity,acceleration,angularVelocity] = lookupPose(
traj,sampleTimes)

Description
[position,orientation,velocity,acceleration,angularVelocity] = lookupPose(
traj,sampleTimes) returns the pose information of the waypoint trajectory at the specified sample
times. If any sample time is beyond the duration of the trajectory, the corresponding pose information
is returned as NaN.

Input Arguments
traj — Waypoint trajectory
waypointTrajectory object

Waypoint trajectory, specified as a waypointTrajectory object.

sampleTimes — Sample times
M-element vector of nonnegative scalar

Sample times in seconds, specified as an M-element vector of nonnegative scalars.

Output Arguments
position — Position in local navigation coordinate system (m)
M-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an M-by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

orientation — Orientation in local navigation coordinate system
M-element quaternion column vector | 3-by-3-by-M real array

Orientation in the local navigation coordinate system, returned as an M-by-1 quaternion column
vector or a 3-by-3-by-M real array.

Each quaternion or 3-by-3 rotation matrix is a frame rotation from the local navigation coordinate
system to the current body coordinate system.

M is specified by the sampleTimes input.
Data Types: double

2 Methods

2-332

velocity — Velocity in local navigation coordinate system (m/s)
M-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an M-by-3
matrix.

M is specified by the sampleTimes input.
Data Types: double

acceleration — Acceleration in local navigation coordinate system (m/s2)
M-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared, returned as an
M-by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

angularVelocity — Angular velocity in local navigation coordinate system (rad/s)
M-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned as an M-
by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

See Also
Objects
waypointTrajectory

Functions
waypointInfo | perturbations | perturb

Introduced in R2020b

 lookupPose

2-333

waypointInfo
Get waypoint information table

Syntax
trajectoryInfo = waypointInfo(trajectory)

Description
trajectoryInfo = waypointInfo(trajectory) returns a table of waypoints, times of arrival,
velocities, and orientation for the trajectory System object.

Input Arguments
trajectory — Object of waypointTrajectory
object

Object of the waypointTrajectory System object.

Output Arguments
trajectoryInfo — Trajectory information
table

Trajectory information, returned as a table with variables corresponding to set creation properties:
Waypoints, TimeOfArrival, Velocities, and Orientation.

The trajectory information table always has variables Waypoints and TimeOfArrival. If the
Velocities property is set during construction, the trajectory information table additionally returns
velocities. If the Orientation property is set during construction, the trajectory information table
additionally returns orientation.

See Also
Objects
waypointTrajectory

Functions
lookupPose | perturbations | perturb

Introduced in R2020b

2 Methods

2-334

perturb
Apply perturbations to object

Syntax
offsets = perturb(obj)

Description
offsets = perturb(obj) applies the perturbations defined on the object, obj and returns the
offset values. You can define perturbations on the object by using the perturbations function.

Examples

Perturb Waypoint Trajectory

Define a waypoint trajectory. By default, this trajectory contains two waypoints.

traj = waypointTrajectory

traj =
 waypointTrajectory with properties:

 SampleRate: 100
 SamplesPerFrame: 1
 Waypoints: [2x3 double]
 TimeOfArrival: [2x1 double]
 Velocities: [2x3 double]
 Course: [2x1 double]
 GroundSpeed: [2x1 double]
 ClimbRate: [2x1 double]
 Orientation: [2x1 quaternion]
 AutoPitch: 0
 AutoBank: 0
 ReferenceFrame: 'NED'

Define perturbations on the Waypoints property and the TimeOfArrival property.

rng(2020);
perturbs1 = perturbations(traj,'Waypoints','Normal',1,1)

perturbs1=2×3 table
 Property Type Value
 _______________ ________ __________________

 "Waypoints" "Normal" {[1]} {[1]}
 "TimeOfArrival" "None" {[NaN]} {[NaN]}

perturbs2 = perturbations(traj,'TimeOfArrival','Selection',{[0;1],[0;2]})

 perturb

2-335

perturbs2=2×3 table
 Property Type Value
 _______________ ___________ _______________________________

 "Waypoints" "Normal" {[1]} {[1]}
 "TimeOfArrival" "Selection" {1x2 cell} {[0.5000 0.5000]}

Perturb the trajectory.

offsets = perturb(traj)

offsets=2×1 struct array with fields:
 Property
 Offset
 PerturbedValue

The Waypoints property and the TimeOfArrival property have changed.

traj.Waypoints

ans = 2×3

 1.8674 1.0203 0.7032
 2.3154 -0.3207 0.0999

traj.TimeOfArrival

ans = 2×1

 0
 2

Perturb Accuracy of insSensor

Create an insSensor object.

sensor = insSensor

sensor =
 insSensor with properties:

 MountingLocation: [0 0 0] m
 RollAccuracy: 0.2 deg
 PitchAccuracy: 0.2 deg
 YawAccuracy: 1 deg
 PositionAccuracy: [1 1 1] m
 VelocityAccuracy: 0.05 m/s
 AccelerationAccuracy: 0 m/s²
 AngularVelocityAccuracy: 0 deg/s
 TimeInput: 0
 RandomStream: 'Global stream'

2 Methods

2-336

Define the perturbation on the RollAccuracy property as three values with an equal possibility
each.

values = {0.1 0.2 0.3}

values=1×3 cell array
 {[0.1000]} {[0.2000]} {[0.3000]}

probabilities = [1/3 1/3 1/3]

probabilities = 1×3

 0.3333 0.3333 0.3333

perturbations(sensor,'RollAccuracy','Selection',values,probabilities)

ans=7×3 table
 Property Type Value
 _________________________ ___________ ______________________________________

 "RollAccuracy" "Selection" {1x3 cell} {[0.3333 0.3333 0.3333]}
 "PitchAccuracy" "None" {[NaN]} {[NaN]}
 "YawAccuracy" "None" {[NaN]} {[NaN]}
 "PositionAccuracy" "None" {[NaN]} {[NaN]}
 "VelocityAccuracy" "None" {[NaN]} {[NaN]}
 "AccelerationAccuracy" "None" {[NaN]} {[NaN]}
 "AngularVelocityAccuracy" "None" {[NaN]} {[NaN]}

Perturb the sensor object using the perturb function.

rng(2020)
perturb(sensor);
sensor

sensor =
 insSensor with properties:

 MountingLocation: [0 0 0] m
 RollAccuracy: 0.5 deg
 PitchAccuracy: 0.2 deg
 YawAccuracy: 1 deg
 PositionAccuracy: [1 1 1] m
 VelocityAccuracy: 0.05 m/s
 AccelerationAccuracy: 0 m/s²
 AngularVelocityAccuracy: 0 deg/s
 TimeInput: 0
 RandomStream: 'Global stream'

The RollAccuracy is perturbed to 0.5 deg.

 perturb

2-337

Input Arguments
obj — Object for perturbation
objects

Object for perturbation, specified as an object. The objects that you can perturb include:

• waypointTrajectory
• insSensor

Output Arguments
offsets — Property offsets
array of structure

Property offsets, returned as an array of structures. Each structure contains these fields:

Field Name Description
Property Name of perturbed property
Offset Offset values applied in the perturbation
PerturbedValue Property values after the perturbation

See Also
perturbations

Introduced in R2020b

2 Methods

2-338

perturbations
Perturbation defined on object

Syntax
perturbs = perturbations(obj)
perturbs = perturbations(obj,property)
perturbs = perturbations(obj,property,'None')
perturbs = perturbations(obj,property,'Selection',values,probabilities)
perturbs = perturbations(obj,property,'Normal',mean,deviation)
perturbs = perturbations(obj,property,'TruncatedNormal',mean,deviation,
lowerLimit,upperLimit)
perturbs = perturbations(obj,property,'Uniform',minVal,maxVal)
perturbs = perturbations(obj,property,'Custom',perturbFcn)

Description
perturbs = perturbations(obj) returns the list of property perturbations, perturbs, defined
on the object, obj. The returned perturbs lists all the perturbable properties. If any property is not
perturbed, then its corresponding Type is returned as "Null" and its corresponding Value is
returned as {Null,Null}.

perturbs = perturbations(obj,property) returns the current perturbation applied to the
specified property.

perturbs = perturbations(obj,property,'None') defines a property that must not be
perturbed.

perturbs = perturbations(obj,property,'Selection',values,probabilities) defines
the property perturbation offset drawn from a set of values that have corresponding
probabilities.

perturbs = perturbations(obj,property,'Normal',mean,deviation) defines the
property perturbation offset drawn from a normal distribution with specified mean and standard
deviation.

perturbs = perturbations(obj,property,'TruncatedNormal',mean,deviation,
lowerLimit,upperLimit) defines the property perturbation offset drawn from a normal
distribution with specified mean, standard deviation, lower limit, and upper limit.

perturbs = perturbations(obj,property,'Uniform',minVal,maxVal) defines the
property perturbation offset drawn from a uniform distribution on an interval [minVal, maxValue].

perturbs = perturbations(obj,property,'Custom',perturbFcn) enables you to define a
custom function, perturbFcn, that draws the perturbation offset value.

Examples

 perturbations

2-339

Default Perturbation Properties of waypointTrajectory

Create a waypointTrajectory object.

traj = waypointTrajectory;

Show the default perturbation properties using the perturbations method.

perturbs = perturbations(traj)

perturbs=2×3 table
 Property Type Value
 _______________ ______ __________________

 "Waypoints" "None" {[NaN]} {[NaN]}
 "TimeOfArrival" "None" {[NaN]} {[NaN]}

Perturb Accuracy of insSensor

Create an insSensor object.

sensor = insSensor

sensor =
 insSensor with properties:

 MountingLocation: [0 0 0] m
 RollAccuracy: 0.2 deg
 PitchAccuracy: 0.2 deg
 YawAccuracy: 1 deg
 PositionAccuracy: [1 1 1] m
 VelocityAccuracy: 0.05 m/s
 AccelerationAccuracy: 0 m/s²
 AngularVelocityAccuracy: 0 deg/s
 TimeInput: 0
 RandomStream: 'Global stream'

Define the perturbation on the RollAccuracy property as three values with an equal possibility
each.

values = {0.1 0.2 0.3}

values=1×3 cell array
 {[0.1000]} {[0.2000]} {[0.3000]}

probabilities = [1/3 1/3 1/3]

probabilities = 1×3

 0.3333 0.3333 0.3333

perturbations(sensor,'RollAccuracy','Selection',values,probabilities)

2 Methods

2-340

ans=7×3 table
 Property Type Value
 _________________________ ___________ ______________________________________

 "RollAccuracy" "Selection" {1x3 cell} {[0.3333 0.3333 0.3333]}
 "PitchAccuracy" "None" {[NaN]} {[NaN]}
 "YawAccuracy" "None" {[NaN]} {[NaN]}
 "PositionAccuracy" "None" {[NaN]} {[NaN]}
 "VelocityAccuracy" "None" {[NaN]} {[NaN]}
 "AccelerationAccuracy" "None" {[NaN]} {[NaN]}
 "AngularVelocityAccuracy" "None" {[NaN]} {[NaN]}

Perturb the sensor object using the perturb function.

rng(2020)
perturb(sensor);
sensor

sensor =
 insSensor with properties:

 MountingLocation: [0 0 0] m
 RollAccuracy: 0.5 deg
 PitchAccuracy: 0.2 deg
 YawAccuracy: 1 deg
 PositionAccuracy: [1 1 1] m
 VelocityAccuracy: 0.05 m/s
 AccelerationAccuracy: 0 m/s²
 AngularVelocityAccuracy: 0 deg/s
 TimeInput: 0
 RandomStream: 'Global stream'

The RollAccuracy is perturbed to 0.5 deg.

Perturb Waypoint Trajectory

Define a waypoint trajectory. By default, this trajectory contains two waypoints.

traj = waypointTrajectory

traj =
 waypointTrajectory with properties:

 SampleRate: 100
 SamplesPerFrame: 1
 Waypoints: [2x3 double]
 TimeOfArrival: [2x1 double]
 Velocities: [2x3 double]
 Course: [2x1 double]
 GroundSpeed: [2x1 double]
 ClimbRate: [2x1 double]
 Orientation: [2x1 quaternion]
 AutoPitch: 0
 AutoBank: 0

 perturbations

2-341

 ReferenceFrame: 'NED'

Define perturbations on the Waypoints property and the TimeOfArrival property.

rng(2020);
perturbs1 = perturbations(traj,'Waypoints','Normal',1,1)

perturbs1=2×3 table
 Property Type Value
 _______________ ________ __________________

 "Waypoints" "Normal" {[1]} {[1]}
 "TimeOfArrival" "None" {[NaN]} {[NaN]}

perturbs2 = perturbations(traj,'TimeOfArrival','Selection',{[0;1],[0;2]})

perturbs2=2×3 table
 Property Type Value
 _______________ ___________ _______________________________

 "Waypoints" "Normal" {[1]} {[1]}
 "TimeOfArrival" "Selection" {1x2 cell} {[0.5000 0.5000]}

Perturb the trajectory.

offsets = perturb(traj)

offsets=2×1 struct array with fields:
 Property
 Offset
 PerturbedValue

The Waypoints property and the TimeOfArrival property have changed.

traj.Waypoints

ans = 2×3

 1.8674 1.0203 0.7032
 2.3154 -0.3207 0.0999

traj.TimeOfArrival

ans = 2×1

 0
 2

Input Arguments
obj — Object to be perturbed
objects

2 Methods

2-342

Object to be perturbed, specified as an object. The objects that you can perturb include:

• waypointTrajectory
• insSensor

property — Perturbable property
property name

Perturbable property, specified as a property name. Use perturbations to obtain a full list of
perturbable properties for the specified obj.

values — Perturbation offset values
n-element cell array of property values

Perturbation offset values, specified as an n-element cell array of property values. The function
randomly draws the perturbation value for the property from the cell array based on the values'
corresponding probabilities specified in the probabilities input.

probabilities — Drawing probabilities for each perturbation value
n-element array of nonnegative scalar

Drawing probabilities for each perturbation value, specified as an n-element array of nonnegative
scalars, where n is the number of perturbation values provided in the values input. The sum of all
elements must be equal to one.

For example, you can specify a series of perturbation value-probability pair as {x1,x2,…,xn} and
{p1,p2,…,pn}, where the probability of drawing xi is pi (i = 1, 2, …,n).

mean — Mean of normal or truncated normal distribution
scalar | vector | matrix

Mean of normal or truncated normal distribution, specified as a scalar, vector, or matrix. The
dimension of mean must be compatible with the corresponding property that you perturb.

deviation — Standard deviation of normal or truncated normal distribution
nonnegative scalar | vector of nonnegative scalar | matrix of nonnegative scalar

Standard deviation of normal or truncated normal distribution, specified as a nonnegative scalar,
vector of nonnegative scalars, or matrix of nonnegative scalars. The dimension of deviation must
be compatible with the corresponding property that you perturb.

lowerLimit — Lower limit of truncated normal distribution
scalar | vector | matrix

Lower limit of the truncated normal distribution, specified as a scalar, vector, or matrix. The
dimension of lowerLimit must be compatible with the corresponding property that you perturb.

upperLimit — Upper limit of truncated normal distribution
scalar | vector | matrix

Upper limit of the truncated normal distribution, specified as a scalar, vector, or matrix. The
dimension of upperLimit must be compatible with the corresponding property that you perturb.

minVal — Minimum value of uniform distribution interval
scalar | vector | matrix

 perturbations

2-343

Minimum value of the uniform distribution interval, specified as a scalar, vector, or matrix. The
dimension of minVal must be compatible with the corresponding property that you perturb.

maxVal — Maximum value of uniform distribution interval
scalar | vector | matrix

Maximum value of the uniform distribution interval, specified as a scalar, vector, or matrix. The
dimension of maxVal must be compatible with the corresponding property that you perturb.

perturbFcn — Perturbation function
function handle

Perturbation function, specified as a function handle. The function must have this syntax:

offset = myfun(propVal)

where propVal is the value of the property and offset is the perturbation offset for the property.

Output Arguments
perturbs — Perturbations defined on object
table of perturbation property

Perturbations defined on the object, returned as a table of perturbation properties. The table has
three columns:

• Property — Property names.
• Type — Type of perturbations, returned as "None", "Selection", "Normal",

"TruncatedNormal", "Uniform", or "Custom".
• Value — Perturbation values, returned as a cell array.

More About
Specify Perturbation Distributions

You can specify the distribution for the perturbation applied to a specific property.

• Selection distribution — The function defines the perturbation offset as one of the specified values
with the associated probability. For example, if you specify the values as [1 2] and specify the
probabilities as [0.7 0.3], then the perturb function adds an offset value of 1 to the property
with a probability of 0.7 and add an offset value of 2 to the property with a probability of 0.3.
Use selection distribution when you only want to perturb the property with a number of discrete
values.

• Normal distribution — The function defines the perturbation offset as a value drawn from a normal
distribution with the specified mean and standard deviation (or covariance). Normal distribution is
the most commonly used distribution since it mimics the natural perturbation of parameters in
most cases.

• Truncated normal distribution — The function defines the perturbation offset as a value drawn
from a truncated normal distribution with the specified mean, standard deviation (or covariance),
lower limit, and upper limit. Different from the normal distribution, the values drawn from a
truncated normal distribution are truncated by the lower and upper limit. Use truncated normal
distribution when you want to apply a normal distribution, but the valid values of the property are
confined in an interval.

2 Methods

2-344

• Uniform distribution — The function defines the perturbation offset as a value drawn from a
uniform distribution with the specified minimum and maximum values. All the values in the
interval (specified by the minimum and maximum values) have the same probability of realization.

• Custom distribution — Customize your own perturbation function. The function must have this
syntax:

offset = myfun(propVal)

where propVal is the value of the property and offset is the perturbation offset for the
property.

This figure shows probability density functions for a normal distribution, a truncated normal
distribution, and a uniform distribution, respectively.

See Also
perturb

Introduced in R2020b

 perturbations

2-345

Functions

3

addCustomTerrain
Add custom terrain data

Syntax
addCustomTerrain(terrainName,files)
addCustomTerrain(___ ,Name,Value)

Description
addCustomTerrain(terrainName,files) adds terrain data specified by files for use with UAV
scenarios. Add the terrain to uavScenario objects using the addMesh object function. Custom
terrain data is available for current and future sessions of MATLAB until you call
removeCustomTerrain.

addCustomTerrain(___ ,Name,Value) adds custom terrain data with additional options specified
by one or more name-value pairs.

Input Arguments
terrainName — User-defined identifier for terrain data
string scalar | character vector

User-defined identifier for terrain data, specified as a string scalar or a character vector.
Data Types: char | string

files — List of DTED files
string scalar | character vector | cell array of character vectors

List of DTED files, specified as a string scalar, a character vector or a cell array of character vectors.

Note If you specify multiple files, they must combine to define a complete rectangular geographic
region. If not, you must set the name-value pair 'FillMissing' to 'true'.

Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FillMissing',true

Attribution — Attribution of custom terrain data
character vector | string scalar

3 Functions

3-2

Attribution of custom terrain data, specified as a character vector or a string scalar. Attributions
display on geographic plots that use the custom terrain. By default, the attribution is empty.

Attribution of custom terrain data, specified as a character vector or a string scalar. The attribution
data is not displayed in UAV scenarios, but can be displayed on geographic plots or the Site Viewer
map. By default, the value is empty.
Data Types: char | string

FillMissing — Fill data of missing files with value 0
false (default) | true

Fill data of missing files with value 0, specified as true or false. Missing file values are required to
complete a rectangular geographic region with the input files.
Data Types: logical

WriteLocation — Name of folder to write extracted terrain files to
character vector | string scalar

Name of folder to write extracted terrain files to, specified as a character vector or a string scalar.
The folder must exist and have write permissions. By default, addCustomTerrain writes extracted
terrain files to a temporary folder that it generates using the tempname function.
Data Types: char | string

Tips
• You can find and download DTED files by using EarthExplorer, a data portal provided by the US

Geological Survey (USGS). From the list of data sets, search for DTED files by selecting Digital
Elevation, SRTM, and then SRTM 1 Arc-Second Global and SRTM Void Filled.

See Also
removeCustomTerrain | uavScenario | addMesh

Introduced in R2021a

 addCustomTerrain

3-3

https://earthexplorer.usgs.gov/

angdiff
Difference between two angles

Syntax
delta = angdiff(alpha,beta)

delta = angdiff(alpha)

Description
delta = angdiff(alpha,beta) calculates the difference between the angles alpha and beta.
This function subtracts alpha from beta with the result wrapped on the interval [-pi,pi]. You can
specify the input angles as single values or as arrays of angles that have the same number of values.

delta = angdiff(alpha) returns the angular difference between adjacent elements of alpha
along the first dimension whose size does not equal 1. If alpha is a vector of length n, the first entry
is subtracted from the second, the second from the third, etc. The output, delta, is a vector of length
n-1. If alpha is an m-by-n matrix with m greater than 1, the output, delta, will be a matrix of size
m-1-by-n. If alpha is a scalar, delta returns as an empty vector.

Examples

Calculate Difference Between Two Angles

d = angdiff(pi,2*pi)

d = 3.1416

Calculate Difference Between Two Angle Arrays

d = angdiff([pi/2 3*pi/4 0],[pi pi/2 -pi])

d = 1×3

 1.5708 -0.7854 -3.1416

Calculate Angle Differences of Adjacent Elements

angles = [pi pi/2 pi/4 pi/2];
d = angdiff(angles)

d = 1×3

3 Functions

3-4

 -1.5708 -0.7854 0.7854

Input Arguments
alpha — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array. This is the angle that
is subtracted from beta when specified. If alpha is a scalar, delta returns as an empty vector.
Example: pi/2

beta — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array of the same size as
alpha. This is the angle that alpha is subtracted from when specified.
Example: pi/2

Output Arguments
delta — Difference between two angles
scalar | vector | matrix | multidimensional array

Angular difference between two angles, returned as a scalar, vector, or array. delta is wrapped to
the interval [-pi,pi]. If alpha is a scalar, delta returns as an empty vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2015a

 angdiff

3-5

axang2quat
Convert axis-angle rotation to quaternion

Syntax
quat = axang2quat(axang)

Description
quat = axang2quat(axang) converts a rotation given in axis-angle form, axang, to quaternion,
quat.

Examples

Convert Axis-Angle Rotation to Quaternion

axang = [1 0 0 pi/2];
quat = axang2quat(axang)

quat = 1×4

 0.7071 0.7071 0 0

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion, one per
row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

3 Functions

3-6

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2axang

Introduced in R2015a

 axang2quat

3-7

axang2rotm
Convert axis-angle rotation to rotation matrix

Syntax
rotm = axang2rotm(axang)

Description
rotm = axang2rotm(axang) converts a rotation given in axis-angle form, axang, to an
orthonormal rotation matrix, rotm. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying).

Examples

Convert Axis-Angle Rotation to Rotation Matrix

axang = [0 1 0 pi/2];
rotm = axang2rotm(axang)

rotm = 3×3

 0.0000 0 1.0000
 0 1.0000 0
 -1.0000 0 0.0000

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

3 Functions

3-8

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2axang

Introduced in R2015a

 axang2rotm

3-9

axang2tform
Convert axis-angle rotation to homogeneous transformation

Syntax
tform = axang2tform(axang)

Description
tform = axang2tform(axang) converts a rotation given in axis-angle form, axang, to a
homogeneous transformation matrix, tform. When using the transformation matrix, premultiply it
with the coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Axis-Angle Rotation to Homogeneous Transformation
axang = [1 0 0 pi/2];
tform = axang2tform(axang)

tform = 4×4

 1.0000 0 0 0
 0 0.0000 -1.0000 0
 0 1.0000 0.0000 0
 0 0 0 1.0000

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the transformation matrix, premultiply it with the coordinates to be
formed (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

3 Functions

3-10

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2axang

Introduced in R2015a

 axang2tform

3-11

cart2hom
Convert Cartesian coordinates to homogeneous coordinates

Syntax
hom = cart2hom(cart)

Description
hom = cart2hom(cart) converts a set of points in Cartesian coordinates to homogeneous
coordinates.

Examples

Convert 3-D Cartesian Points to Homogeneous Coordinates

c = [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975];
h = cart2hom(c)

h = 2×4

 0.8147 0.1270 0.6324 1.0000
 0.9058 0.9134 0.0975 1.0000

Input Arguments
cart — Cartesian coordinates
n-by-(k–1) matrix

Cartesian coordinates, specified as an n-by-(k–1) matrix, containing n points. Each row of cart
represents a point in (k–1)-dimensional space. k must be greater than or equal to 2.
Example: [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975]

Output Arguments
hom — Homogeneous points
n-by-k matrix

Homogeneous points, returned as an n-by-k matrix, containing n points. k must be greater than or
equal to 2.
Example: [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5]

3 Functions

3-12

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
hom2cart

Introduced in R2015a

 cart2hom

3-13

createCustomSensorTemplate
Create sample implementation for UAV custom sensor interface

Syntax
createCustomSensorTemplate

Description
createCustomSensorTemplate creates a sample implementation for UAV custom sensor that
inherits from the uav.SensorAdaptor class. This function opens a new file in the MATLAB Editor.

Examples

Simulate IMU Sensor Mounted on UAV

Create a sensor adaptor for an imuSensor from Navigation Toolbox™ and gather readings for a
simulated UAV flight scenario.

Create Sensor Adaptor

Use the createCustomSensorTemplate function to generate a template sensor and update it to
adapt an imuSensor object for usage in UAV scenario.

createCustomSensorTemplate

This example provivdes the adaptor class uavIMU, which can be viewed using the following
command.

edit uavIMU.m

Use Sensor Adaptor in UAV Scenario Simulation

Use the IMU sensor adaptor in a UAV Scenario simulation. First, create the scenario.

scenario = uavScenario("StopTime", 8, "UpdateRate", 100);

Create a UAV platform and specify the trajectory. Add a fixed-wing mesh for visualization.

plat = uavPlatform("UAV", scenario, "Trajectory", ...
 waypointTrajectory([0 0 0; 100 0 0; 100 100 0], "TimeOfArrival", [0 5 8], "AutoBank", true));
updateMesh(plat,"fixedwing", {10}, [1 0 0], eul2tform([0 0 pi]));

Attach the IMU sensor using the uavSensor object and specify the uavIMU as an input. Load
parameters for the sensor model.

imu = uavSensor("IMU", plat, uavIMU(imuSensor));

fn = fullfile(matlabroot,'toolbox','shared',...
 'positioning','positioningdata','generic.json');
loadparams(imu.SensorModel,fn,"GenericLowCost9Axis");

3 Functions

3-14

Visualize the scenario.

figure
ax = show3D(scenario);
xlim([-20 200]);
ylim([-20 200]);

Preallocate the simData structure and fields to store simulation data. The IMU sensor will output
acceleration and angular rates.

simData = struct;
simData.Time = duration.empty;
simData.AccelerationX = zeros(0,1);
simData.AccelerationY = zeros(0,1);
simData.AccelerationZ = zeros(0,1);
simData.AngularRatesX = zeros(0,1);
simData.AngularRatesY = zeros(0,1);
simData.AngularRatesZ = zeros(0,1);

Setup the scenario.

setup(scenario);

Run the simulation using the advance function. Update the sensors and record the data.

updateCounter = 0;
while true
 % Advance scenario.
 isRunning = advance(scenario);
 updateCounter = updateCounter + 1;
 % Update sensors and read IMU data.
 updateSensors(scenario);
 [isUpdated, t, acc, gyro] = read(imu);
 % Store data in structure.
 simData.Time = [simData.Time; seconds(t)];
 simData.AccelerationX = [simData.AccelerationX; acc(1)];
 simData.AccelerationY = [simData.AccelerationY; acc(2)];
 simData.AccelerationZ = [simData.AccelerationZ; acc(3)];
 simData.AngularRatesX = [simData.AngularRatesX; gyro(1)];
 simData.AngularRatesY = [simData.AngularRatesY; gyro(2)];
 simData.AngularRatesZ = [simData.AngularRatesZ; gyro(3)];

 % Update visualization every 10 updates.
 if updateCounter > 10
 show3D(scenario, "FastUpdate", true, "Parent", ax);
 updateCounter = 0;
 drawnow limitrate
 end
 % Exit loop when scenario is finished.
 if ~isRunning
 break;
 end
end

 createCustomSensorTemplate

3-15

Visualize the simulated IMU readings.

simTable = table2timetable(struct2table(simData));
figure
stackedplot(simTable, ["AccelerationX", "AccelerationY", "AccelerationZ", ...
 "AngularRatesX", "AngularRatesY", "AngularRatesZ"], ...
 "DisplayLabels", ["AccX (m/s^2)", "AccY (m/s^2)", "AccZ (m/s^2)", ...
 "AngularRateX (rad/s)", "AngularRateY (rad/s)", "AngularRateZ (rad/s)"]);

3 Functions

3-16

See Also
uav.SensorAdaptor

Introduced in R2021a

 createCustomSensorTemplate

3-17

enu2lla
Transform local east-north-up coordinates to geodetic coordinates

Syntax
lla = enu2lla(xyzENU,lla0,method)

Description
lla = enu2lla(xyzENU,lla0,method) transforms the local east-north-up (ENU) Cartesian
coordinates xyzENU to geodetic coordinates lla. Specify the origin of the local ENU system as the
geodetic coordinates lla0.

Note

• The latitude and longitude values in the geodetic coordinate system use the World Geodetic
System of 1984 (WGS84) standard.

• Specify altitude as height in meters above the WGS84 reference ellipsoid.

Examples

Transform ENU Coordinates to Geodetic Coordinates

Specify the geodetic coordinates of the local origin in Zermatt, Switzerland.

lla0 = [46.017 7.750 1673]; % [lat0 lon0 alt0]

Specify the ENU coordinates of a point of interest, in meters. In this case, the point of interest is the
Matterhorn.

xyzENU = [-7134.8 -4556.3 2852.4]; % [xEast yNorth zUp]

Transform the local ENU coordinates to geodetic coordinates using flat earth approximation.

lla = enu2lla(xyzENU,lla0,'flat')

lla = 1×3
103 ×

 0.0460 0.0077 4.5254

Input Arguments
xyzENU — Local ENU Cartesian coordinates
three-element row vector | n-by-3 matrix

3 Functions

3-18

Local ENU Cartesian coordinates, specified as a three-element row vector or an n-by-3 matrix. n is
the number of points to transform. Specify each point in the form [xEast yNorth zUp]. xEast, yNorth,
and zUp are the respective x-, y-, and z-coordinates, in meters, of the point in the local ENU system.
Data Types: double

lla0 — Origin of local ENU system in geodetic coordinates
three-element row vector | n-by-3 matrix

Origin of the local ENU system in the geodetic coordinates, specified as a three-element row vector
or an n-by-3 matrix. n is the number of origin points. Specify each point in the form [lat0 lon0
alt0]. lat0 and lon0 specify the latitude and longitude of the origin, respectively, in degrees. alt0
specifies the altitude of the origin in meters.
Data Types: double

method — Transformation method
'flat' | 'ellipsoid'

Transformation method, specified as 'flat' or 'ellipsoid'. This argument specifies whether the
function assumes the planet is flat or ellipsoidal.

The flat Earth transformation method has these limitations:

• Assumes that the flight path and bank angle are zero.
• Assumes that the flat Earth z-axis is normal to the Earth at only the initial geodetic latitude and

longitude. This method has higher accuracy over small distances from the initial geodetic latitude
and longitude, and closer to the equator. The method calculates a longitude with higher accuracy
when the variation in latitude is smaller.

• Latitude values of +90 and -90 may return unexpected values because of singularity at the poles.

Data Types: char | string

Output Arguments
lla — Geodetic coordinates
three-element row vector | n-by-3 matrix

Geodetic coordinates, returned as a three-element row vector or an n-by-3 matrix. n is the number of
transformed points. Each point is in the form [lat lon alt]. lat and lon specify the latitude and
longitude, respectively, in degrees. alt specifies the altitude in meters.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
lla2enu | lla2ned | ned2lla

 enu2lla

3-19

Introduced in R2020b

3 Functions

3-20

eul2quat
Convert Euler angles to quaternion

Syntax
quat = eul2quat(eul)
quat = eul2quat(eul,sequence)

Description
quat = eul2quat(eul) converts a given set of Euler angles, eul, to the corresponding quaternion,
quat. The default order for Euler angle rotations is "ZYX".

quat = eul2quat(eul,sequence) converts a set of Euler angles into a quaternion. The Euler
angles are specified in the axis rotation sequence, sequence. The default order for Euler angle
rotations is "ZYX".

Examples

Convert Euler Angles to Quaternion

eul = [0 pi/2 0];
qZYX = eul2quat(eul)

qZYX = 1×4

 0.7071 0 0.7071 0

Convert Euler Angles to Quaternion Using Default ZYZ Axis Order

eul = [pi/2 0 0];
qZYZ = eul2quat(eul,'ZYZ')

qZYZ = 1×4

 0.7071 0 0 0.7071

Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.

 eul2quat

3-21

Example: [0 0 1.5708]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion, one per
row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2eul | quaternion

Introduced in R2015a

3 Functions

3-22

eul2rotm
Convert Euler angles to rotation matrix

Syntax
rotm = eul2rotm(eul)
rotm = eul2rotm(eul,sequence)

Description
rotm = eul2rotm(eul) converts a set of Euler angles, eul, to the corresponding rotation matrix,
rotm. When using the rotation matrix, premultiply it with the coordinates to be rotated (as opposed
to postmultiplying). The default order for Euler angle rotations is "ZYX".

rotm = eul2rotm(eul,sequence) converts Euler angles to a rotation matrix, rotm. The Euler
angles are specified in the axis rotation sequence, sequence. The default order for Euler angle
rotations is "ZYX".

Examples

Convert Euler Angles to Rotation Matrix

eul = [0 pi/2 0];
rotmZYX = eul2rotm(eul)

rotmZYX = 3×3

 0.0000 0 1.0000
 0 1.0000 0
 -1.0000 0 0.0000

Convert Euler Angles to Rotation Matrix Using ZYZ Axis Order

eul = [0 pi/2 pi/2];
rotmZYZ = eul2rotm(eul,'ZYZ')

rotmZYZ = 3×3

 0.0000 -0.0000 1.0000
 1.0000 0.0000 0
 -0.0000 1.0000 0.0000

 eul2rotm

3-23

Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.
Example: [0 0 1.5708]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2eul

Introduced in R2015a

3 Functions

3-24

eul2tform
Convert Euler angles to homogeneous transformation

Syntax
eul = eul2tform(eul)
tform = eul2tform(eul,sequence)

Description
eul = eul2tform(eul) converts a set of Euler angles, eul, into a homogeneous transformation
matrix, tform. When using the transformation matrix, premultiply it with the coordinates to be
transformed (as opposed to postmultiplying). The default order for Euler angle rotations is "ZYX".

tform = eul2tform(eul,sequence) converts Euler angles to a homogeneous transformation.
The Euler angles are specified in the axis rotation sequence, sequence. The default order for Euler
angle rotations is "ZYX".

Examples

Convert Euler Angles to Homogeneous Transformation Matrix

eul = [0 pi/2 0];
tformZYX = eul2tform(eul)

tformZYX = 4×4

 0.0000 0 1.0000 0
 0 1.0000 0 0
 -1.0000 0 0.0000 0
 0 0 0 1.0000

Convert Euler Angles to Homogeneous Transformation Matrix Using ZYZ Axis Order

eul = [0 pi/2 pi/2];
tformZYZ = eul2tform(eul,'ZYZ')

tformZYZ = 4×4

 0.0000 -0.0000 1.0000 0
 1.0000 0.0000 0 0
 -0.0000 1.0000 0.0000 0
 0 0 0 1.0000

 eul2tform

3-25

Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.
Example: [0 0 1.5708]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to be rotated (as
opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2eul

Introduced in R2015a

3 Functions

3-26

hom2cart
Convert homogeneous coordinates to Cartesian coordinates

Syntax
cart = hom2cart(hom)

Description
cart = hom2cart(hom) converts a set of homogeneous points to Cartesian coordinates.

Examples

Convert Homogeneous Points to 3-D Cartesian Points

h = [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5];
c = hom2cart(h)

c = 2×3

 0.5570 1.9150 0.3152
 1.0938 1.9298 1.9412

Input Arguments
hom — Homogeneous points
n-by-k matrix

Homogeneous points, specified as an n-by-k matrix, containing n points. k must be greater than or
equal to 2.
Example: [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5]

Output Arguments
cart — Cartesian coordinates
n-by-(k–1) matrix

Cartesian coordinates, returned as an n-by-(k–1) matrix, containing n points. Each row of cart
represents a point in (k–1)-dimensional space. k must be greater than or equal to 2.
Example: [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 hom2cart

3-27

See Also
cart2hom

Introduced in R2015a

3 Functions

3-28

lla2enu
Transform geodetic coordinates to local east-north-up coordinates

Syntax
xyzENU = lla2enu(lla,lla0,method)

Description
xyzENU = lla2enu(lla,lla0,method) transforms the geodetic coordinates lla to local east-
north-up (ENU) Cartesian coordinates xyzENU. Specify the origin of the local ENU system as the
geodetic coordinates lla0.

Note

• The latitude and longitude values in the geodetic coordinate system use the World Geodetic
System of 1984 (WGS84) standard.

• Specify altitude as height in meters above the WGS84 reference ellipsoid.

Examples

Transform Geodetic Coordinates to ENU Coordinates

Specify the geodetic coordinates of the local origin in Zermatt, Switzerland.

lla0 = [46.017 7.750 1673]; % [lat0 lon0 alt0]

Specify the geodetic coordinates of a point of interest. In this case, the point of interest is the
Matterhorn.

lla = [45.976 7.658 4531]; % [lat lon alt]

Transform the geodetic coordinates to local ENU coordinates using flat earth approximation.

xyzENU = lla2enu(lla,lla0,'flat')

xyzENU = 1×3
103 ×

 -7.1244 -4.5572 2.8580

Input Arguments
lla — Geodetic coordinates
three-element row vector | n-by-3 matrix

 lla2enu

3-29

Geodetic coordinates, specified as a three-element row vector or an n-by-3 matrix. n is the number of
points to transform. Specify each point in the form [lat lon alt]. lat and lon specify the latitude
and longitude respectively in degrees. alt specifies the altitude in meters.
Data Types: double

lla0 — Origin of local ENU system in geodetic coordinates
three-element row vector | n-by-3 matrix

Origin of the local ENU system in the geodetic coordinates, specified as a three-element row vector
or an n-by-3 matrix. n is the number of origin points. Specify each point in the form [lat0 lon0
alt0]. lat0 and lon0 specify the latitude and longitude of the origin, respectively, in degrees. alt0
specifies the altitude of the origin in meters.
Data Types: double

method — Transformation method
'flat' | 'ellipsoid'

Transformation method, specified as 'flat' or 'ellipsoid'. This argument specifies whether the
function assumes the planet is flat or ellipsoidal.

The flat Earth transformation method has these limitations:

• Assumes that the flight path and bank angle are zero.
• Assumes that the flat Earth z-axis is normal to the Earth at only the initial geodetic latitude and

longitude. This method has higher accuracy over small distances from the initial geodetic latitude
and longitude, and closer to the equator. The method calculates a longitude with higher accuracy
when the variation in latitude is smaller.

• Latitude values of +90 and -90 may return unexpected values because of singularity at the poles.

Data Types: char | string

Output Arguments
xyzENU — Local ENU Cartesian coordinates
three-element row vector | n-by-3 matrix

Local ENU Cartesian coordinates, returned as a three-element row vector or an n-by-3 matrix. n is
the number of transformed points. Each point is in the form [xEast yNorth zUp]. xEast, yNorth,
and zUp are the respective x-, y-, and z-coordinates, in meters, of the point in the local ENU system.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
enu2lla | lla2ned | ned2lla

3 Functions

3-30

Introduced in R2020b

 lla2enu

3-31

lla2ned
Transform geodetic coordinates to local north-east-down coordinates

Syntax
xyzNED = lla2ned(lla,lla0,method)

Description
xyzNED = lla2ned(lla,lla0,method) transforms the geodetic coordinates lla to local north-
east-down (NED) Cartesian coordinates xyzNED. Specify the origin of the local NED system as the
geodetic coordinates lla0.

Note

• The latitude and longitude values in the geodetic coordinate system use the World Geodetic
System of 1984 (WGS84) standard.

• Specify altitude as height in meters above the WGS84 reference ellipsoid.

Examples

Transform Geodetic Coordinates to NED Coordinates

Specify the geodetic coordinates of the local origin in Zermatt, Switzerland.

lla0 = [46.017 7.750 1673]; % [lat0 lon0 alt0]

Specify the geodetic coordinates of a point of interest. In this case, the point of interest is the
Matterhorn.

lla = [45.976 7.658 4531]; % [lat lon alt]

Transform the geodetic coordinates to local NED coordinates using flat earth approximation.

xyzNED = lla2ned(lla,lla0,'flat')

xyzNED = 1×3
103 ×

 -4.5572 -7.1244 -2.8580

Input Arguments
lla — Geodetic coordinates
three-element row vector | n-by-3 matrix

3 Functions

3-32

Geodetic coordinates, specified as a three-element row vector or an n-by-3 matrix. n is the number of
points to transform. Specify each point in the form [lat lon alt]. lat and lon specify the latitude
and longitude respectively in degrees. alt specifies the altitude in meters.
Data Types: double

lla0 — Origin of local NED system in geodetic coordinates
three-element row vector | n-by-3 matrix

Origin of the local NED system with the geodetic coordinates, specified as a three-element row vector
or an n-by-3 matrix. n is the number of origin points. Specify each point in the form [lat0 lon0
alt0]. lat0 and lon0 specify the latitude and longitude respectively in degrees. alt0 specifies the
altitude in meters.
Data Types: double

method — Transformation method
'flat' | 'ellipsoid'

Transformation method, specified as 'flat' or 'ellipsoid'. This argument specifies whether the
function assumes the planet is flat or ellipsoidal.

The flat Earth transformation method has these limitations:

• Assumes that the flight path and bank angle are zero.
• Assumes that the flat Earth z-axis is normal to the Earth at only the initial geodetic latitude and

longitude. This method has higher accuracy over small distances from the initial geodetic latitude
and longitude, and closer to the equator. The method calculates a longitude with higher accuracy
when the variation in latitude is smaller.

• Latitude values of +90 and -90 may return unexpected values because of singularity at the poles.

Data Types: char | string

Output Arguments
xyzNED — Local NED Cartesian coordinates
three-element row vector | n-by-3 matrix

Local NED Cartesian coordinates, returned as a three-element row vector or an n-by-3 matrix. n is
the number of transformed points. Each point is in the form [xNorth yEast zDown]. xNorth,
yEast, and zDown are the respective x-, y-, and z-coordinates, in meters, of the point in the local NED
system.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
enu2lla | lla2enu | ned2lla

 lla2ned

3-33

Introduced in R2020b

3 Functions

3-34

minjerkpolytraj
Generate minimum jerk trajectory through waypoints

Syntax
[q,qd,qdd,qddd,pp,tPoints,tSamples] = minjerkpolytraj(waypoints,timePoints,
numSamples)
[q,qd,qdd,qddd,pp,tPoints,tSamples] = minjerkpolytraj(___ ,Name=Value)
[q,qd,qdd,qddd,pp,tPoints,tSamples] = minjerkpolytraj(___
,TimeAllocation=true)

Description
[q,qd,qdd,qddd,pp,tPoints,tSamples] = minjerkpolytraj(waypoints,timePoints,
numSamples) generates a minimum jerk polynomial trajectory that achieves a given set of input
waypoints with their corresponding time points. The function returns positions, velocities,
accelerations, and jerks at the given number of samples numSamples. The function also returns the
piecewise polynomial pp form of the polynomial trajectory with respect to time, as well as the time
points tPoints and the sample times tSamples.

[q,qd,qdd,qddd,pp,tPoints,tSamples] = minjerkpolytraj(___ ,Name=Value) specifies
options using one or more name-value pair arguments in addition to the input arguments from the
previous syntax. For example,
minjerkpolytraj(waypoints,timePoints,numSamples,VelocityBoundaryCondition=[1
0 -1 -1; 1 1 1 -1]) generates a two-dimensional minimum jerk trajectory and specifies the
velocity boundary conditions in each dimension for each waypoint.

[q,qd,qdd,qddd,pp,tPoints,tSamples] = minjerkpolytraj(___
,TimeAllocation=true) optimizes a combination of jerk and total segment time cost. In this case,
the function treats timePoints as an initial guess for the time of arrival at the waypoints.

Examples

Compute Minimum Jerk Trajectory for 2-D Planar Motion

Use the minjerkpolytraj function with a given set of 2-D xy waypoints. Time points for the
waypoints are also given.

wpts = [1 4 4 3 -2 0; 0 1 2 4 3 1];
tpts = 0:5;

Specify the number of samples in the output trajectory.

numsamples = 100;

Compute minimum jerk trajectories. The function outputs the trajectory positions (q), velocity (qd),
acceleration (qdd), and jerks (qddd) at the given number of samples.

[q,qd,qdd,qddd,pp,timepoints,tsamples] = minjerkpolytraj(wpts,tpts,numsamples);

 minjerkpolytraj

3-35

Plot the trajectories for the x- and y-positions. Compare the trajectory with each waypoint.

plot(tsamples,q)
hold on
plot(timepoints,wpts,'x')
xlabel('t')
ylabel('Positions')
legend('X-positions','Y-positions')
hold off

You can also verify the actual positions in the 2-D plane. Plot the separate rows of the q vector and
the waypoints as x- and y- positions.

figure
plot(q(1,:),q(2,:),'.b',wpts(1,:),wpts(2,:),'or')
xlabel('X')
ylabel('Y')

3 Functions

3-36

Input Arguments
waypoints — Waypoints for trajectory
n-by-p matrix

Waypoints for the trajectory, specified as an n-by-p matrix. n is the dimension of the trajectory, and p
is the number of waypoints.
Example: [2 5 8 4; 3 4 10 12]
Data Types: single | double

timePoints — Time points for waypoints of trajectory
p-element row vector

Time points for the waypoints of the trajectory, specified as a p-element row vector. p is the number of
waypoints.
Example: [1 2 3 5]
Data Types: single | double

numSamples — Number of samples in output trajectory
positive integer

Number of samples in the output trajectory, specified as a positive integer.

 minjerkpolytraj

3-37

Example: 50
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
minjerkpolytraj(waypoints,timePoints,numSamples,VelocityBoundaryCondition=[1
0 -1 -1; 1 1 1 -1]) generates a two-dimensional minimum jerk trajectory and specifies the
velocity boundary conditions in each dimension for each waypoint.

VelocityBoundaryCondition — Velocity boundary conditions for each waypoint
n-by-p matrix

Velocity boundary conditions for each waypoint, specified as an n-by-p matrix. Each row sets the
velocity boundary for the corresponding dimension of the trajectory at each of p waypoints. By
default, the function uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
Example: VelocityBoundaryCondition=[1 0 -1 -1; 1 1 1 -1]
Data Types: single | double

AccelerationBoundaryCondition — Acceleration boundary conditions for each waypoint
n-by-p matrix

Acceleration boundary conditions for each waypoint, specified as an n-by-p matrix. Each row sets the
acceleration boundary for the corresponding dimension of the trajectory at each of p waypoints. By
default, the function uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
Example: AccelerationBoundaryCondition=[1 0 -1 -1; 1 1 1 -1]
Data Types: single | double

JerkBoundaryCondition — Jerk boundary conditions for each waypoint
n-by-p matrix

Jerk boundary conditions for each waypoint, specified as an n-by-p matrix. Each row sets the jerk
boundary for the corresponding dimension of the trajectory at each of p waypoints. By default, the
function uses a value of 0 at the boundary waypoints and NaN at the intermediate waypoints.
Example: JerkBoundaryCondition=[1 0 -1 -1; 1 1 1 -1]
Data Types: single | double

TimeAllocation — Time allocation flag
false or 0 (default) | true or 1

Time allocation flag, specified as a logical 0 (false) or 1 (true). Enable this flag to optimize a
combination of jerk and total segment time cost.

Note If singularity occurs when the time allocation flag is enabled, reduce the MaxSegmentTime to
MinSegmentTime ratio.

3 Functions

3-38

Example: TimeAllocation=true
Data Types: logical

TimeWeight — Weight for time allocation
100 (default) | positive scalar

Weight for time allocation, specified as a positive scalar.
Example: TimeWeight=120
Data Types: single | double

MinSegmentTime — Minimum time segment length
0.1 (default) | positive scalar | (p–1)-element row vector

Minimum time segment length, specified as a positive scalar or (p–1)-element row vector.
Example: MinSegmentTime=0.2
Data Types: single | double

MaxSegmentTime — Maximum time segment length
5 (default) | positive scalar | (p–1)-element row vector

Maximum time segment length, specified as a positive scalar or (p–1)-element row vector
Example: MaxSegmentTime=10
Data Types: single | double

Output Arguments
q — Positions of trajectory
n-by-m matrix

Positions of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix. n is
the dimension of the trajectory, and m is equal to numSamples.

qd — Velocities of trajectory
n-by-m matrix

Velocities of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix. n is
the dimension of the trajectory, and m is equal to numSamples.

qdd — Accelerations of trajectory
n-by-m matrix

Accelerations of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix.
n is the dimension of the trajectory, and m is equal to numSamples.

qddd — Jerks of trajectory
n-by-m matrix

Jerks of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix. n is the
dimension of the trajectory, and m is equal to numSamples.

 minjerkpolytraj

3-39

pp — Piecewise polynomial
structure

Piecewise-polynomial, returned as a structure that defines the polynomial for each section of the
piecewise trajectory. You can build your own piecewise polynomials using mkpp, or evaluate the
polynomial at specified times using ppval. The structure contains the fields:

• form: 'pp'.
• breaks: p-element vector of times when the piecewise trajectory changes forms. p is the number

of waypoints.
• coefs: n(p–1)-by-order matrix for the coefficients for the polynomials. n(p–1) is the dimension of

the trajectory times the number of pieces. Each set of n rows defines the coefficients for the
polynomial that described each variable trajectory.

• pieces: p–1. The number of breaks minus 1.
• order: Degree of the polynomial + 1. The order of polynomial is 8.
• dim: n. The dimension of the control point positions.

tPoints — Time points for waypoints of trajectory
p-element row vector

Time points for the waypoints of the trajectory, returned as a p-element row vector. p is the number of
waypoints.

tSamples — Time samples for trajectory
m-element row vector

Time samples for the trajectory, returned as an m-element row vector. Each element of the output
position q, velocity qd, acceleration qdd, and jerk qddd has been sampled at the corresponding time
in this vector.

References
[1] Bry, Adam, Charles Richter, Abraham Bachrach, and Nicholas Roy. “Aggressive Flight of Fixed-

Wing and Quadrotor Aircraft in Dense Indoor Environments.” The International Journal of
Robotics Research, 34, no. 7 (June 2015): 969–1002.

[2] Richter, Charles, Adam Bry, and Nicholas Roy. “Polynomial Trajectory Planning for Aggressive
Quadrotor Flight in Dense Indoor Environments." Paper presented at the International
Symposium of Robotics Research (ISRR 2013), 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
minsnappolytraj

3 Functions

3-40

Introduced in R2021b

 minjerkpolytraj

3-41

minsnappolytraj
Generate minimum snap trajectory through waypoints

Syntax
[q,qd,qdd,qddd,qdddd,pp,tPoints,tSamples] = minsnappolytraj(waypoints,
timePoints,numSamples)
[q,qd,qdd,qddd,qdddd,pp,tPoints,tSamples] = minsnappolytraj(___ ,Name=Value)
[q,qd,qdd,qddd,qdddd,pp,tPoints,tSamples] = minsnappolytraj(___
,TimeAllocation=true)

Description
[q,qd,qdd,qddd,qdddd,pp,tPoints,tSamples] = minsnappolytraj(waypoints,
timePoints,numSamples) generates a minimum snap polynomial trajectory that achieves a given
set of input waypoints with their corresponding time points. The function returns positions, velocities,
accelerations, jerks, and snaps at the given number of samples numSamples. The function also
returns the piecewise polynomial pp form of the polynomial trajectory with respect to time, as well as
the time points tPoints, and the sample times tSamples.

[q,qd,qdd,qddd,qdddd,pp,tPoints,tSamples] = minsnappolytraj(___ ,Name=Value)
specifies options using one or more name-value pair arguments in addition to the input arguments
from the previous syntax. For example,
minsnappolytraj(waypoints,timePoints,numSamples,VelocityBoundaryCondition=[1
0 -1 -1; 1 1 1 -1]) generates a two-dimensional minimum snap trajectory and specifies the
velocity boundary conditions in each dimension for each waypoint.

[q,qd,qdd,qddd,qdddd,pp,tPoints,tSamples] = minsnappolytraj(___
,TimeAllocation=true) optimizes a combination of snap and the total segment time cost. In this
case, the function treats timePoints as an initial guess for the time of arrival at the waypoints.

Examples

Compute Minimum Snap Trajectory for 2-D Planar Motion

Use the minsnappolytraj function with a given set of 2-D xy waypoints. Time points for the
waypoints are also given.

wpts = [1 4 4 3 -2 0; 0 1 2 4 3 1];
tpts = 0:5;

Specify the number of samples in the output trajectory.

numsamples = 100;

Compute minimum snap trajectories. The function outputs the trajectory positions (q), velocity (qd),
acceleration (qdd), jerks (qddd), and snaps (qdddd) at the given number of samples.

[q,qd,qdd,qddd,qdddd,pp,timepoints,tsamples] = minsnappolytraj(wpts,tpts,numsamples);

3 Functions

3-42

Plot the trajectories for the x- and y-positions. Compare the trajectory with each waypoint.

plot(tsamples,q)
hold on
plot(timepoints,wpts,'x')
xlabel('t')
ylabel('Positions')
legend('X-positions','Y-positions')
hold off

You can also verify the actual positions in the 2-D plane. Plot the separate rows of the q vector and
the waypoints as x- and y- positions.

figure
plot(q(1,:),q(2,:),'.b',wpts(1,:),wpts(2,:),'or')
xlabel('X')
ylabel('Y')

 minsnappolytraj

3-43

Input Arguments
waypoints — Waypoints for trajectory
n-by-p matrix

Waypoints for the trajectory, specified as an n-by-p matrix. n is the dimension of the trajectory, and p
is the number of waypoints.
Example: [2 5 8 4; 3 4 10 12]
Data Types: single | double

timePoints — Time points for waypoints of trajectory
p-element row vector

Time points for the waypoints of the trajectory, specified as a p-element row vector. p is the number of
waypoints.
Example: [1 2 3 5]
Data Types: single | double

numSamples — Number of samples in output trajectory
positive integer

Number of samples in the output trajectory, specified as a positive integer.

3 Functions

3-44

Example: 50
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
minsnappolytraj(waypoints,timePoints,numSamples,VelocityBoundaryCondition=[1
0 -1 -1; 1 1 1 -1]) generates a two-dimensional minimum snap trajectory and specifies the
velocity boundary conditions in each dimension for each waypoint.

VelocityBoundaryCondition — Velocity boundary conditions for each waypoint
n-by-p matrix

Velocity boundary conditions for each waypoint, specified as an n-by-p matrix. Each row sets the
velocity boundary for the corresponding dimension of the trajectory at each of p waypoints. By
default, the function uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
Example: VelocityBoundaryCondition=[1 0 -1 -1; 1 1 1 -1]
Data Types: single | double

AccelerationBoundaryCondition — Acceleration boundary conditions for each waypoint
n-by-p matrix

Acceleration boundary conditions for each waypoint, specified as an n-by-p matrix. Each row sets the
acceleration boundary for the corresponding dimension of the trajectory at each of p waypoints. By
default, the function uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
Example: AccelerationBoundaryCondition=[1 0 -1 -1; 1 1 1 -1]
Data Types: single | double

JerkBoundaryCondition — Jerk boundary conditions for each waypoint
n-by-p matrix

Jerk boundary conditions for each waypoint, specified as an n-by-p matrix. Each row sets the jerk
boundary for the corresponding dimension of the trajectory at each of p waypoints. By default, the
function uses a value of 0 at the boundary waypoints and NaN at the intermediate waypoints.
Example: JerkBoundaryCondition=[1 0 -1 -1; 1 1 1 -1]
Data Types: single | double

SnapBoundaryCondition — Snap boundary conditions for each waypoint
n-by-p matrix

Snap boundary conditions for each waypoint, specified as an n-by-p matrix. Each row sets the snap
boundary for the corresponding dimension of the trajectory at each of p waypoints. By default, the
function uses a value of 0 at the boundary waypoints and NaN at the intermediate waypoints.
Example: SnapBoundaryCondition=[1 0 -1 -1; 1 1 1 -1]

 minsnappolytraj

3-45

Data Types: single | double

TimeAllocation — Time allocation flag
false or 0 (default) | true or 1

Time allocation flag, specified as a logical 0 (false) or 1 (true). Enable this flag to optimize a
combination of snap and total segment time cost.

Note If singularity occurs when the time allocation flag is enabled, reduce the MaxSegmentTime to
MinSegmentTime ratio.

Example: TimeAllocation=true
Data Types: logical

TimeWeight — Weight for time allocation
100 (default) | positive scalar

Weight for time allocation, specified as a positive scalar.
Example: TimeWeight=120
Data Types: single | double

MinSegmentTime — Minimum time segment length
0.1 (default) | positive scalar | (p–1)-element row vector

Minimum time segment length, specified as a positive scalar or (p–1)-element row vector.
Example: MinSegmentTime=0.2
Data Types: single | double

MaxSegmentTime — Maximum time segment length
1 (default) | positive scalar | (p–1)-element row vector

Maximum time segment length, specified as a positive scalar or (p–1)-element row vector
Example: MaxSegmentTime=5
Data Types: single | double

Output Arguments
q — Positions of trajectory
n-by-m matrix

Positions of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix. n is
the dimension of the trajectory, and m is equal to numSamples.

qd — Velocities of trajectory
n-by-m matrix

Velocities of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix. n is
the dimension of the trajectory, and m is equal to numSamples.

3 Functions

3-46

qdd — Accelerations of trajectory
n-by-m matrix

Accelerations of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix.
n is the dimension of the trajectory, and m is equal to numSamples.

qddd — Jerks of trajectory
n-by-m matrix

Jerks of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix. n is the
dimension of the trajectory, and m is equal to numSamples.

qdddd — Snaps of trajectory
n-by-m matrix

Snaps of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix. n is the
dimension of the trajectory, and m is equal to numSamples.

pp — Piecewise polynomial
structure

Piecewise-polynomial, returned as a structure that defines the polynomial for each section of the
piecewise trajectory. You can build your own piecewise polynomials using mkpp, or evaluate the
polynomial at specified times using ppval. The structure contains the fields:

• form: 'pp'.
• breaks: p-element vector of times when the piecewise trajectory changes forms. p is the number

of waypoints.
• coefs: n(p–1)-by-order matrix for the coefficients for the polynomials. n(p–1) is the dimension of

the trajectory times the number of pieces. Each set of n rows defines the coefficients for the
polynomial that described each variable trajectory.

• pieces: p–1. The number of breaks minus 1.
• order: Degree of the polynomial + 1. The order of polynomial is 10.
• dim: n. The dimension of the control point positions.

tPoints — Time points for waypoints of trajectory
p-element row vector

Time points for the waypoints of the trajectory, returned as a p-element row vector. p is the number of
waypoints.

tSamples — Time samples for trajectory
m-element row vector

Time samples for the trajectory, returned as an m-element row vector. Each element of the output
position q, velocity qd, acceleration qdd, jerk qddd, and snap qdddd has been sampled at the
corresponding time in this vector.

References
[1] Bry, Adam, Charles Richter, Abraham Bachrach, and Nicholas Roy. “Aggressive Flight of Fixed-

Wing and Quadrotor Aircraft in Dense Indoor Environments.” The International Journal of
Robotics Research, 34, no. 7 (June 2015): 969–1002.

 minsnappolytraj

3-47

[2] Richter, Charles, Adam Bry, and Nicholas Roy. “Polynomial Trajectory Planning for Aggressive
Quadrotor Flight in Dense Indoor Environments." Paper presented at the International
Symposium of Robotics Research (ISRR 2013), 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
minjerkpolytraj

Introduced in R2021b

3 Functions

3-48

ned2lla
Transform local north-east-down coordinates to geodetic coordinates

Syntax
lla = ned2lla(xyzNED,lla0,method)

Description
lla = ned2lla(xyzNED,lla0,method) transforms the local north-east-down (NED) Cartesian
coordinates xyzNED to geodetic coordinates lla. Specify the origin of the local NED system as the
geodetic coordinates lla0.

Note

• The latitude and longitude values in the geodetic coordinate system use the World Geodetic
System of 1984 (WGS84) standard.

• Specify altitude as height in meters above the WGS84 reference ellipsoid.

Examples

Transform NED Coordinates to Geodetic Coordinates

Specify the geodetic coordinates of the local origin in Zermatt, Switzerland.

lla0 = [46.017 7.750 1673]; % [lat0 lon0 alt0]

Specify the NED coordinates of a point of interest, in meters. In this case, the point of interest is the
Matterhorn.

xyzNED = [-4556.3 -7134.8 -2852.4]; % [xNorth yEast zDown]

Transform the local NED coordinates to geodetic coordinates using flat earth approximation.

lla = ned2lla(xyzNED,lla0,'flat')

lla = 1×3
103 ×

 0.0460 0.0077 4.5254

Input Arguments
xyzNED — Local NED Cartesian coordinates
three-element row vector | n-by-3 matrix

 ned2lla

3-49

Local NED Cartesian coordinates, specified as a three-element row vector or an n-by-3 matrix. n is
the number of points to transform. Specify each point in the form [xNorth yEast zDown]. xNorth,
yEast, and zDown are the respective x-, y-, and z-coordinates, in meters, of the point in the local NED
system.
Data Types: double

lla0 — Origin of local NED system in geodetic coordinates
three-element row vector | n-by-3 matrix

Origin of the local NED system with the geodetic coordinates, specified as a three-element row vector
or an n-by-3 matrix. n is the number of origin points. Specify each point in the form [lat0 lon0
alt0]. lat0 and lon0 specify the latitude and longitude respectively in degrees. alt0 specifies the
altitude in meters.
Data Types: double

method — Transformation method
'flat' | 'ellipsoid'

Transformation method, specified as 'flat' or 'ellipsoid'. This argument specifies whether the
function assumes the planet is flat or ellipsoidal.

The flat Earth transformation method has these limitations:

• Assumes that the flight path and bank angle are zero.
• Assumes that the flat Earth z-axis is normal to the Earth at only the initial geodetic latitude and

longitude. This method has higher accuracy over small distances from the initial geodetic latitude
and longitude, and closer to the equator. The method calculates a longitude with higher accuracy
when the variation in latitude is smaller.

• Latitude values of +90 and -90 may return unexpected values because of singularity at the poles.

Data Types: char | string

Output Arguments
lla — Geodetic coordinates
three-element row vector | n-by-3 matrix

Geodetic coordinates, returned as a three-element row vector or an n-by-3 matrix. n is the number of
transformed points. Each point is in the form [lat lon alt]. lat and lon specify the latitude and
longitude, respectively, in degrees. alt specifies the altitude in meters.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
enu2lla | lla2enu | lla2ned

3 Functions

3-50

Introduced in R2020b

 ned2lla

3-51

plotTransforms
Plot 3-D transforms from translations and rotations

Syntax
ax = plotTransforms(translations,rotations)
ax = plotTransforms(translations,rotations,Name,Value)

Description
ax = plotTransforms(translations,rotations) draws transform frames in a 3-D figure
window using the specified translations and rotations. The z-axis always points upward.

ax = plotTransforms(translations,rotations,Name,Value) specifies additional options
using name-value pair arguments. Specify multiple name-value pairs to set multiple options.

Input Arguments
translations — xyz-positions
[x y z] vector | matrix of [x y z] vectors

xyz-positions specified as a vector or matrix of [x y z] vectors. Each row represents a new frame to
plot with a corresponding orientation in rotations.
Example: [1 1 1; 2 2 2]

rotations — Rotations of xyz-positions
quaternion array | matrix of [w x y z] quaternion vectors

Rotations of xyz-positions specified as a quaternion array or n-by-4 matrix of [w x y z]
quaternion vectors. Each element of the array or each row of the matrix represents the rotation of the
xyz-positions specified in translations.
Example: [1 1 1 0; 1 3 5 0]

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FrameSize',5

FrameSize — Size of frames and attached meshes
positive numeric scalar

Size of frame and attached meshes, specified as positive numeric scalar.

InertialZDirection — Direction of positive z-axis of inertial frame
"up" (default) | "down"

3 Functions

3-52

Direction of the positive z-axis of inertial frame, specified as either "up" or "down". In the plot, the
positive z-axis always points up.

MeshFilePath — File path of mesh file attached to frames
character vector | string scalar

File path of mesh file attached to frames, specified as either a character vector or string scalar. The
mesh is attached to each plotted frame at the specified position and orientation. Provided .stl are

• "fixedwing.stl"
• "multirotor.stl"
• "groundvehicle.stl"

Example: 'fixedwing.stl'

MeshColor — Color of attached mesh
"red" (default) | RGB triplet | string scalar

Color of attached mesh, specified as an RGB triplet or string scalar.
Example: [0 0 1] or "green"

Parent — Axes used to plot transforms
Axes object | UIAxes object

Axes used to plot the pose graph, specified as the comma-separated pair consisting of 'Parent' and
either an Axes or UIAxes object. See axes or uiaxes.

Output Arguments
ax — Axes used to plot transforms
Axes object | UIAxes object

Axes used to plot the pose graph, specified as the comma-separated pair consisting of 'Parent' and
either an Axes or UIAxesobject. See axes or uiaxes.

See Also
quaternion | hom2cart | eul2quat | tform2quat | rotm2quat

Introduced in R2018b

 plotTransforms

3-53

quat2axang
Convert quaternion to axis-angle rotation

Syntax
axang = quat2axang(quat)

Description
axang = quat2axang(quat) converts a quaternion, quat, to the equivalent axis-angle rotation,
axang.

Examples

Convert Quaternion to Axis-Angle Rotation

quat = [0.7071 0.7071 0 0];
axang = quat2axang(quat)

axang = 1×4

 1.0000 0 0 1.5708

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

Unit quaternion, specified as an n-by-4 matrix or n-element vector of quaternion objects containing
n quaternions. If the input is a matrix, each row is a quaternion vector of the form q = [w x y z], with
w as the scalar number.
Example: [0.7071 0.7071 0 0]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, returned as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]

3 Functions

3-54

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2quat | quaternion

Introduced in R2015a

 quat2axang

3-55

quat2eul
Convert quaternion to Euler angles

Syntax
eul = quat2eul(quat)
eul = quat2eul(quat,sequence)

Description
eul = quat2eul(quat) converts a quaternion rotation, quat, to the corresponding Euler angles,
eul. The default order for Euler angle rotations is "ZYX".

eul = quat2eul(quat,sequence) converts a quaternion into Euler angles. The Euler angles are
specified in the axis rotation sequence, sequence. The default order for Euler angle rotations is
"ZYX".

Examples

Convert Quaternion to Euler Angles
quat = [0.7071 0.7071 0 0];
eulZYX = quat2eul(quat)

eulZYX = 1×3

 0 0 1.5708

Convert Quaternion to Euler Angles Using ZYZ Axis Order
quat = [0.7071 0.7071 0 0];
eulZYZ = quat2eul(quat,'ZYZ')

eulZYZ = 1×3

 1.5708 -1.5708 -1.5708

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

Unit quaternion, specified as an n-by-4 matrix or n-element vector of quaternion objects containing
n quaternions. If the input is a matrix, each row is a quaternion vector of the form q = [w x y z], with
w as the scalar number.

3 Functions

3-56

Example: [0.7071 0.7071 0 0]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.
Example: [0 0 1.5708]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2quat | quaternion

Introduced in R2015a

 quat2eul

3-57

quat2rotm
Convert quaternion to rotation matrix

Syntax
rotm = quat2rotm(quat)

Description
rotm = quat2rotm(quat) converts a quaternion quat to an orthonormal rotation matrix, rotm.
When using the rotation matrix, premultiply it with the coordinates to be rotated (as opposed to
postmultiplying).

Examples

Convert Quaternion to Rotation Matrix

quat = [0.7071 0.7071 0 0];
rotm = quat2rotm(quat)

rotm = 3×3

 1.0000 0 0
 0 -0.0000 -1.0000
 0 1.0000 -0.0000

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

Unit quaternion, specified as an n-by-4 matrix or n-element vector of quaternion objects containing
n quaternions. If the input is a matrix, each row is a quaternion vector of the form q = [w x y z], with
w as the scalar number.
Example: [0.7071 0.7071 0 0]

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

3 Functions

3-58

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2quat | quaternion

Introduced in R2015a

 quat2rotm

3-59

quat2tform
Convert quaternion to homogeneous transformation

Syntax
tform = quat2tform(quat)

Description
tform = quat2tform(quat) converts a quaternion, quat, to a homogeneous transformation
matrix, tform. When using the transformation matrix, premultiply it with the coordinates to be
transformed (as opposed to postmultiplying).

Examples

Convert Quaternion to Homogeneous Transformation
quat = [0.7071 0.7071 0 0];
tform = quat2tform(quat)

tform = 4×4

 1.0000 0 0 0
 0 -0.0000 -1.0000 0
 0 1.0000 -0.0000 0
 0 0 0 1.0000

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

Unit quaternion, specified as an n-by-4 matrix or n-element vector of quaternion objects containing
n quaternions. If the input is a matrix, each row is a quaternion vector of the form q = [w x y z], with
w as the scalar number.
Example: [0.7071 0.7071 0 0]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, returned as a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to be rotated (as
opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

3 Functions

3-60

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2quat | quaternion

Introduced in R2015a

 quat2tform

3-61

removeCustomTerrain
Remove custom terrain data

Syntax
removeCustomTerrain(terrainName)

Description
removeCustomTerrain(terrainName) removes the custom terrain data specified by the user-
defined terrainName. You can use this function to remove terrain data that is no longer needed. The
terrain data to be removed must have been previously added using addCustomTerrain.

Input Arguments
terrainName — User-defined identifier for terrain data
string scalar | character vector

User-defined identifier for terrain data previously added using addCustomTerrain, specified as a
string scalar or a character vector.
Data Types: char | string

See Also
addCustomTerrain

Introduced in R2021a

3 Functions

3-62

rotm2axang
Convert rotation matrix to axis-angle rotation

Syntax
axang = rotm2axang(rotm)

Description
axang = rotm2axang(rotm) converts a rotation given as an orthonormal rotation matrix, rotm, to
the corresponding axis-angle representation, axang. The input rotation matrix must be in the
premultiply form for rotations.

Examples

Convert Rotation Matrix to Axis-Angle Rotation

rotm = [1 0 0 ; 0 -1 0; 0 0 -1];
axang = rotm2axang(rotm)

axang = 1×4

 1.0000 0 0 3.1416

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and must be orthonormal. The input rotation matrix must be in the premultiply
form for rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs. Consider
validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

 rotm2axang

3-63

Rotation given in axis-angle form, returned as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2rotm

Introduced in R2015a

3 Functions

3-64

rotm2eul
Convert rotation matrix to Euler angles

Syntax
eul = rotm2eul(rotm)
eul = rotm2eul(rotm,sequence)

Description
eul = rotm2eul(rotm) converts a rotation matrix, rotm, to the corresponding Euler angles, eul.
The input rotation matrix must be in the premultiply form for rotations. The default order for Euler
angle rotations is "ZYX".

eul = rotm2eul(rotm,sequence) converts a rotation matrix to Euler angles. The Euler angles
are specified in the axis rotation sequence, sequence. The default order for Euler angle rotations is
"ZYX".

Examples

Convert Rotation Matrix to Euler Angles

rotm = [0 0 1; 0 1 0; -1 0 0];
eulZYX = rotm2eul(rotm)

eulZYX = 1×3

 0 1.5708 0

Convert Rotation Matrix to Euler Angles Using ZYZ Axis Order

rotm = [0 0 1; 0 1 0; -1 0 0];
eulZYZ = rotm2eul(rotm,'ZYZ')

eulZYZ = 1×3

 -3.1416 -1.5708 -3.1416

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

 rotm2eul

3-65

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. The input rotation matrix must be in the premultiply form for
rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs. Consider
validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.
Example: [0 0 1.5708]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2rotm

Introduced in R2015a

3 Functions

3-66

rotm2quat
Convert rotation matrix to quaternion

Syntax
quat = rotm2quat(rotm)

Description
quat = rotm2quat(rotm) converts a rotation matrix, rotm, to the corresponding unit quaternion
representation, quat. The input rotation matrix must be in the premultiply form for rotations.

Examples

Convert Rotation Matrix to Quaternion

rotm = [0 0 1; 0 1 0; -1 0 0];
quat = rotm2quat(rotm)

quat = 1×4

 0.7071 0 0.7071 0

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. The input rotation matrix must be in the premultiply form for
rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs. Consider
validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion, one per
row, is of the form q = [w x y z], with w as the scalar number.

 rotm2quat

3-67

Example: [0.7071 0.7071 0 0]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2rotm

Introduced in R2015a

3 Functions

3-68

rotm2tform
Convert rotation matrix to homogeneous transformation

Syntax
tform = rotm2tform(rotm)

Description
tform = rotm2tform(rotm) converts the rotation matrix, rotm, into a homogeneous
transformation matrix, tform. The input rotation matrix must be in the premultiply form for
rotations. When using the transformation matrix, premultiply it with the coordinates to be
transformed (as opposed to postmultiplying).

Examples

Convert Rotation Matrix to Homogeneous Transformation

rotm = [1 0 0 ; 0 -1 0; 0 0 -1];
tform = rotm2tform(rotm)

tform = 4×4

 1 0 0 0
 0 -1 0 0
 0 0 -1 0
 0 0 0 1

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. The input rotation matrix must be in the premultiply form for
rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs. Consider
validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

 rotm2tform

3-69

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to be rotated (as
opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2rotm

Introduced in R2015a

3 Functions

3-70

tform2axang
Convert homogeneous transformation to axis-angle rotation

Syntax
axang = tform2axang(tform)

Description
axang = tform2axang(tform) converts the rotational component of a homogeneous
transformation, tform, to an axis-angle rotation, axang. The translational components of tform are
ignored. The input homogeneous transformation must be in the premultiply form for transformations.

Examples

Convert Homogeneous Transformation to Axis-Angle Rotation

tform = [1 0 0 0; 0 0 -1 0; 0 1 0 0; 0 0 0 1];
axang = tform2axang(tform)

axang = 1×4

 1.0000 0 0 1.5708

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous transformations.
The input homogeneous transformation must be in the premultiply form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axes, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]

 tform2axang

3-71

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2tform

Introduced in R2015a

3 Functions

3-72

tform2eul
Extract Euler angles from homogeneous transformation

Syntax
eul = tform2eul(tform)
eul = tform2eul(tform, sequence)

Description
eul = tform2eul(tform) extracts the rotational component from a homogeneous transformation,
tform, and returns it as Euler angles, eul. The translational components of tform are ignored. The
input homogeneous transformation must be in the premultiply form for transformations. The default
order for Euler angle rotations is "ZYX".

eul = tform2eul(tform, sequence) extracts the Euler angles, eul, from a homogeneous
transformation, tform, using the specified rotation sequence, sequence. The default order for Euler
angle rotations is "ZYX".

Examples

Extract Euler Angles from Homogeneous Transformation Matrix

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
eulZYX = tform2eul(tform)

eulZYX = 1×3

 0 0 3.1416

Extract Euler Angles from Homogeneous Transformation Matrix Using ZYZ Rotation

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
eulZYZ = tform2eul(tform,'ZYZ')

eulZYZ = 1×3

 0 -3.1416 3.1416

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

 tform2eul

3-73

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous transformations.
The input homogeneous transformation must be in the premultiply form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.
Example: [0 0 1.5708]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2tform

Introduced in R2015a

3 Functions

3-74

tform2quat
Extract quaternion from homogeneous transformation

Syntax
quat = tform2quat(tform)

Description
quat = tform2quat(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as a quaternion, quat. The translational components of tform
are ignored. The input homogeneous transformation must be in the premultiply form for
transformations.

Examples

Extract Quaternion from Homogeneous Transformation

tform = [1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 1];
quat = tform2quat(tform)

quat = 1×4

 0 1 0 0

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous transformations.
The input homogeneous transformation must be in the premultiply form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion, one per
row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

 tform2quat

3-75

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2tform

Introduced in R2015a

3 Functions

3-76

tform2rotm
Extract rotation matrix from homogeneous transformation

Syntax
rotm = tform2rotm(tform)

Description
rotm = tform2rotm(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as an orthonormal rotation matrix, rotm. The translational
components of tform are ignored. The input homogeneous transformation must be in the pre-
multiply form for transformations. When using the rotation matrix, premultiply it with the coordinates
to be rotated (as opposed to postmultiplying).

Examples

Convert Homogeneous Transformation to Rotation Matrix

tform = [1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 1];
rotm = tform2rotm(tform)

rotm = 3×3

 1 0 0
 0 -1 0
 0 0 -1

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the pre-multiply form for
transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying).

 tform2rotm

3-77

Example: [0 0 1; 0 1 0; -1 0 0]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2tform

Introduced in R2015a

3 Functions

3-78

tform2trvec
Extract translation vector from homogeneous transformation

Syntax
trvec = tform2trvec(tform)

Description
trvec = tform2trvec(tform) extracts the Cartesian representation of translation vector, trvec ,
from a homogeneous transformation, tform. The rotational components of tform are ignored. The
input homogeneous transformation must be in the premultiply form for transformations.

Examples

Extract Translation Vector from Homogeneous Transformation

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
trvec = tform2trvec(tform)

trvec = 1×3

 0.5000 5.0000 -1.2000

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous transformations.
The input homogeneous transformation must be in the premultiply form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
trvec — Cartesian representation of a translation vector
n-by-3 matrix

Cartesian representation of a translation vector, returned as an n-by-3 matrix containing n translation
vectors. Each vector is of the form t = [x y z].
Example: [0.5 6 100]

 tform2trvec

3-79

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trvec2tform

Introduced in R2015a

3 Functions

3-80

trvec2tform
Convert translation vector to homogeneous transformation

Syntax
tform = trvec2tform(trvec)

Description
tform = trvec2tform(trvec) converts the Cartesian representation of a translation vector,
trvec, to the corresponding homogeneous transformation, tform. When using the transformation
matrix, premultiply it with the coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Translation Vector to Homogeneous Transformation

trvec = [0.5 6 100];
tform = trvec2tform(trvec)

tform = 4×4

 1.0000 0 0 0.5000
 0 1.0000 0 6.0000
 0 0 1.0000 100.0000
 0 0 0 1.0000

Input Arguments
trvec — Cartesian representation of a translation vector
n-by-3 matrix

Cartesian representation of a translation vector, specified as an n-by-3 matrix containing n translation
vectors. Each vector is of the form t = [x y z].
Example: [0.5 6 100]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, returned as a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to be rotated (as
opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

 trvec2tform

3-81

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2trvec

Introduced in R2015a

3 Functions

3-82

Blocks

4

Coordinate Transformation Conversion
Convert to a specified coordinate transformation representation
Library: Robotics System Toolbox / Utilities

Navigation Toolbox / Utilities
ROS Toolbox / Utilities
UAV Toolbox / Utilities

Description
The Coordinate Transformation Conversion block converts a coordinate transformation from the input
representation to a specified output representation. The input and output representations use the
following forms:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

All vectors must be column vectors.

To accommodate representations that only contain position or orientation information (TrVec or Eul,
for example), you can specify two inputs or outputs to handle all transformation information. When
you select the Homogeneous Transformation as an input or output, an optional Show TrVec input/
output port parameter can be selected on the block mask to toggle the multiple ports.

Ports
Input

Input transformation — Coordinate transformation
column vector | 3-by-3 matrix | 4-by-4 matrix

Input transformation, specified as a coordinate transformation. The following representations are
supported:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix

4 Blocks

4-2

• Translation Vector (TrVec) – [x y z]

All vectors must be column vectors.

To accommodate representations that only contain position or orientation information (TrVec or Eul,
for example), you can specify two inputs or outputs to handle all transformation information. When
you select the Homogeneous Transformation as an input or output, an optional Show TrVec input/
output port parameter can be selected on the block mask to toggle the multiple ports.

TrVec — Translation vector
3-element column vector

Translation vector, specified as a 3-element column vector, [x y z], which corresponds to a
translation in the x, y, and z axes respectively. This port can be used to input or output the translation
information separately from the rotation vector.
Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation port to get
the option to show the additional TrVec port. Enable the port by clicking Show TrVec input/
output port.

Output Arguments

Output transformation — Coordinate transformation
column vector | 3-by-3 matrix | 4-by-4 matrix

Output transformation, specified as a coordinate transformation with the specified representation.
The following representations are supported:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

To accommodate representations that only contain position or orientation information (TrVec or Eul,
for example), you can specify two inputs or outputs to handle all transformation information. When
you select the Homogeneous Transformation as an input or output, an optional Show TrVec input/
output port parameter can be selected on the block mask to toggle the multiple ports.

TrVec — Translation vector
three-element column vector

Translation vector, specified as a three-element column vector, [x y z], which corresponds to a
translation in the x, y, and z axes respectively. This port can be used to input or output the translation
information separately from the rotation vector.
Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation port to get
the option to show the additional TrVec port. Enable the port by clicking Show TrVec input/
output port.

 Coordinate Transformation Conversion

4-3

Parameters
Representation — Input or output representation
Axis-Angle | Euler Angles | Homogeneous Transformation | Rotation Matrix |
Translation Vector | Quaternion

Select the representation for both the input and output port for the block. If you are using a
transformation with only orientation information, you can also select the Show TrVec input/
output port when converting to or from a homogeneous transformation.

Axis rotation sequence — Order of Euler angle axis rotations
ZYX (default) | ZYZ | XYZ

Order of the Euler angle axis rotations, specified as ZYX, ZYZ, or XYZ. The order of the angles in the
input or output port Eul must match this rotation sequence. The default order ZYX specifies an
orientation by:

• Rotating about the initial z-axis
• Rotating about the intermediate y-axis
• Rotating about the second intermediate x-axis

Dependencies

You must select Euler Angles for the Representation input or output parameter. The axis
rotation sequence only applies to Euler angle rotations.

Show TrVec input/output port — Toggle TrVec port
off (default) | on

Toggle the TrVec input or output port when you want to specify or receive a separate translation
vector for position information along with an orientation representation.

Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation port to get
the option to show the additional TrVec port.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
axang2quat | eul2tform | trvec2tform

Introduced in R2017b

4 Blocks

4-4

GPS
Simulate GPS sensor readings with noise
Library: UAV Toolbox / UAV Scenario and Sensor Modeling

Navigation Toolbox / Multisensor Positioning / Sensor
Models
Sensor Fusion and Tracking Toolbox / Multisensor
Positioning / Sensor Models

Description
The block outputs noise-corrupted GPS measurements based on the input position and velocity in the
local coordinate frame or geodetic frame. It uses the WGS84 earth model to convert local coordinates
to latitude-longitude-altitude LLA coordinates.

Ports
Input

Position — Position of GPS receiver in navigation coordinate system
matrix

Specify the input position of the GPS receiver in the navigation coordinate system as a real, finite N-
by-3 matrix. N is the number of samples in the current frame. The format of the matrix rows differs
depending on the value of the Position input format parameter.

• If the value of the Position input format parameter is Local, specify each row of the Position
as Cartesian coordinates in meters with respect to the local navigation reference frame, specified
by the Reference frame parameter, with the origin specified by the Reference location
parameter.

• If the value of the Position input format parameter is Geodetic, specify each row of the
Position input as geodetic coordinates of the form [latitude longitude altitude]. The
values of latitude and longitude are in degrees. Altitude is the height above the WGS84
ellipsoid model in meters.

Data Types: single | double

Velocity — Velocity in local navigation coordinate system (m/s)
matrix

Specify the input velocity of the GPS receiver in the navigation coordinate system in meters per
second as a real, finite N-by-3 matrix. N is the number of samples in the current frame. The format of
the matrix rows differs depending on the value of the Position input format parameter.

 GPS

4-5

• If the value of the Position input format parameter is Local, specify each row of the Velocity
with respect to the local navigation reference frame (NED or ENU), specified by the Reference
frame parameter, with the origin specified by the Reference location parameter.

• If the value of the Position input format parameter is Geodetic, specify each row of the
Velocity with respect to the navigation reference frame (NED or ENU), specified by the
Reference frame parameter, with the origin specified by Position.

Data Types: single | double

Output

LLA — Position in LLA coordinate system
matrix

Position of the GPS receiver in the geodetic latitude, longitude, and altitude (LLA) coordinate system,
returned as a real, finite N-by-3 array. Latitude and longitude are in degrees with North and East
being positive. Altitude is in meters.

N is the number of samples in the current frame.
Data Types: single | double

Velocity — Velocity in local navigation coordinate system (m/s)
matrix

Velocity of the GPS receiver in the local navigation coordinate system in meters per second, returned
as a real, finite N-by-3 matrix. N is the number of samples in the current frame. The format of the
matrix rows differs depending on the value of the Position input format parameter.

• If the value of the Position input format parameter is Local, the Velocity output is with respect
to the local navigation reference frame (NED or ENU), specified by the Reference frame
parameter, with the origin specified by the Reference location parameter.

• If the value of the Position input format parameter is Geodetic, the Velocity output is with
respect to the navigation reference frame (NED or ENU), specified by the Reference frame
parameter, with the origin specified by LLA.

Data Types: single | double

Groundspeed — Magnitude of horizontal velocity in local navigation coordinate system
(m/s)
vector

Magnitude of the horizontal velocity of the GPS receiver in the local navigation coordinate system in
meters per second, returned as a real, finite N-element column vector.

N is the number of samples in the current frame.
Data Types: single | double

Course — Direction of horizontal velocity in local navigation coordinate system (°)
vector

Direction of the horizontal velocity of the GPS receiver in the local navigation coordinate system, in
degrees, returned as a real, finite N-element column vector of values from 0 to 360. North
corresponds to 0 degrees and East corresponds to 90 degrees.

4 Blocks

4-6

N is the number of samples in the current frame.
Data Types: single | double

Parameters
Reference frame — Reference frame
NED (default) | ENU

Specify the reference frame as NED (North-East-Down) or ENU(East-North-Up).

Position input format — Position coordinate input format
Local (default) | Geodetic

Specify the position coordinate input format as Local or Geodetic.

• If you set this parameter to Local, then the input to the Position port must be in the form of
Cartesian coordinates with respect to the local navigation frame, specified by the Reference
Frame parameter, with the origin fixed and defined by the Reference location parameter. The
input to the Velocity input port must also be with respect to this local navigation frame.

• If you set this parameter to Geodetic, then the input to the Position port must be geodetic
coordinates in [latitude longitude altitude]. The input to the Velocity input port must
also be with respect to the navigation frame specified by the Reference frame parameter, with
the origin corresponding to the Position port.

Reference location — Origin of local navigation reference frame
[0,0,0] (default) | three-element vector

Specify the origin of the local reference frame as a three-element row vector in geodetic coordinates
[latitude longitude altitude], where altitude is the height above the reference ellipsoid
model WGS84. The reference location values are in degrees, degrees, and meters, respectively. The
degree format is decimal degrees (DD).

Dependencies

To enable this parameter, set the Position input format parameter to Local.

Horizontal position accuracy — Horizontal position accuracy (m)
1.6 (default) | nonnegative real scaler

Specify horizontal position accuracy as a nonnegative real scalar in meters. The horizontal position
accuracy specifies the standard deviation of the noise in the horizontal position measurement.
Increasing this value adds noise to the measurement, decreasing its accuracy.

Tunable: Yes

Vertical position accuracy — Vertical position accuracy (m)
3 (default) | nonnegative real scaler

Specify vertical position accuracy as a nonnegative real scalar in meters. The vertical position
accuracy specifies the standard deviation of the noise in the vertical position measurement.
Increasing this value adds noise to the measurement, decreasing its accuracy.

Tunable: Yes

 GPS

4-7

Velocity accuracy — Velocity accuracy (m/s)
0.1 (default) | nonnegative real scalar

Specify velocity accuracy per second as a nonnegative real scalar in meters. The velocity accuracy
specifies the standard deviation of the noise in the velocity measurement. Increasing this value adds
noise to the measurement, decreasing its accuracy.

Tunable: Yes

Decay factor — Global position noise decay factor
0.999 (default) | scalar in range [0, 1]

Specify the global position noise decay factor as a numeric scalar in the range [0, 1]. A decay factor
of 0 models the global position noise as a white noise process. A decay factor of 1 models the global
position noise as a random walk process.

Tunable: Yes

Seed — Initial seed
67 (default) | nonnegative integer

Specify the initial seed of an mt19937ar random number generator algorithm as a nonnegative
integer.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Select the type of simulation to run from these options:

• Interpreted execution — Simulate the model using the MATLAB interpreter. For more
information, see “Simulation Modes” (Simulink).

• Code generation — Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change.

See Also
Objects
gpsSensor

Introduced in R2021b

4 Blocks

4-8

Fixed-Wing UAV Point Mass
Integrate fourth- or sixth-order point mass equations of motion in coordinated flight
Library: UAV Toolbox / Algorithms

Aerospace Blockset / Equations of Motion / Point Mass

Description
The Fixed-Wing Point Mass block integrates fourth- or sixth-order point mass equations of motion in
coordinated flight.

Limitations
• The flat Earth reference frame is considered inertial, an approximation that allows the forces due

to the Earth's motion relative to the "fixed stars" to be neglected.
• The block assumes that there is fully coordinated flight, that is, there is no side force (wind axes)

and sideslip is always zero.

Ports
Input

Lift — Lift
scalar

Lift, specified as a scalar in units of force.
Data Types: double

Drag — Drag
scalar

Drag, specified as a scalar in units of force.
Data Types: double

Weight — Weight
scalar

Weight, specified as a scalar in units of force.
Data Types: double

Thrust — Thrust
scalar

Thrust, specified as a scalar in units of force.

 Fixed-Wing UAV Point Mass

4-9

Data Types: double

ɣa — Flight path angle relative to the air mass
scalar

Flight path angle relative to the air mass, specified as a scalar in radians.
Data Types: double

μ — Bank angle
scalar

Bank angle, specified as a scalar in radians.
Data Types: double

ɑ — Angle of attack
scalar

Angle of attack, specified as a scalar in radians.
Data Types: double

Vwind — Wind vector
three-element vector

Wind vector in the direction in which the air mass is moving, specified as a three-element vector.
Data Types: double

Output

V — Airspeed
scalar

Airspeed, returned as a scalar.
Data Types: double

G — Ground speed projection
scalar

Ground speed over the Earth (speed of motion over the ground), returned as a scalar.
Data Types: double

Va — Velocity vector relative to air mass
three-element vector

Velocity vector relative to the air mass, returned as a three-element vector.
Data Types: double

Ve — Velocity vector relative to Earth with [North East Down] orientation
three-element vector

Velocity vector relative to Earth with [North East Down] orientation, returned as a three-element
vector.

4 Blocks

4-10

Dependencies

To enable this port, set Reference frame orientation to [North East Down].
Data Types: double

VENU — Velocity vector relative to Earth
three-element vector

Velocity vector relative to Earth with [East North Up] orientation, returned as a three-element
vector.
Dependencies

To enable this port, set Reference frame orientation to [East North Up].
Data Types: double

Xe — Position vector relative to Earth
three-element vector

Position vector relative to Earth with [North East Down] orientation, returned as a three-element
vector.
Dependencies

To enable this port, set Reference frame orientation to [North East Down].
Data Types: double

XENU — Position vector relative to Earth
three-element vector

Position vector relative to Earth with [East North Up] orientation, returned as a three-element
vector.
Dependencies

To enable this port, set Reference frame orientation to [East North Up].
Data Types: double

γa — Flight path angle relative to air mass
scalar

Flight path angle relative to the air mass, returned as a scalar.
Data Types: double

γ — Flight path angle relative to Earth
scalar

Flight path angle relative to Earth, returned as a scalar.
Data Types: double

χa — Heading angle relative to air mass
scalar

Heading angle relative to air mass, returned as a scalar.

 Fixed-Wing UAV Point Mass

4-11

Dependencies

To enable this port, set Degrees of Freedom to 6th Order (Coordinated Flight).
Data Types: double

χ — Heading angle relative to Earth
scalar

Heading angle relative to Earth, returned as a scalar.
Dependencies

To enable this port, set Degrees of Freedom to 6th Order (Coordinated Flight).
Data Types: double

Parameters
Units — Units
Metric (MKS) (default) | English (velocity in ft/s) | English (velocity in kts)

Input and output units, specified as follows:

Units Forces Velocity Position Mass
Metric (MKS) newtons meters per second meters kilograms
English (velocity in
ft/s)

pounds feet per second feet slugs

English (velocity in
kts)

pounds knots feet slugs

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (velocity in ft/s)' | 'English (velocity in
kts)'
Default: 'Metric (MKS)'

Reference frame orientation — Reference frames
[North East Down] (default) | [East North Up]

Reference frames used for input ports and output ports, specified as [East North Up] or [North
East Down].
Programmatic Use
Block Parameter: frame
Type: character vector
Values: '[East North Up]' | '[North East Down]'
Default: '[North East Down]'

Degrees of freedom — Degrees of freedom
6th Order (Coordinated Flight) (default) | 4th Order (Longitudinal)

Degrees of freedom, specified as 4th Order (Longitudinal) or 6th Order (Coordinated
Flight).

4 Blocks

4-12

Programmatic Use
Block Parameter: order
Type: character vector
Values: '4th Order (Longitudinal)' | '6th Order (Coordinated Flight)'
Default: '6th Order (Coordinated Flight)'

Initial crossrange — Initial East (Earth) crossrange location
0 (default) | scalar

Initial East (Earth) location in the [North East Down] orientation, specified as a scalar.

Dependencies

The direction specification of this parameter depends on the Reference frame orientation and
Degrees of Freedom setting:

Initial crossrange Reference frame orientation Degrees of freedom
East [North East Down] 6th Order (Coordinated Flight)
North [East North Up] 6th Order (Coordinated Flight)

Programmatic Use
Block Parameter: east
Type: character vector
Values: scalar
Default: '0'

Initial downrange — Initial North (Earth) downrange
0 (default) | scalar

Initial North (Earth) downrange of the point mass, specified as a scalar.

Dependencies

The direction specification of this parameter depends on the Reference frame orientation and
Degrees of Freedom setting:

Initial downrange Reference frame orientation Degrees of freedom
North [North East Down] 6th Order (Coordinated Flight)
North [North East Down] 4th Order (Longitudinal)
East [East North Up] 6th Order (Coordinated Flight)
East [East North Up] 4th Order (Longitudinal)

Programmatic Use
Block Parameter: north
Type: character vector
Values: scalar
Default: '0'

Initial altitude — Initial altitude
0 (default) | scalar

Initial altitude of the point mass, specified as a scalar.

 Fixed-Wing UAV Point Mass

4-13

Programmatic Use
Block Parameter: altitude
Type: character vector
Values: scalar
Default: '0'

Initial airspeed — Initial airspeed
50 (default) | scalar

Initial airspeed of the point mass, specified as a scalar.

Programmatic Use
Block Parameter: 'airspeed'
Type: character vector
Values: scalar
Default: '50'

Initial flight path angle — Initial flight path angle
0 (default) | scalar

Initial flight path angle of the point mass, specified as a scalar.

Programmatic Use
Block Parameter: gamma
Type: character vector
Values: scalar
Default: '0'

Initial heading angle — Initial heading angle
0 (default) | scalar

Initial heading angle of the point mass, specified as a scalar.

Dependencies

To enable this parameter, set Degrees of Freedom to 6th Order (Coordinated Flight).

Programmatic Use
Block Parameter: chi
Type: character vector
Values: scalar
Default: '0'

Mass — Point mass
10 (default) | scalar

Mass of the point mass, specified as a scalar.

Programmatic Use
Block Parameter: mass
Type: character vector
Values: scalar
Default: '10'

4 Blocks

4-14

Algorithms
The integrated equations of motion for the point mass are:

V̇ = (Tcosα− D−Wsinγai)/m
γ̇a = ((L + Tsinα)cosμ−Wcosγai)/(mV)

Ẋe = Va + Vw

6th order equations:

Ẋa = ((L + Tsinα)sinμ)/(mVcosγa)

Ẋa East = Vcosχacosγa

Ẋa North = Vsinχacosγa

Ẋa Up = Vsinγa

4th order equations:

χ̇a = 0

Ẋa East = Vcosγa

Ẋa North = 0

Ẋa Up = Vsinγa

where:

• m — Mass.
• g — Gravitational acceleration.
• W — Weight (m*g).
• L — Lift force.
• D — Drag force.
• T — Thrust force.
• α — Angle of attack.
• μ — Angle of bank.
• γai — Input port value for the flight path angle.
• V — Airspeed, as measured on the aircraft, with respect to the air mass. It is also the magnitude of

vector Va.
• Vw — Steady wind vector.
• Subscript a — For the variables, denotes that they are with respect to the steadily moving air

mass:

• γa — Flight path angle.
• χa — Heading angle.
• Xa — Position [East, North, Up].

 Fixed-Wing UAV Point Mass

4-15

• Subscript e — Flat Earth inertial frame such that so Xe is the position on the Earth after correcting
Xa for the air mass movement.

Additional outputs are:

G = (Ve East2 + Ve North2)

γ = sin−1 Ve Up
Ve

χ = tan−1 Ve North
Ve East

where:

• The four-quadrant inverse tangent (atan2) calculates the heading angle.
• The groundspeed, G, is the speed over the flat Earth (a 2-D projection).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Guidance Model | fixedwing

Introduced in R2021a

4 Blocks

4-16

MAVLink Blank Message
Create blank MAVLink message bus by specifying payload information and MAVLink message type
Library: UAV Toolbox / MAVLink

Description
The MAVLink Blank Message block creates a Simulink nonvirtual bus representing a MAVLink packet
based on the specified Message ID, System ID, Component ID, Sequence, Payload information, and
MAVLink message type.

Payload information is another nonvirtual bus within the MAVLink packet bus. The block creates
Simulink buses for the MAVLink packet and the corresponding message that work with MAVLink
Serializer and MAVLink Deserializer blocks. On each sample hit, the block outputs a blank or zero
signal for the payload for the designated message type.

All elements of the bus other than the Message ID, System ID, and Component ID are initialized to 0.
The only exception is the mavlink_version field in the HEARTBEAT message of the common.xml
dialect which is initialized to 3.

Ports
Output

Msg — MAVLink packet
nonvirtual bus

MAVLink packet, returned as a Simulink nonvirtual bus. The bus contains the fields Message ID,
System ID, Component ID, Sequence, and Payload. The Payload is another nonvirtual bus
corresponding to the MAVLink message type that you selected in the MAVLink message type
parameter. The Message ID is initialized to the numeric value of the selected MAVLink message ID.
The System ID and Component ID are initialized to the corresponding System ID and Component
ID parameters.
Data Types: bus

Parameters
MAVLink dialect source — Source for specifying the MAVLink message definition
Select from standard MAVLink dialects (default) | Specify your own

Source for specifying the MAVLink message definition XML name, specified as one of the following:

• Select from standard MAVLink dialects - Use this option to select a definition XML
among the 12 commonly used message definition XML names listed in the MAVLink dialect
parameter.

 MAVLink Blank Message

4-17

https://mavlink.io/en/messages/common.html#HEARTBEAT

• Specify your own - Enter an XML name in the text box that appears for the MAVLink dialect
parameter.

MAVLink dialect — Message definition to parse for MAVLink messages
common.xml (default) | string

MAVLink message definition file (.xml) to parse for MAVLink messages, specified as a string.

If the MAVLink dialect source parameter is set to Select from standard MAVLink dialects,
you need to select a message definition among the available message definition names from the drop
down list.

If the MAVLink dialect source parameter is set to Specify your own, you need to specify the
message definition file (.xml) that is on current MATLAB path or you can provide the full path of the
xml file.

MAVLink version — MAVLink protocol version
2 (default) | 1

MAVLink protocol version that is used to serialize and deserialize the MAVLink messages.

MAVLink Message type — MAVLink message
HEARTBEAT (default)

MAVLink message, specified as a string. Click Select to select from a full list of available MAVLink
messages that depends on the values that you selected for MAVLink dialect and MAVLink version
parameters.
Data Types: string

System ID — System ID of the sender
1 (default)

MAVLink system ID, specified as a positive integer between 1 and 255. MAVLink protocol only
supports up to 255 systems. Each UAV has its own system ID, but multiple UAVs can be considered as
one system.
Data Types: uint8

Component ID — Component ID of the sender
1 (default)

MAVLink component ID, specified as a positive integer between 1 and 255.
Data Types: uint8

Sample time — Interval between outputs
inf (default) | scalar

The default value (inf) indicates that the block output never changes. If you use this value, the
simulation and code generation are faster by eliminating the need to recompute the block output. For
other values, the block outputs a new blank message at each interval of Sample time.

For more information, see “Specify Sample Time” (Simulink) (Simulink).
Data Types: uint8

4 Blocks

4-18

Tip
You can change the values for the desired fields in Payload bus by using a Bus Assignment block and
then pass the MAVLink packet bus to the MAVLink Serializer block as an input.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage and Limitations:

• The C/C++ code generated for the block can be deployed only on a Linux target.

See Also
MAVLink Serializer | MAVLink Deserializer

Introduced in R2020b

 MAVLink Blank Message

4-19

MAVLink Deserializer
Convert serialized uint8 MAVLink data stream to Simulink nonvirtual bus
Library: UAV Toolbox / MAVLink

Description
The MAVLink Deserializer block receives a uint8 buffer and decodes the buffer for MAVLink
messages. Once the block receives the MAVLink message for the selected MAVLink message type,
the block outputs a Simulink nonvirtual bus representing a MAVLink packet containing the Message
ID, System ID, Component ID, Sequence, and Payload information corresponding to the selected
MAVLink message type.

At each simulation step, the block decodes the input uint8 buffer and retrieves the MAVLink
messages that are received after decoding. If a new message for the selected MAVLink message type
has been received, the block retrieves that message from the list of received messages and converts
it to a Simulink nonvirtual bus signal.

The MAVLink decoding logic in the block takes care of scenarios where a MAVLink packet has been
received partially from a communication channel. The MAVLink Deserializer block internally stores
the current state of parsing and resumes decoding from the previous step when the new buffer has
been received over the communication channel. If the complete MAVLink packet has been received
and the received checksum matches the computed checksum for the received bytes, then this
indicates that a MAVLink message has been received. Storing the state of parsing ensures that the
block can decode the MAVLink packets received in multiple parts.

By default, the block outputs the latest received MAVLink message for the selected MAVLink message
type (if received). This behavior can be changed by selecting Queue Messages in output parameter.
In this case, all the received MAVLink messages for the desired type are queued and at each
Simulation step, the block outputs the oldest message.

Ports
Input

Data — MAVLink data stream
vector

The uint8 byte stream that contains serialized MAVLink packets. The byte stream is usually received
over a communication channel such as UDP, TCP, or Serial. At each sample time, the communication
channel receives data and returns a byte stream that contains one or more MAVLink packets. The
byte stream can also return a MAVLink packet partially in over multiple sample times. This input port
accepts variable-length signals.
Data Types: uint8

4 Blocks

4-20

Length — Length of valid MAVLink data at Data input port
scalar

Optional input port to include the length of valid MAVLink data. To enable this port, select the Input
data stream length is available parameter. Use this option when you know the exact length of the
valid MAVLink data in the data stream.

This option is useful when you have a communication channel receive peripheral that outputs
partially received data that contains trailing zeros. Such peripherals also output the length of the
actual number of valid data bytes received. You can connect the length output of the peripheral
directly with the Length input port of MAVLink Deserializer block, so that trailing zeros in the input
byte stream do not affect the decoding logic.
Data Types: uint16

Output

IsNew — New message indicator
0 | 1

New MAVLink message indicator returned as a logical. A value of 1 indicates that a new message is
available since the last sample was received by the block. This output can be used to trigger
subsystems to process new messages received from the MAVLink Deserializer block.
Data Types: Boolean

Msg — MAVLink packet
nonvirtual bus

MAVLink packet, returned as a nonvirtual bus. The type of Payload in the MAVLink packet is a
Simulink bus corresponding to the MAVLink message specified in the MAVLink message type
parameter. The block outputs blank messages until it receives a message on the message name that
you specify. The Msg port outputs this new message. If a new message is not available, it outputs the
last received MAVLink message. If a message has not been received since the start of the simulation,
Msg port outputs a blank MAVLink message.
Data Types: bus

Parameters
Main

MAVLink dialect source — Source for specifying the MAVLink message definition
Select from standard MAVLink dialects (default) | Specify your own

Source for specifying the MAVLink message definition XML name, specified as one of the following:

• Select from standard MAVLink dialects - Use this option to select a definition xml among
the 12 commonly used message definition XML names listed in the MAVLink dialect parameter.

• Specify your own - Enter an XML name in the text box that appears for the MAVLink dialect
parameter.

MAVLink dialect — Message definition to parse for MAVLink messages
common.xml (default) | string

MAVLink message definition file (.xml) to parse for MAVLink messages, specified as a string.

 MAVLink Deserializer

4-21

If the MAVLink dialect source parameter is set to Select from standard MAVLink dialects,
you need to select a message definition among the available message definition names from the
dropdown list.

If the parameter MAVLink dialect source parameter is set to Specify your own, you need to
specify the message definition file (.xml) that is on the current MATLAB path, or you can provide the
full path of the XML file.

MAVLink version — MAVLink protocol version
2 (default) | 1

MAVLink protocol version that the block uses to serialize and deserialize the MAVLink messages.

MAVLink Message type — MAVLink message
HEARTBEAT (default)

MAVLink message, specified as a string. Click Select to select from a full list of available MAVLink
messages. The list varies based on the values that you selected for MAVLink dialect and MAVLink
version parameters.
Data Types: string

Advanced

Input data stream length is available — Length of valid MAVLink data in the input
byte stream is known
off (default) | on

When you select this option, the MAVLink Deserializer block provides an additional input port called
Length. This input port can be used to pass the actual length of MAVLink data (if known) in the input
byte stream. The input byte stream is cropped for this length.

This option is useful when you have a communication channel receive peripheral that outputs
partially received data that contains trailing zeros. Such peripherals also output length of the actual
number of valid data bytes received. You can connect the length output of the peripheral directly to
the Length input port of MAVLink Deserializer block so that trailing zeros in the input byte stream
do not affect the decoding logic.

Filter output MAVLink messages by System ID — Filter received messages by System
ID
off (default) | on

Select this option to filter the received MAVLink messages for the System ID value mentioned in the
System ID parameter. This option helps you to filter the received messages by both System ID and
Component ID.

System ID — System ID value
1 (default) | scalar in the range [0,255]

Specify the System ID value to use while filtering the decoded MAVLink messages. The block outputs
the received MAVLink messages whose System ID matches the specified value and whose Message ID
matches the MAVLink message (selected in the MAVLink Message type parameter).
Dependencies

To enable this parameter, select Filter Output MAVLink messages by System ID.

4 Blocks

4-22

Filter output MAVLink messages by Component ID — Filter received messages by
System ID and Component ID
off (default) | on

Select this option to filter the received MAVLink messages for the both the System ID and the
Component ID mentioned in the System ID and Component ID parameters, respectively.
Dependencies

This parameter appears only if you select the Filter output MAVLink messages by System ID
parameter.

Component ID — Component ID value
1 (default) | [0,255]

Specify the Component ID value to use while filtering the decoded MAVLink messages. The block
outputs those received MAVLink messages whose System ID and Component ID values match the
specified values in the System ID and Component ID parameters, respectively, and whose Message
ID matches the MAVLink message (selected in the MAVLink Message type parameter).
Dependencies

To enable this parameter, select Filter Output MAVLink messages by Component ID.

Queue MAVLink messages in output — Enable queuing of the received MAVLink messages
off (default) | on

Select this option to output messages using the first-in-first-out pattern. If you do not select this
option, the MAVLink Deserializer block outputs the latest received MAVLink message for the selected
MAVLink message type (and with matching System ID and Component ID if those parameters are
selected) at each simulation step. If more than one message matches the given parameters that are
received in a simulation step, the latest message is passed as output, and the rest are discarded. You
can reverse this behavior by selecting this option.

When you select this parameter, the behavior of the MAVLink Deserializer block at each simulation
step is:

• The block stores the decoded MAVLink messages matching the selected MAVLink message type
(and matching System ID and Component ID if the those parameters are selected) in a queue. If
there are no messages among the received messages that match the required parameters, no
messages are queued.

• If the queue is not empty, the first message in the queue is sent as an output first, and the signal
at IsNew port is set to 1.

Selecting the Queue MAVLink messages in output parameter makes the Number of messages to
be queued parameter visible. You can fix the size of the queue by setting the value of this parameter.

Number of messages to be queued — Size of MAVLink message queue
50 (default) | scalar in the range (0,65535]

Specify the size of the queue to be used to store the received MAVLink messages matching the
desired parameters.
Dependencies

To enable this parameter, select Queue MAVLink messages in output.

 MAVLink Deserializer

4-23

Tips
To speed up the conversion of the received serialized data, it is recommended that you apply the
following settings in the communication channel receive block:

• Read the data at the highest rate possible to ensure that no packets are dropped. Use the IsNew
output of MAVLink Deserializer along with the logic to use MAVLink messages to know if the
output of the block is a new message or not.

• If the receive block outputs any number of bytes that are received irrespective of the data size
requested (partial receive), mention the data read size as a large number and use the length of
actual number of bytes received as an input to MAVLink Deserializer block (use the Length input
port).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage and Limitations:

• The C/C++ code generated for the block can be deployed only on a Linux target.

See Also
MAVLink Blank Message | MAVLink Serializer

Topics
“Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using
Simulink”

Introduced in R2020b

4 Blocks

4-24

MAVLink Serializer
Serialize messages of MAVLink packet by converting Simulink nonvirtual bus to uint8 data stream
Library: UAV Toolbox / MAVLink

Description
The MAVLink Serializer block accepts a Simulink nonvirtual bus and converts it into a uint8
MAVLink data stream. The nonvirtual bus represents a MAVLink packet containing the Message ID,
System ID, Component ID, Sequence, and Payload information corresponding to the selected
MAVLink message. Payload information is another nonvirtual bus within the MAVLink packet bus.

MAVLink v2 removes trailing zeros in the payload. Therefore, the length of the payload in the
serialized MAVLink data can be less than the maximum payload length of a selected MAVLink
message type.

The Data port outputs the MAVLink data stream, and the length of the output data is the maximum
possible length for the selected MAVLink message. If the length of the serialized data is less than the
maximum possible length, trailing zeros are added to the data stream. The Length port outputs the
true length of the serialized MAVLink data.

Ports
Input

Msg — MAVLink packet
nonvirtual bus

MAVLink packet as a nonvirtual bus. This is the output of the MAVLink Blank Message block in which
the values for Message ID, System ID, and Component ID are already initialized. The fields in the
Payload bus can be modified using a Bus Assignment block before passing it as an input to MAVLink
Serializer block.
Data Types: bus

Output

Data — MAVLink data stream
vector

The serialized MAVLink data for the input MAVLink message bus. MAVLink protocol version 2
removes trailing zeros in the payload. Therefore, the length of the payload in the serialized data can
be less than the maximum payload length of the MAVLink message in the dialect. In this case, the
block outputs the serialized data stream with the trailing zeros included.
Data Types: uint8

 MAVLink Serializer

4-25

Length — Length of the serialized data
scalar

The true length of the serialized data including headers and payload. This might be less than the
maximum possible length for a MAVLink message depending on how many trailing zeros are removed
in the MAVLink payload during serialization.
Data Types: uint16

Parameters
MAVLink dialect source — Source for specifying the MAVLink message definition
Select from standard MAVLink dialects (default) | Specify your own

Source for specifying the MAVLink message definition XML name, specified as one of the following:

• Select from standard MAVLink dialects - Use this option to select a definition XML
among the 12 commonly used message definition XML names listed in the MAVLink dialect
parameter.

• Specify your own - Enter an XML name in the text box that appears for the MAVLink dialect
parameter.

MAVLink dialect — Message definition to parse for MAVLink messages
common.xml (default) | string

MAVLink message definition file (.xml) to parse for MAVLink messages, specified as a string.

If the MAVLink dialect source parameter is set to Select from standard MAVLink dialects,
you need to select a message definition among the available message definition names from the
dropdown list.

If the MAVLink dialect source parameter is set to Specify your own, you need to specify the
message definition file (.xml) that is on current MATLAB path or you can provide the full path of the
XML file.

MAVLink version — MAVLink protocol version
2 (default) | 1

MAVLink protocol version that is used to serialize and deserialize the MAVLink messages.

MAVLink Message type — MAVLink message
HEARTBEAT (default)

MAVLink message, specified as a string. Click Select to select from a full list of available MAVLink
messages that are specific to the values that you selected for MAVLink dialect and MAVLink
version parameters.
Data Types: string

Tip
You can change the values for the desired fields in the Payload in the output of the MAVLink Blank
message by using a Bus Assignment block and then pass the MAVLink packet bus to the MAVLink
Serializer block as an input.

4 Blocks

4-26

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage and Limitations:

• The C/C++ code generated for the block can be deployed only on a Linux target.

See Also
MAVLink Blank Message | MAVLink Deserializer

Topics
“Exchange Data for MAVLink Microservices like Mission Protocol and Parameter Protocol Using
Simulink”

Introduced in R2020b

 MAVLink Serializer

4-27

Minimum Jerk Polynomial Trajectory
Generate minimum jerk polynomial trajectories through multiple waypoints
Library: UAV Toolbox / Algorithms

Robotics System Toolbox / Utilities

Description
The Minimum Jerk Polynomial Trajectory block generates minimum jerk polynomial trajectories that
pass through the waypoints at the times specified in time points. The block outputs positions,
velocities, accelerations, jerks, and time of arrival for achieving this trajectory based on the Time
input.

The block also accepts boundary conditions for waypoints. The block also outputs the coefficients for
the polynomials and status of the trajectory generation.

The initial and final values of positions, velocities, accelerations, and jerks of the trajectory are held
constant outside the time period defined in TimePoints input.

Ports
Input

Time — Time point along trajectory
scalar | vector

Time point along the trajectory, specified as a scalar or vector.

• When the time is specified as a scalar, this value is synced with simulation time and is used to
specify the time point for sampling the trajectory. The block outputs a vector of the trajectory
variables at that instance in time.

• If the time is specified as a vector, the block outputs a matrix with each column corresponding to
each element of the vector.

Data Types: single | double

Waypoints — Waypoints positions along trajectory
n-by-p matrix

Positions of waypoints of the trajectory at given time points, specified as an n-by-p matrix. n is the
dimension of the trajectory and p is the number of waypoints.
Data Types: single | double

TimePoints — Time points for waypoints of trajectory
p-element row vector

4 Blocks

4-28

Time points for the waypoints of the trajectory, specified as a p-element row vector. p is the number of
waypoints.
Data Types: single | double

VelBC — Velocity boundary conditions for waypoints
n-by-p matrix

Velocity boundary conditions for waypoints, specified as an n-by-p matrix. Each row sets the velocity
boundary for the corresponding dimension of the trajectory n at each of p waypoints.

By default, the block uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
Dependencies

To enable this input port, select Show boundary conditions input ports.
Data Types: single | double

AccelBC — Acceleration boundary conditions for waypoints
n-by-p matrix

Acceleration boundary conditions for waypoints, specified as an n-by-p matrix. Each row sets the
acceleration boundary for the corresponding dimension of the trajectory n at each of p waypoints.

By default, the block uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
Dependencies

To enable this input port, select Show boundary conditions input ports.
Data Types: single | double

JerkBC — Jerk boundary conditions for waypoints
n-by-p matrix

Jerk boundary conditions for waypoints, specified as an n-by-p matrix. Each row sets the jerk
boundary for the corresponding dimension of the trajectory n at each of p waypoints.

By default, the block uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
Dependencies

To enable this input port, select Show boundary conditions input ports.
Data Types: single | double

Output

q — Positions of trajectory
n-element vector | n-by-m matrix

Positions of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

 Minimum Jerk Polynomial Trajectory

4-29

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

qd — Velocities of trajectory
n-element vector | n-by-m matrix

Velocities of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

qdd — Accelerations of trajectory
n-element vector | n-by-m matrix

Accelerations of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

qddd — Jerks of trajectory
n-element vector | n-by-m matrix

Jerks of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

TimeOfArrival — Time of arrival at each waypoint
p-element vector

Time of arrival at each waypoint, returned as a p-element vector. p is the number of waypoints.
Data Types: single | double

PolynomialCoefs — Polynomial coefficients
n(p–1)-by-8 matrix

Polynomial coefficients, returned as an n(p–1)-by-8 matrix. n is the dimension of the trajectory and p
is the number of waypoints. Each set of n rows defines the coefficients for the polynomial that
described each variable trajectory.

Dependencies

To enable this output port, select Show polynomial coefficients output port.
Data Types: single | double

4 Blocks

4-30

Status — Status of trajectory generation
three-element vector of the form [SingularityStatus MaxIterStatus MaxTimeStatus]

Status of trajectory generation, returned as a three-element vector of the form
[SingularityStatus MaxIterStatus MaxTimeStatus].

SingularityStatus returned as 0 or 1 indicates the occurrence of singularity. If singularity occurs
reduce the Maximum segment time to Minimum segment time ratio.

MaxIterStatus returned as 0 or 1 indicates if the number of iterations for the solver has exceeded
Maximum iterations.

MaxTimeStatus returned as 0 or 1 indicates if the time for the solver has exceeded Maximum time.

Dependencies

To enable this output port, select Show status output port.
Data Types: uint8

Parameters
Show boundary conditions input ports — Accept boundary condition inputs
off (default) | on

Select this parameter to input the velocity, acceleration, and jerk boundary conditions, at the VelBC,
AccelBC, and JerkBC ports, respectively.

Tunable: No

Show polynomial coefficients output port — Output polynomial coefficients
off (default) | on

Select this parameter to output polynomial coefficients at the PolynomialCoefs port.

Tunable: No

Show status output port — Output status
off (default) | on

Select this parameter to output status at the Status port.

Tunable: No

Time allocation — Enable time allocation
off (default) | on

Enable to specify time allocation for the trajectory using the Time weight, Minimum segment
time, Maximum segment time, Maximum iterations, and Maximum time parameters.

Tunable: No

Time weight — Weight for time allocation
100 (default) | positive scalar

Weight for time allocation, specified as a positive scalar.

 Minimum Jerk Polynomial Trajectory

4-31

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Minimum segment time — Minimum time segment length
0.1 (default) | positive scalar | (p–1)-element positive row vector

Minimum time segment length, specified as a positive scalar or (p–1)-element positive row vector. p
is the number of waypoints.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Maximum segment time — Maximum time segment length
1 (default) | positive scalar | (p–1)-element positive row vector

Maximum time segment length, specified as a positive scalar or (p–1)-element positive row vector. p
is the number of waypoints.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Maximum iterations — Maximum iterations for solver
1500 (default) | positive integer scalar

Maximum iterations for solver, specified as a positive integer scalar.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Maximum time — Maximum time for solver
10 (default) | positive scalar

Maximum time for solver, specified as a positive scalar.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Select the type of simulation to run from these options:

4 Blocks

4-32

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

References
[1] Bry, Adam, Charles Richter, Abraham Bachrach, and Nicholas Roy. “Aggressive Flight of Fixed-

Wing and Quadrotor Aircraft in Dense Indoor Environments.” The International Journal of
Robotics Research, 34, no. 7 (June 2015): 969–1002.

[2] Richter, Charles, Adam Bry, and Nicholas Roy. “Polynomial Trajectory Planning for Aggressive
Quadrotor Flight in Dense Indoor Environments." Paper presented at the International
Symposium of Robotics Research (ISRR 2013), 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
minjerkpolytraj | minsnappolytraj

Blocks
Minimum Snap Polynomial Trajectory

Introduced in R2022a

 Minimum Jerk Polynomial Trajectory

4-33

Minimum Snap Polynomial Trajectory
Generate minimum snap polynomial trajectories through multiple waypoints
Library: UAV Toolbox / Algorithms

Robotics System Toolbox / Utilities

Description
The Minimum Snap Polynomial Trajectory block generates minimum snap polynomial trajectories that
pass through the waypoints at the times specified in time points. The block outputs positions,
velocities, accelerations, jerks, snap, and time of arrival for achieving this trajectory based on the
Time input.

The block also accepts boundary conditions for waypoints. The block also outputs the coefficients for
the polynomials and status of the trajectory generation.

The initial and final values of positions, velocities, accelerations, jerks, and snap of the trajectory are
held constant outside the time period defined in TimePoints input.

Ports
Input

Time — Time point along trajectory
scalar | vector

Time point along the trajectory, specified as a scalar or vector.

• When the time is specified as a scalar, this value is synced with simulation time and is used to
specify the time point for sampling the trajectory. The block outputs a vector of the trajectory
variables at that instance in time.

• If the time is specified as a vector, the block outputs a matrix with each column corresponding to
each element of the vector.

Data Types: single | double

Waypoints — Waypoints positions along trajectory
n-by-p matrix

Positions of waypoints of the trajectory at given time points, specified as an n-by-p matrix. n is the
dimension of the trajectory and p is the number of waypoints.
Data Types: single | double

TimePoints — Time points for waypoints of trajectory
p-element row vector

4 Blocks

4-34

Time points for the waypoints of the trajectory, specified as a p-element row vector. p is the number of
waypoints.
Data Types: single | double

VelBC — Velocity boundary conditions for waypoints
n-by-p matrix

Velocity boundary conditions for waypoints, specified as an n-by-p matrix. Each row sets the velocity
boundary for the corresponding dimension of the trajectory n at each of p waypoints.

By default, the block uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.

Dependencies

To enable this input port, select Show boundary conditions input ports.
Data Types: single | double

AccelBC — Acceleration boundary conditions for waypoints
n-by-p matrix

Acceleration boundary conditions for waypoints, specified as an n-by-p matrix. Each row sets the
acceleration boundary for the corresponding dimension of the trajectory n at each of p waypoints.

By default, the block uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.

Dependencies

To enable this input port, select Show boundary conditions input ports.
Data Types: single | double

JerkBC — Jerk boundary conditions for waypoints
n-by-p matrix

Jerk boundary conditions for waypoints, specified as an n-by-p matrix. Each row sets the jerk
boundary for the corresponding dimension of the trajectory n at each of p waypoints.

By default, the block uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.

Dependencies

To enable this input port, select Show boundary conditions input ports.
Data Types: single | double

SnapBC — Snap boundary conditions for waypoints
n-by-p matrix

Snap boundary conditions for waypoints, specified as an n-by-p matrix. Each row sets the snap
boundary for the corresponding dimension of the trajectory n at each of p waypoints.

By default, the block uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.

 Minimum Snap Polynomial Trajectory

4-35

Dependencies

To enable this input port, select Show boundary conditions input ports.
Data Types: single | double

Output

q — Positions of trajectory
n-element vector | n-by-m matrix

Positions of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

qd — Velocities of trajectory
n-element vector | n-by-m matrix

Velocities of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

qdd — Accelerations of trajectory
n-element vector | n-by-m matrix

Accelerations of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

qddd — Jerks of trajectory
n-element vector | n-by-m matrix

Jerks of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

qdddd — Snaps of trajectory
n-element vector | n-by-m matrix

Snaps of the trajectory, returned as an n-element vector or n-by-m matrix.

4 Blocks

4-36

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

TimeOfArrival — Time of arrival at each waypoint
p-element vector

Time of arrival at each waypoint, returned as a p-element vector. p is the number of waypoints.
Data Types: single | double

PolynomialCoefs — Polynomial coefficients
n(p–1)-by-10 matrix

Polynomial coefficients, returned as an n(p–1)-by-10 matrix. n is the dimension of the trajectory and p
is the number of waypoints. Each set of n rows defines the coefficients for the polynomial that
described each variable trajectory.

Dependencies

To enable this output port, select Show polynomial coefficients output port.
Data Types: single | double

Status — Status of trajectory generation
three-element vector of the form [SingularityStatus MaxIterStatus MaxTimeStatus]

Status of trajectory generation, returned as a three-element vector of the form
[SingularityStatus MaxIterStatus MaxTimeStatus].

SingularityStatus returned as 0 or 1 indicates the occurrence of singularity. If singularity occurs
reduce the Maximum segment time to Minimum segment time ratio.

MaxIterStatus returned as 0 or 1 indicates if the number of iterations for the solver has exceeded
Maximum iterations.

MaxTimeStatus returned as 0 or 1 indicates if the time limit for the solver has exceeded Maximum
time.

Dependencies

To enable this output port, select Show status output port.
Data Types: uint8

Parameters
Show boundary conditions input ports — Accept boundary condition inputs
off (default) | on

Select this parameter to input the velocity, acceleration, jerk, and snap boundary conditions, at the
VelBC, AccelBC, JerkBC, and SnapBC ports, respectively.

Tunable: No

 Minimum Snap Polynomial Trajectory

4-37

Show polynomial coefficients output port — Output polynomial coefficients
off (default) | on

Select this parameter to output polynomial coefficients at the PolynomialCoefs port.

Tunable: No

Show status output port — Output status
off (default) | on

Select this parameter to output status at the Status port.

Tunable: No

Time allocation — Enable time allocation
off (default) | on

Enable to specify time allocation for the trajectory using the Time weight, Minimum segment
time, Maximum segment time, Maximum iterations, and Maximum time parameters.

Tunable: No

Time weight — Weight for time allocation
100 (default) | positive scalar

Weight for time allocation, specified as a positive scalar.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Minimum segment time — Minimum time segment length
0.1 (default) | positive scalar | (p–1)-element positive row vector

Minimum time segment length, specified as a positive scalar or (p–1)-element positive row vector. p
is the number of waypoints.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Maximum segment time — Maximum time segment length
1 (default) | positive scalar | (p–1)-element positive row vector

Maximum time segment length, specified as a positive scalar or (p–1)-element positive row vector. p
is the number of waypoints.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

4 Blocks

4-38

Maximum iterations — Maximum iterations for solver
1500 (default) | positive integer scalar

Maximum iterations for solver, specified as a positive integer scalar.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Maximum time — Maximum time for solver
10 (default) | positive scalar

Maximum time for solver, specified as a positive scalar.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Select the type of simulation to run from these options:

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

References
[1] Bry, Adam, Charles Richter, Abraham Bachrach, and Nicholas Roy. “Aggressive Flight of Fixed-

Wing and Quadrotor Aircraft in Dense Indoor Environments.” The International Journal of
Robotics Research, 34, no. 7 (June 2015): 969–1002.

[2] Richter, Charles, Adam Bry, and Nicholas Roy. “Polynomial Trajectory Planning for Aggressive
Quadrotor Flight in Dense Indoor Environments." Paper presented at the International
Symposium of Robotics Research (ISRR 2013), 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Minimum Snap Polynomial Trajectory

4-39

See Also
Functions
minjerkpolytraj | minsnappolytraj

Blocks
Minimum Jerk Polynomial Trajectory

Introduced in R2022a

4 Blocks

4-40

Obstacle Avoidance
Compute obstacle-free direction using range sensor data and target position
Library: UAV Toolbox / Algorithms

Description
The Obstacle Avoidance block computes an obstacle-free direction using range sensor data and target
position.

Ports
Input

Position — Position of UAV
vector

Position of the UAV, specified as a vector of the form [x; y; z], in meters.
Example: [1; 1; 1]
Data Types: double

Orientation — Orientation of UAV
vector

Orientation of the UAV, specified as a quaternion vector of the form [w; x; y; z].
Example: [1; 0; 0; 0]
Data Types: double

ObstaclePoints — Positions of obstacles
matrix

Positions of the obstacles, specified as an N-by-3 matrix with rows of the form [x y z], in meters. N
is the number of obstacle points.
Example: [1 1 1; 2 2 2]
Data Types: double

TargetPostion — Position of target
vector

Position of the target, specified as a vector of the form [x; y; z], in meters.
Example: [2; 3; 4]
Data Types: double

 Obstacle Avoidance

4-41

Output

DesiredDirection — Desired direction
vector

Desired direction, returned as a vector of the form [x; y; z], in meters.
Data Types: double

DesiredYaw — Desired yaw
scalar

Desired yaw, returned as numeric scalar in radians in the range of [-pi, pi].
Data Types: double

Status — Status of obstacle-free direction
0 | 1 | 2 | 3

Status of the obstacle-free direction, returned as 0, 1, 2, or 3.

• 0 — An obstacle-free direction is found.
• 1 — No obstacle-free direction is found.
• 2 — An obstacle-free direction is found but is close to the obstacle.
• 3 — No obstacle-free direction is found and is close to obstacle.

Data Types: uint8

Parameters
Main

Sensor range limits (m) — Limits of range sensor
[0.2 10] (default) | vector of form [min max]

Specify the minimum and maximum limits of the range sensor as a vector of the form [min max],
with values in meters.
Data Types: double

Sensor horizontal field of view (deg) — Horizontal field of view limits of range
sensor
[-60 60] (default) | vector of form [min max]

Specify the minimum and maximum horizontal field of view limits of the range sensor as a vector of
the form [min max], with values in degrees.
Data Types: double

Sensor vertical field of view (deg) — Vertical field of view limits of range sensor
[-30 30] (default) | vector of form [min max]

Specify the minimum and maximum vertical field of view limits of the range sensor as a vector of the
form [min max], with values in degrees.
Data Types: double

4 Blocks

4-42

Sensor location [X, Y, Z] (m) — Sensor mounting location on UAV
[0 0 0] (default) | vector of form [x y z]

Specify the mounting location of the sensor on the UAV as a vector of the form [x y z], with values
in meters.
Data Types: double

Sensor orientation [Roll, Pitch, Yaw] (deg) — Orientation of sensor mounted on
UAV
[0 0 0] (default) | vector of form [roll pitch yaw]

Specify the orientation of the sensor mounted on the UAV as a vector of the form [roll pitch
yaw], with values in degrees.
Data Types: double

Vehicle radius (m) — Radius of UAV
1 (default) | numeric scalar

This dimension defines the smallest circle that can circumscribe your vehicle, in meters. The vehicle
radius is used to account for vehicle size when computing the obstacle-free direction.
Data Types: double

Minimum distance to obstacle (m) — Safety distance around UAV to obstacle
1 (default) | numeric scalar

The safety distance specifies, in meters, the space accounted for between the UAV and obstacles in
addition to the vehicle radius. The vehicle radius and safety distance are used to compute the
obstacle-free direction.
Data Types: double

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Specify whether to simulate the model using Interpreted execution or Code generation.

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
reduces startup time, but has a slower simulation speed than Code generation. In this mode,
you can debug the source code of the block.

• Code generation — Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for this block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of subsequent simulations is comparable to Interpreted execution.

Tunable: No

Histogram

Histogram resolution (deg) — Histogram grid resolution
5 (default) | 1 | 3 | 6 | 10 | 15 | 18 | 30 | 45 | 60

To change the histogram grid resolution, select a value from the list. All values are in degrees.

 Obstacle Avoidance

4-43

Histogram window size — Histogram window size
1 (default) | odd integer

The histogram window size determines the angular width of an obstacle-free opening in the azimuth
and elevation directions. This value is unitless.
Data Types: uint8

Histogram threshold — Threshold for computing histogram
1 (default) | positive integer

The threshold for computing the histogram specifies the minimum number of obstacle points that
should be in an histogram cell to be considered as obstacle. If a cell contains fewer than this number
of obstacle points, the cell is considered as obstacle-free.
Data Types: uint8

Maximum age of obstacle point — Maximum age of remembered obstacle point
0 (default) | numeric scalar

Specifies the maximum age of a remembered obstacle point as a numeric scalar. This value specify
the number of previous time steps for which the obstacle points from those time steps is
remembered.
Data Types: double

Cost

Target direction weight — Cost function weight for target direction
5 (default) | numeric scalar

Specifies the function weight for moving toward the target direction. To follow a target direction, set
this weight to be greater than the sum of Current direction weight and Previous direction
weight. To ignore the target direction cost, set this weight to 0.
Data Types: double

Current direction weight — Cost function weight for current direction
2 (default) | numeric scalar

Specifies the function weight for moving the vehicle in the current heading directions. Higher values
of this weight produce efficient paths. To ignore the current direction cost, set this weight to 0.
Data Types: double

Previous direction weight — Cost function weight for previous direction
2 (default) | numeric scalar

Specifies the function weight for moving in the previously selected steering direction. Higher values
of this weight produce smoother paths. To ignore the previous direction cost, set this weight to 0.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

4 Blocks

4-44

See Also
Waypoint Follower | Guidance Model

Introduced in R2021b

 Obstacle Avoidance

4-45

Orbit Follower
Orbit location of interest using UAV
Library: UAV Toolbox / Algorithms

Description
The Orbit Follower block generates course and yaw controls for following a circular orbit around a
location of interest based on the unmanned aerial vehicle's (UAV's) current pose. Select a UAV type
of fixed-wing or multirotor UAVs. You can specify any orbit center location, orbit radius, and turn
direction. A lookahead distance, LookaheadDistance, is used for tuning the path tracking and
generating the LookaheadPoint output.

Ports
Input

Pose — Current UAV pose
[x y z course] vector

Current UAV pose, specified as an [x y z course] vector. [x y z] is the UAV's position in NED
coordinates (north-east-down) specified in meters. course is the angle between ground velocity and
north direction in radians per second.
Example: [1,1,-10,pi/4]
Data Types: single | double

Center — Center of orbit
[x y z] vector

Center of orbit, specified as an [x y z] vector. [x y z] is the orbit center position in NED
coordinates (north-east-down) specified in meters.
Example: [5,5,-10]
Data Types: single | double

Radius — Radius of orbit
positive scalar

Radius of orbit, specified as a positive scalar in meters.
Example: 5
Data Types: single | double

TurnDirection — Direction of orbit
scalar

4 Blocks

4-46

Direction of orbit, specified as a scalar. Positive values indicate a clockwise turn as viewed from
above. Negative values indicate a counter-clockwise turn. A value of 0 automatically determines the
value based on the input to Pose.
Example: -1
Data Types: single | double

LookaheadDistance — Lookahead distance for tracking orbit
positive scalar

Lookahead distance for tracking the orbit, specified as a positive scalar. Tuning this value helps
adjust how tightly the UAV follows the orbit circle. Smaller values improve tracking, but can lead to
oscillations in the path.
Example: 2
Data Types: single | double

ResetNumTurns — Reset for counting turns
numeric signal

Reset for counting turns, specified as a numeric signal. Any rising signal triggers a reset of the
NumTurns output.
Example: 2

Dependencies

To enable this input, select rising for External reset.
Data Types: single | double

Output

LookaheadPoint — Lookahead point on path
[x y z] position vector

Lookahead point on path, returned as an [x y z] position vector in meters.
Data Types: double

DesiredCourse — Desired course
numeric scalar

Desired course, returned as numeric scalar in radians in the range of [-pi, pi]. The UAV course is
the angle of direction of the velocity vector relative to north measured in radians. For fixed-wing type
UAV, the values of desired course and desired yaw are equal.
Data Types: double

DesiredYaw — Desired yaw
numeric scalar

Desired yaw, returned as numeric scalar in radians in the range of [-pi, pi]. The UAV yaw is the
forward direction of the UAV (regardless of the velocity vector) relative to north measured in radians.
For fixed-wing type UAV, the values of desired course and desired yaw are equal.
Data Types: double

 Orbit Follower

4-47

OrbitRadiusFlag — Orbit radius flag
0 (default) | 1

Orbit radius flag, returned as 0 or 1. 0 indicates orbit radius is not saturated, 1 indicates orbit radius
is saturated to minimum orbit radius value specified.
Data Types: uint8

LookaheadDistFlag — Lookahead distance flag
0 (default) | 1

Lookahead distance flag, returned as 0 or 1. 0 indicates lookahead distance is not saturated, 1
indicates lookahead distance is saturated to minimum lookahead distance value specified.
Data Types: uint8

CrossTrackError — Cross track error from UAV position to path
positive numeric scalar

Cross track error from UAV position to path, returned as a positive numeric scalar in meters. The
error measures the perpendicular distance from the UAV position to the closest point on the path.

Dependencies

This port is only visible if Show CrossTrackError output port is checked.
Data Types: double

NumTurns — Number of times the UAV has completed the orbit
numeric scalar

Number of times the UAV has completed the orbit, returned as a numeric scalar. As the UAV circles
the center point, this value increases or decreases based on the specified Turn Direction. Decimal
values indicate partial completion of a circle. If the UAV cross track error exceeds the lookahead
distance, the number of turns is not updated.

NumTurns is reset whenever Center, Radius, or TurnDirection are changed. You can also use the
ResetNumTurns input.

Dependencies

This port is only visible if Show NumTurns output port is checked.

Parameters
UAV type — Type of UAV
fixed-wing (default) | multirotor

Type of UAV, specified as either fixed-wing or multirotor.

This parameter is non-tunable.

Minimum orbit radius (m) — Minimum orbit radius
1 (default) | positive numeric scalar

Minimum orbit radius, specified as a positive numeric scalar in meters.

4 Blocks

4-48

When input to the orbit Radius port is less than the minimum orbit radius, the OrbitRadiusFlag is
returned as 1 and the orbit radius value is specified as the value of minimum orbit radius.

This parameter is non-tunable.

Minimum lookahead distance (m) — Minimum lookahead distance
0.1 (default) | positive numeric scalar

Minimum lookahead distance, specified as a positive numeric scalar in meters.

When input to the LookaheadDistance port is less than the minimum lookahead distance, the
LookaheadDistFlag is returned as 1 and the lookahead distance value is specified as the value of
minimum lookahead distance.

This parameter is non-tunable.

External reset — Reset trigger source
none (default) | rising

Select rising to enable the ResetNumTurns block input.

This parameter is non-tunable.

Show CrossTrackError output port — Output cross track error
off (default) | on

Output cross track error from the CrossTrackError port.

This parameter is non-tunable.

Show NumTurns output port — Output UAV waypoint status
off (default) | on

Output UAV waypoint status from the Status port.

This parameter is non-tunable.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Waypoint Follower | UAV Guidance Model

Functions
ode45 | control | derivative | environment | state | plotTransforms

Objects
uavOrbitFollower | uavWaypointFollower | fixedwing | multirotor

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”

 Orbit Follower

4-49

“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2019a

4 Blocks

4-50

Path Manager
Compute and execute a UAV autonomous mission
Library: UAV Toolbox / Algorithms

Description
The Path Manager block computes mission parameters for an unmanned aerial vehicle (UAV) by
sequentially switching between mission points specified in the MissionData input port. The
MissionCmd input port changes the execution order at runtime. The block supports both multirotor
and fixed-wing UAV types.

Ports
Input

Pose — Current UAV pose
four-element column vector

Current UAV pose, specified as a four-element column vector of [x;y;z;courseAngle]. x, y, and z
is the current position of the UAV in north-east-down (NED) coordinates specified in meters.
courseAngle specifies the heading angle in radians in the range [-pi, pi].
Data Types: single | double

MissionData — UAV mission data
UAVPathManagerBus bus

UAV mission data, specified as a UAVPathManagerBus bus. The UAVPathManagerBus bus has the
three bus elements mode, position, and params.

You can use the Constant block to specify the mission data as an n-by-1 array of structures and set
the output data type to Bus:UAVPathManagerBus. n is the number of mission points. The fields of
each structure are:

• mode — Mode of the mission point, specified as an 8-bit unsigned integer between 1 and 6.
• position — Position of the mission point, specified as a three-element column vector of

[x;y;z]. x, y, and z is the position in north-east-down (NED) coordinates specified in meters.
• params — Parameters of the mission point, specified as a four-element column vector.

The values assigned to the fields, in turn, are assigned to their corresponding bus elements in the
UAVPathManagerBus bus.

This table describes the types of mode and the corresponding values for the position and params
fields in a mission point structure.

 Path Manager

4-51

mode position params Mode description
uint8(1) [x;y;z] [p1;p2;p3;p4] Takeoff — Take off from

the ground and travel
toward the specified
position

uint8(2) [x;y;z] [yaw;radius;p3;p4]

yaw — Yaw angle in
radians in the range [-
pi, pi]

radius — Transition
radius in meters

Waypoint — Navigate
to waypoint

uint8(3) [x;y;z]

x, y, and z is the center
of the circular orbit in
NED coordinates
specified in meters

[radius;turnDir;nu
mTurns;p4]

radius — Radius of the
orbit in meters

turnDir — Turn
direction, specified as
one of these:

• 1 — Clockwise turn
• —1 — Counter-

clockwise turn
• 0 — Automatic

selection of turn
direction

numTurns — Number of
turns

Orbit — Orbit along the
circumference of a
circle defined by the
parameters

uint8(4) [x;y;z] [p1;p2;p3;p4] Land — Land at the
specified position

uint8(5) [x;y;z]

The launch position is
specified in the Home
input port

[p1;p2;p3;p4] RTL — Return to launch
position

uint8(6) [x;y;z] [p1;p2;p3;p4]

p1, p2, p3, and p4 are
user-specified
parameters
corresponding to a
custom mission point

Custom — Custom
mission point

Note p1, p2, p3, and p4 are user-specified parameters.

4 Blocks

4-52

Example: [struct('mode',uint8(1),'position',[0;0;100],'params',[0;0;0;0])]
Data Types: bus

IsModeDone — Determine if mission point was executed
0 (default) | 1

Determine if the mission point was executed, specified as 0 (true) or 1 (false).
Data Types: Boolean

MissionCmd — Command to change mission
uint8(0) (default) | 8-bit unsigned integer between 0 and 3

Command to change mission at runtime, specified as an 8-bit unsigned integer between 0 and 3.

This table describes the possible mission commands.

Mission Command Description
uint8(0) Default — Execute the mission from first to the

last mission point in the sequence
uint8(1) Hold — Hold at the current mission point

Loiter around the current position for fixed-wing
and hover at the current position for multirotor
UAVs

uint8(2) Repeat — Repeat the mission after reaching the
last mission point

uint8(3) RTL — Execute return to launch (RTL) mode

After RTL, the mission resumes if the
MissionCmd input is changed to Default or
Repeat

Data Types: uint8

Home — UAV home location
three-element column vector

UAV home location, specified as a three-element column vector of [x;y;z]. x, y, and z is the position
in north-east-down (NED) coordinates specified in meters.
Data Types: single | double

Output

MissionParams — UAV mission parameters
UAVPathManagerBus bus

UAV mission parameters, returned as a 2-by-1 array of buses of the type UAVPathManagerBus. The
first element of the bus array is the current mission point, and the second element of the bus array is
the previous mission point.

This table describes the output mission parameters depending on the mission mode.

 Path Manager

4-53

Current Mission
Mode

Output Mission Parameters
Mission Points mode position params

Takeoff First bus element:
Current

uint8(1) [x;y;z] [p1;p2;p3;p4]

Second bus
element: Previous

mode of the
previous mission
point

position of the
previous mission
point

params of the
previous mission
point

Waypoint First bus element:
Current

uint8(2) [x;y;z] [yaw;radius;p3
;p4]

yaw — Yaw angle
in radians in the
range [-pi, pi]

radius —
Transition radius
in meters

Second bus
element: Previous

mode of the
previous mission
point

position of the
previous mission
point

• [yaw;radius;
p3;p4] if the
previous
mission point
was Takeoff

• [courseAngle
;25;p3;p4]
otherwise

courseAngle —
Angle of the line
segment between
the previous and
the current
position, specified
in radians in the
range [-pi, pi]

4 Blocks

4-54

Current Mission
Mode

Output Mission Parameters
Mission Points mode position params

Orbit First bus element:
Current

uint8(3) [x;y;z]

x, y, and z is the
center of the
circular orbit in
NED coordinates
specified in meters

[radius;turnDi
r;numTurns;p4]

radius — Radius of
the orbit in meters

turnDir — Turn
direction, specified
as one of these:

• 1 — Clockwise
turn

• —1 — Counter-
clockwise turn

• 0 — Automatic
selection of
turn direction

numTurns —
Number of turns

Second bus
element: Previous

mode of the
previous mission
point

position of the
previous mission
point

params of the
previous mission
point

Land First bus element:
Current

uint8(4) [x;y;z] [p1;p2;p3;p4]

Second bus
element: Previous

mode of the
previous mission
point

position of the
previous mission
point

params of the
previous mission
point

RTL First bus element:
Current

uint8(5) [x;y;z]

The launch
position is
specified in the
Home input port

[p1;p2;p3;p4]

Second bus
element: Previous

mode of the
previous mission
point

position of the
previous mission
point

params of the
previous mission
point

Custom First bus element:
Current

uint8(6) [x;y;z] [p1;p2;p3;p4]

p1, p2, p3, and p4
are user-specified
parameters
corresponding to a
custom mission
point

 Path Manager

4-55

Current Mission
Mode

Output Mission Parameters
Mission Points mode position params
Second bus
element: Previous

mode of the
previous mission
point

position of the
previous mission
point

params of the
previous mission
point

Note p1, p2, p3, and p4 are user-specified parameters.

At start of simulation, the previous mission point is set to the Armed mode.

mode position params
uint8(0) [x;y;z]

position of the UAV at
simulation start.

[-1;-1;-1;-1]

Set the end mission point to RTL or Land mode, else the end mission point is automatically set to
Hold mode.

This table describes the output mission parameters when the input to the MissionCmd input port is
set to Hold mode.

UAV Type Output Mission Parameters
Mission Points mode position params

Multirotor First bus element:
Current

uint8(7) [x;y;z] [-1;-1;-1;-1]

Second bus
element: Previous

mode of the
previous mission
point

position of the
previous mission
point

params of the
previous mission
point

Fixed-Wing First bus element:
Current

uint8(7) [x;y;z]

x, y, and z is the
center of the
circular orbit in
NED coordinates
specified in meters

[radius;turnDi
r;-1;-1]

radius — Loiter
radius is specified
in the Loiter
radius parameter

turnDir — Turn
direction is
specified as 0 for
automatic
selection of turn
direction

Second bus
element: Previous

mode of the
previous mission
point

position of the
previous mission
point

params of the
previous mission
point

Data Types: bus

4 Blocks

4-56

Parameters
UAV type — Type of UAV
multirotor (default) | fixed-wing

Type of UAV, specified as either multirotor or fixed-wing.

Tunable: No

Loiter radius — Loiter radius for fixed-wing UAV
25 (default) | positive numeric scalar

Loiter radius for the fixed-wing UAV, specified as a positive numeric scalar in meters.

Dependencies: To enable this parameter, set the UAV type parameter to fixed-wing.

Tunable: No

Data type — Data type of input mission bus
double (default) | single

Data type of the input mission bus, specified as either double or single.

Tunable: No

Mission bus name — Name of input mission bus
'UAVPathManagerBus' (default)

Name of the input mission bus, specified as 'UAVPathManagerBus'.

Tunable: No

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Guidance Model | Orbit Follower | Waypoint Follower

Introduced in R2020b

 Path Manager

4-57

Simulation 3D Scene Configuration
Scene configuration for 3D simulation environment
Library: UAV Toolbox / Simulation 3D

Aerospace Blockset / Animation / Simulation 3D
Automated Driving Toolbox / Simulation 3D
Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /
Sim3D Core

Description
The Simulation 3D Scene Configuration block implements a 3D simulation environment that is
rendered by using the Unreal Engine from Epic Games®. UAV Toolbox integrates the 3D simulation
environment with Simulink so that you can query the world around the vehicle and virtually test
perception, control, and planning algorithms.

You can simulate from a set of prebuilt scene or from your own custom scenes. Scene customization
requires the UAV Toolbox Interface for Unreal Engine Projects support package. For more details, see
“Customize Unreal Engine Scenes for UAVs”.

Note The Simulation 3D Scene Configuration block must execute after blocks that send data to the
3D environment and before blocks that receive data from the 3D environment. To verify the execution
order of such blocks, right-click the blocks and select Properties. Then, on the General tab, confirm
these Priority settings:

• For blocks that send data to the 3D environment, such as Simulation 3D Vehicle with Ground
Following blocks, Priority must be set to -1. That way, these blocks prepare their data before the
3D environment receives it.

• For the Simulation 3D Scene Configuration block in your model, Priority must be set to 0.
• For blocks that receive data from the 3D environment, such as blocks, Priority must be set to 1.

That way, the 3D environment can prepare the data before these blocks receive it.

For more information about execution order, see “Block Execution Order”.

Parameters
Scene Selection

Scene source — Source of scene
Default Scene (default) | Unreal Executable | Unreal Editor

Source of the scene in which to simulate, specified as one of the options in the table.

4 Blocks

4-58

Option Description
Default Scene Simulate in the default, prebuilt scene specified

in the Scene name parameter.
Unreal Executable Simulate in a scene that is part of an Unreal

Engine executable file. Specify the executable file
in the File name parameter. Specify the scene in
the Scene parameter.

Select this option to simulate in custom scenes
that have been packaged into an executable for
faster simulation.

Unreal Editor Simulate in a scene that is part of an Unreal
Engine project (.uproject) file and is open in
the Unreal Editor. Specify the project file in the
Project parameter.

Select this option when developing custom
scenes. By clicking Open Unreal Editor, you can
co-simulate within Simulink and the Unreal
Editor and modify your scenes based on the
simulation results.

Scene name — Name of prebuilt 3D scene
US city block (default)

Name of the prebuilt 3D scene in which to simulate, specified as one of these options. For details
about a scene, see its listed corresponding reference page.

• US city block —

The UAV Toolbox Interface for Unreal Engine Projects contains customizable versions of these scenes.
For details about customizing scenes, see “Customize Unreal Engine Scenes for UAVs”.

Dependencies

To enable this parameter, set Scene source to Default Scene.

File name — Name of Unreal Engine executable file
VehicleSimulation.exe (default) | valid executable file name

Name of the Unreal Engine executable file, specified as a valid executable file name. You can either
browse for the file or specify the full path to the file, using backslashes. To specify a scene from this
file to simulate in, use the Scene parameter.

By default, File name is set to VehicleSimulation.exe, which is on the MATLAB search path.
Example: C:\Local\WindowsNoEditor\AutoVrtlEnv.exe

Dependencies

To enable this parameter, set Scene source to Unreal Executable.

Scene — Name of scene from executable file
/Game/Maps/USCityBlock (default) | path to valid scene name

 Simulation 3D Scene Configuration

4-59

Name of a scene from the executable file specified by the File name parameter, specified as a path to
a valid scene name.

When you package scenes from an Unreal Engine project into an executable file, the Unreal Editor
saves the scenes to an internal folder within the executable file. This folder is located at the path /
Game/Maps. Therefore, you must prepend /Game/Maps to the scene name. You must specify this
path using forward slashes. For the file name, do not specify the .umap extension. For example, if the
scene from the executable in which you want to simulate is named myScene.umap, specify Scene
as /Game/Maps/myScene.

Alternatively, you can browse for the scene in the corresponding Unreal Engine project. These scenes
are typically saved to the Content/Maps subfolder of the project. This subfolder contains all the
scenes in your project. The scenes have the extension .umap. Select one of the scenes that you
packaged into the executable file specified by the File name parameter. Use backward slashes and
specify the .umap extension for the scene.

By default, Scene is set to /Game/Maps/USCityBlock, which is a scene from the default
VehicleSimulation.exe executable file specified by the File name parameter. This scene
corresponds to the prebuilt Straight Road scene.
Example: /Game/Maps/scene1
Example: C:\Local\myProject\Content\Maps\scene1.umap

Dependencies

To enable this parameter, set Scene source to Unreal Executable.

Project — Name of Unreal Engine project file
valid project file name

Name of the Unreal Engine project file, specified as a valid project file name. You can either browse
for the file or specify the full path to the file, using backslashes. The file must contain no spaces. To
simulate scenes from this project in the Unreal Editor, click Open Unreal Editor. If you have an
Unreal Editor session open already, then this button is disabled.

To run the simulation, in Simulink, click Run. Before you click Play in the Unreal Editor, wait until
the Diagnostic Viewer window displays this confirmation message:
In the Simulation 3D Scene Configuration block, you set the scene source to 'Unreal Editor'.
In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated the scene actors, including the vehicles and
cameras, in the Unreal Engine 3D environment. If you click Play before the Diagnostic Viewer
window displays this confirmation message, Simulink might not instantiate the actors in the Unreal
Editor.

Dependencies

To enable this parameter, set Scene source to Unreal Editor.

Scene Parameters

Scene view — Configure placement of virtual camera that displays scene
Scene Origin (default) | vehicle name

Configure the placement of the virtual camera that displays the scene during simulation.

4 Blocks

4-60

• If your model contains no Simulation 3D UAV Vehicle blocks, then during simulation, you view the
scene from a camera positioned at the scene origin.

• If your model contains at least one vehicle block, then by default, you view the scene from behind
the first vehicle that was placed in your model. To change the view to a different vehicle, set
Scene view to the name of that vehicle. The Scene view parameter list is populated with all the
Name parameter values of the vehicle blocks contained in your model.

If you add a Simulation 3D Scene Configuration block to your model before adding any vehicle blocks,
the virtual camera remains positioned at the scene. To reposition the camera to follow a vehicle,
update this parameter.

When Scene view is set to a vehicle name, during simulation, you can change the location of the
camera around the vehicle.

To smoothly change the camera views, use these key commands.

Key Camera View
1 Back left
2 Back
3 Back right
4 Left
5 Internal
6 Right
7 Front left
8 Front
9 Front right
0 Overhead

For additional camera controls, use these key commands.

Key Camera Control
Tab Cycle the view between all vehicles in the scene.
Mouse scroll wheel Control the camera distance from the vehicle.

 Simulation 3D Scene Configuration

4-61

Key Camera Control
L Toggle a camera lag effect on or off. When you enable the lag effect, the

camera view includes:

• Position lag, based on the vehicle translational acceleration
• Rotation lag, based on the vehicle rotational velocity

This lag enables improved visualization of overall vehicle acceleration and
rotation.

F Toggle the free camera mode on or off. When you enable the free camera
mode, you can use the mouse to change the pitch and yaw of the camera.
This mode enables you to orbit the camera around the vehicle.

Sample time — Sample time of visualization engine
(default) | scalar greater than or equal to 0.01

Sample time, Ts, of the visualization engine, specified as a scalar greater than or equal to 0.01. Units
are in seconds.

The graphics frame rate of the visualization engine is the inverse of the sample time. For example, if
Sample time is 1/60, then the visualization engine solver tries to achieve a frame rate of 60 frames
per second. However, the real-time graphics frame rate is often lower due to factors such as graphics
card performance and model complexity.

By default, blocks that receive data from the visualization engine, such as Simulation 3D Camera
blocks, inherit this sample rate.

Display 3D simulation window — Unreal Engine visualization
on (default) | off

Select whether to run simulations in the 3D visualization environment without visualizing the results,
that is, in headless mode.

Consider running in headless mode in these cases:

• You want to run multiple 3D simulations in parallel to test models in different Unreal Engine
scenarios.

Dependencies

To enable this parameter, set Scene source to Default Scene or Unreal Executable.

Display 3D simulation window in a web browser — Web browser visualization
off (default) | on

Select whether to run simulations in web browsers on local or remote devices, including:

• Local desktops
• Remote desktops
• Mobile phones

To display the simulation in a web browser:

4 Blocks

4-62

1 If you do not have it installed, install Node.js® on the system that runs the simulation.
2 Select Display 3D simulation window in a web browser. Apply the change.
3 In Simulink, select Run.
4 Follow the steps provided in the Diagnostic Viewer.

Web Browser Display Steps
Current device a Open a web browser on your current device.

b Navigate to the first IP address link provided in the
Diagnostic Viewer.

Remote device a Open a web browser on a remote device that is on the
same network.

b Navigate to the second IP address link provided in the
Diagnostic Viewer.

Note To establish the connections, the system server uses two ports:

• 7070 – http: connection to web browser
• 8888– Streamer connection from Unreal Engine application

Dependencies

To enable this parameter, set Scene source to Default Scenes or Unreal Executable.

Weather

Override scene weather — Control the scene weather and sun position
off (default) | on

Select whether to control the scene weather and sun position during simulation. Use the enabled
parameters to change the sun position, clouds, fog, and rain.

This table summarizes sun position settings for specific times of day.

Time of Day Settings Unreal Editor Environment
Midnight Sun altitude: -90

Sun azimuth: 180

 Simulation 3D Scene Configuration

4-63

Time of Day Settings Unreal Editor Environment
Sunrise in the
north

Sun altitude: 0

Sun azimuth: 180

Noon Sun altitude: 90

Sun azimuth: 180

This table summarizes settings for specific cloud conditions.

Cloud
Condition

Settings Unreal Editor Environment

Clear Cloud opacity: 0

Heavy Cloud opacity: 85

This table summarizes settings for specific fog conditions.

4 Blocks

4-64

Fog Condition Settings Unreal Editor Environment
None Fog density: 0

Heavy Fog density: 100

This table summarizes settings for specific rain conditions.

Rain Condition Settings Unreal Editor Environment
Light Cloud opacity: 10

Rain density: 25

Heavy Cloud opacity: 10

Rain density: 80

 Simulation 3D Scene Configuration

4-65

Sun altitude — Altitude angle between sun and horizon
40 (default) | any value between -90 and 90

Altitude angle in a vertical plane between the sun's rays and the horizontal projection of the rays, in
deg.

Use the Sun altitude and Sun azimuth parameters to control the time of day in the scene. For
example, to specify sunrise in the north, set Sun altitude to 0 deg and Sun azimuth to 180 deg.

Dependencies

To enable this parameter, select Override scene weather.

Sun azimuth — Azimuth angle from south to horizontal projection of the sun ray
90 (default) | any value between 0 and 360

Azimuth angle in the horizontal plane measured from the south to the horizontal projection of the sun
rays, in deg.

Use the Sun altitude and Sun azimuth parameters to control the time of day in the scene. For
example, to specify sunrise in the north, set Sun altitude to 0 deg and Sun azimuth to 180 deg.

Dependencies

To enable this parameter, select Override scene weather.

Cloud opacity — Unreal Editor Cloud Opacity global actor target value
10 (default) | any value between 0 and 100

4 Blocks

4-66

Parameter that corresponds to the Unreal Editor Cloud Opacity global actor target value, in percent.
Zero is a cloudless scene.

Use the Cloud opacity and Cloud speed parameters to control clouds in the scene.

Dependencies

To enable this parameter, select Override scene weather.

Cloud speed — Unreal Editor Cloud Speed global actor target value
1 (default) | any value between -100 and 100

Parameter that corresponds to the Unreal Editor Cloud Speed global actor target value. The clouds
move from west to east for positive values and east to west for negative values.

Use the Cloud opacity and Cloud speed parameters to control clouds in the scene.

Dependencies

To enable this parameter, select Override scene weather.

Fog density — Unreal Editor Set Fog Density and Set Start Distance target values
0 (default) | any value between 0 and 100

Parameter that corresponds to the Unreal Editor Set Fog Density and Set Start Distance target
values, in percent.

 Simulation 3D Scene Configuration

4-67

Dependencies

To enable this parameter, select Override scene weather.

Rain density — Unreal Editor local actor controlling rain density, wetness, rain puddles,
and ripples
0 (default) | any value between 0 and 100

Parameter corresponding to the Unreal Editor local actor that controls rain density, wetness, rain
puddles, and ripples, in percent.

Use the Cloud opacity and Rain density parameters to control rain in the scene.
Dependencies

To enable this parameter, select Override scene weather.

More About
Sun Position and Weather

To control the scene weather and sun position, on the Weather tab, select Override scene weather.
Use the enabled parameters to change the sun position, clouds, fog, and rain during the simulation.
Sun Position

Use Sun altitude and Sun azimuth to control the sun position.

4 Blocks

4-68

• Sun altitude — Altitude angle in a vertical plane between the sun rays and the horizontal
projection of the rays.

• Sun azimuth — Azimuth angle in the horizontal plane measured from the south to the horizontal
projection of the sun rays.

This table summarizes sun position settings for specific times of day.

Time of Day Settings Unreal Editor Environment
Midnight Sun altitude: -90

Sun azimuth: 180

Sunrise in the
north

Sun altitude: 0

Sun azimuth: 180

 Simulation 3D Scene Configuration

4-69

Time of Day Settings Unreal Editor Environment
Noon Sun altitude: 90

Sun azimuth: 180

Clouds

Use Cloud opacity and Cloud speed to control clouds in the scene.

• Cloud opacity — Unreal Editor Cloud Opacity global actor target value. Zero is a cloudless
scene.

• Cloud speed — Unreal Editor Cloud Speed global actor target value. The clouds move from west
to east for positive values and east to west for negative values.

This table summarizes settings for specific cloud conditions.

Cloud
Condition

Settings Unreal Editor Environment

Clear Cloud opacity: 0

4 Blocks

4-70

Cloud
Condition

Settings Unreal Editor Environment

Heavy Cloud opacity: 85

Fog

Use Fog density to control fog in the scene. Fog density corresponds to the Unreal Editor Set Fog
Density.

This table summarizes settings for specific fog conditions.

Fog Condition Settings Unreal Editor Environment
None Fog density: 0

Heavy Fog density: 100

 Simulation 3D Scene Configuration

4-71

Rain

Use Cloud opacity and Rain density to control rain in the scene.

• Cloud opacity — Unreal Editor Cloud Opacity global actor target value.
• Rain density — Unreal Editor local actor that controls rain density, wetness, rain puddles, and

ripples.

This table summarizes settings for specific rain conditions.

Rain Condition Settings Unreal Editor Environment
Light Cloud opacity: 10

Rain density: 25

4 Blocks

4-72

Rain Condition Settings Unreal Editor Environment
Heavy Cloud opacity: 10

Rain density: 80

See Also
Simulation 3D Camera | Simulation 3D Lidar | Simulation 3D Fisheye Camera | Simulation 3D UAV
Vehicle

Topics
“Unreal Engine Simulation for Unmanned Aerial Vehicles”
“How Unreal Engine Simulation for UAVs Works”
“Coordinate Systems for Unreal Engine Simulation in UAV Toolbox”

Introduced in R2020b

 Simulation 3D Scene Configuration

4-73

Simulation 3D Camera
Camera sensor model with lens in 3D simulation environment
Library: UAV Toolbox / Simulation 3D

Automated Driving Toolbox / Simulation 3D

Description
The Simulation 3D Camera block provides an interface to a camera with a lens in a 3D simulation
environment. This environment is rendered using the Unreal Engine from Epic Games. The sensor is
based on the ideal pinhole camera model, with a lens added to represent a full camera model,
including lens distortion. This camera model supports a field of view of up to 150 degrees. For more
details, see “Algorithms” on page 4-85.

If you set Sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, you must include a Simulation 3D Scene Configuration block
in your model.

The block outputs images captured by the camera during simulation. You can use these images to
visualize and verify your driving algorithms. In addition, on the Ground Truth tab, you can select
options to output the ground truth data for developing depth estimation and semantic segmentation
algorithms. You can also output the location and orientation of the camera in the world coordinate
system of the scene. The image shows the block with all ports enabled.

The table summarizes the ports and how to enable them.

4 Blocks

4-74

Port Description Parameter for
Enabling Port

Sample
Visualization

Image Outputs an RGB image captured by
the camera

n/a

Depth Outputs a depth map with values
from 0 m to 1000 meters

Output depth

Labels Outputs a semantic segmentation
map of label IDs that correspond to
objects in the scene

Output semantic
segmentation

Location Outputs the location of the camera
in the world coordinate system

Output location
(m) and
orientation (rad)

n/a

Orientation Outputs the orientation of the
camera in the world coordinate
system

Output location
(m) and
orientation (rad)

n/a

 Simulation 3D Camera

4-75

Note The Simulation 3D Scene Configuration block must execute before the Simulation 3D Camera
block. That way, the Unreal Engine 3D visualization environment prepares the data before the
Simulation 3D Camera block receives it. To check the block execution order, right-click the blocks and
select Properties. On the General tab, confirm these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Camera — 1

For more information about execution order, see “Block Execution Order”.

Ports
Input

Translation — Relative translation of sensor from mounting point (m)
[0 0 0] (default) | real-valued 1-by-3 vector of form [X Y Z]

Relative translation of the sensor from its mounting point on the vehicle, in meters, specified as a
real-valued 1-by-3 vector of the form [X Y Z].
Dependencies

To enable this port, select the Input parameter next to the Relative translation [X, Y, Z] (m)
parameter. When you select Input, the Relative translation [X, Y, Z] (m) parameter specifies the
initial relative translation and the Translation port specifies the relative translation during
simulation. For more details, see “Sensor Position Transformation” on page 4-100.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Rotation — Relative rotation of sensor from mounting point (deg)
[0 0 0] (default) | real-valued 1-by-3 vector of form [Roll Pitch Yaw]

Relative rotation of the sensor from its mounting point on the vehicle, in degrees, specified as a real-
valued 1-by-3 vector of the form [Roll Pitch Yaw].
Dependencies

To enable this port, select the Input parameter next to the Relative rotation [Roll, Pitch, Yaw]
(deg) parameter. When you select Input, the Relative translation [Roll, Pitch, Yaw] (deg)
parameter specifies the initial relative rotation and the Rotation port specifies the relative rotation
during simulation. For more details, see “Sensor Position Transformation” on page 4-100.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output

Image — 3D output camera image
m-by-n-by-3 array of RGB triplet values

3D output camera image, returned as an m-by-n-by-3 array of RGB triplet values. m is the vertical
resolution of the image, and n is the horizontal resolution of the image.
Data Types: int8 | uint8

Depth — Object depth from 0 m to 1000 m
m-by-n array of object depths

4 Blocks

4-76

Object depth for each pixel in the image, output as an m-by-n array. m is the vertical resolution of the
image, and n is the horizontal resolution of the image. Depth is in the range from 0 to 1000 meters.

Dependencies

To enable this port, on the Ground Truth tab, select Output depth.
Data Types: double

Labels — Label identifiers
m-by-n array of label identifiers

Label identifier for each pixel in the image, output as an m-by-n array. m is the vertical resolution of
the image, and n is the horizontal resolution of the image.

The table shows the object IDs used in the default scenes that are selectable from the Simulation 3D
Scene Configuration block. If you are using a custom scene, in the Unreal Editor, you can assign new
object types to unused IDs. If a scene contains an object that does not have an assigned ID, that
object is assigned an ID of 0. The detection of lane markings is not supported.

ID Type
0 None/default
1 Building
2 Not used
3 Other
4 Not used
5 Pole
6 Lane Markings
7 Road
8 Sidewalk
9 Vegetation
10 Vehicle
11 Not used
12 Generic traffic sign
13 Stop sign
14 Yield sign
15 Speed limit sign
16 Weight limit sign
17-18 Not used
19 Left and right arrow warning sign
20 Left chevron warning sign
21 Right chevron warning sign
22 Not used
23 Right one-way sign

 Simulation 3D Camera

4-77

ID Type
24 Not used
25 School bus only sign
26-38 Not used
39 Crosswalk sign
40 Not used
41 Traffic signal
42 Curve right warning sign
43 Curve left warning sign
44 Up right arrow warning sign
45-47 Not used
48 Railroad crossing sign
49 Street sign
50 Roundabout warning sign
51 Fire hydrant
52 Exit sign
53 Bike lane sign
54-56 Not used
57 Sky
58 Curb
59 Flyover ramp
60 Road guard rail
61-66 Not used
67 Deer
68-70 Not used
71 Barricade
72 Motorcycle
73-255 Not used

Dependencies

To enable this port, on the Ground Truth tab, select Output semantic segmentation.
Data Types: uint8

Location — Sensor location
real-valued 1-by-3 vector

Sensor location along the X-axis, Y-axis, and Z-axis of the scene. The Location values are in the world
coordinates of the scene. In this coordinate system, the Z-axis points up from the ground. Units are in
meters.

4 Blocks

4-78

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double

Orientation — Sensor orientation
real-valued 1-by-3 vector

Roll, pitch, and yaw sensor orientation about the X-axis, Y-axis, and Z-axis of the scene. The
Orientation values are in the world coordinates of the scene. These values are positive in the
clockwise direction when looking in the positive directions of these axes. Units are in radians.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double

Parameters
Mounting

Sensor identifier — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. In a multisensor system, the sensor identifier
distinguishes between sensors. When you add a new sensor block to your model, the Sensor
identifier of that block is N + 1. N is the highest Sensor identifier value among existing sensor
blocks in the model.
Example: 2

Parent name — Name of parent to which sensor is mounted
Scene Origin (default) | vehicle name

Name of the parent to which the sensor is mounted, specified as Scene Origin or as the name of a
vehicle in your model. The vehicle names that you can select correspond to the Name parameters of
the simulation 3D vehicle blocks in your model. If you select Scene Origin, the block places a
sensor at the scene origin.
Example: SimulinkVehicle1

Mounting location — Sensor mounting location
Origin (default)

Sensor mounting location.

• When Parent name is Scene Origin, the block mounts the sensor to the origin of the scene,
and Mounting location can be set to Origin only. During simulation, the sensor remains
stationary.

• When Parent name is the name of a vehicle (for example, SimulinkVehicle1) the block mounts
the sensor to one of the predefined mounting locations described in the table. During simulation,
the sensor travels with the vehicle.

 Simulation 3D Camera

4-79

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Origin Forward-facing sensor mounted
to the vehicle origin, which is on
the ground, at the geometric
center of the vehicle

[0, 0, 0]

Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-axis,
and Z-axis, respectively. When looking at a vehicle from the top down, then the yaw angle (that is, the
orientation angle) is counterclockwise-positive, because you are looking in the negative direction of
the axis.

The (X, Y, Z) mounting location of the sensor relative to the vehicle depends on the vehicle type. To
specify the vehicle type, use the Type parameter of the Simulation 3D UAV Vehicle block to which you
are mounting. To obtain the (X, Y, Z) mounting locations for a vehicle type, see the reference page for
that vehicle.

To determine the location of the sensor in world coordinates, open the sensor block. Then, on the
Ground Truth tab, select Output location (m) and orientation (rad) and inspect the data from
the Location output port.

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location by using the Relative
translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters.

Relative translation [X, Y, Z] (m) — Translation offset relative to mounting location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Translation offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [X, Y, Z]. Units are in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.

4 Blocks

4-80

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in UAV Toolbox”.
Example: [0,0,0.01]

Adjust Relative Translation During Simulation

To adjust the relative translation of the sensor during simulation, enable the Translation input port
by selecting the Input parameter next to the Relative translation [X, Y, Z] (m) parameter. When
you enable the Translation port, the Relative translation [X, Y, Z] (m) parameter specifies the
initial relative translation of the sensor and the Translation port specifies the relative translation of
the sensor during simulation. For more details about the relative translation and rotation of this
sensor, see “Sensor Position Transformation” on page 4-100.

Dependencies

To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] (deg) — Rotational offset relative to mounting
location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Rotational offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [Roll, Pitch, Yaw] . Roll, pitch, and yaw are the angles of rotation about the X-, Y-,
and Z-axes, respectively. Units are in degrees.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.
• Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-axis, Y-

axis, and Z-axis, respectively. If you view a scene from a 2D top-down perspective, then the yaw
angle (also called the orientation angle) is counterclockwise-positive because you are viewing the
scene in the negative direction of the Z-axis.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in UAV Toolbox”.
Example: [0,0,10]

 Simulation 3D Camera

4-81

Adjust Relative Rotation During Simulation

To adjust the relative rotation of the sensor during simulation, enable the Rotation input port by
selecting the Input parameter next to the Relative rotation [Roll, Pitch, Yaw] (deg) parameter.
When you enable the Rotation port, the Relative rotation [Roll, Pitch, Yaw] (deg) parameter
specifies the initial relative rotation of the sensor and the Rotation port specifies the relative rotation
of the sensor during simulation. For more details about the relative translation and rotation of this
sensor, see “Sensor Position Transformation” on page 4-100.

Dependencies

To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds, specified as a positive scalar. The 3D simulation environment
frame rate is the inverse of the sample time.

If you set the sample time to -1, the block inherits its sample time from the Simulation 3D Scene
Configuration block.

Parameters

These intrinsic camera parameters are equivalent to the properties of a cameraIntrinsics object.
To obtain the intrinsic parameters for your camera, use the Camera Calibrator app.

For details about the camera calibration process, see “Using the Single Camera Calibrator App”
(Computer Vision Toolbox) and “What Is Camera Calibration?” (Computer Vision Toolbox).

Focal length (pixels) — Focal length of camera
[1109, 1109] (default) | 1-by-2 positive integer vector

Focal length of the camera, specified as a 1-by-2 positive integer vector of the form [fx, fy]. Units are
in pixels.

fx = F × sx
fy = F × sy

where:

• F is the focal length in world units, typically millimeters.
• [sx, sy] are the number of pixels per world unit in the x and y direction, respectively.

This parameter is equivalent to the FocalLength property of a cameraIntrinsics object.

Optical center (pixels) — Optical center of camera
[640, 360] (default) | 1-by-2 positive integer vector

Optical center of the camera, specified as a 1-by-2 positive integer vector of the form [cx,cy]. Units
are in pixels.

This parameter is equivalent to the PrincipalPoint property of a cameraIntrinsics object.

Image size (pixels) — Image size produced by camera
[720, 1280] (default) | 1-by-2 positive integer vector

4 Blocks

4-82

Image size produced by the camera, specified as a 1-by-2 positive integer vector of the form
[mrows,ncols]. Units are in pixels.

This parameter is equivalent to the ImageSize property of a cameraIntrinsics object.

Radial distortion coefficients — Radial distortion coefficients
[0, 0] (default) | real-valued 2-element vector | real-valued 3-element vector | real-valued 6-element
vector

Specify the radial distortion coefficients as a real-valued 2-element, 3-element, or 6-element vector.
Radial distortion is the displacement of image points along radial lines extending from the principal
point.

• As image points move away from the principal point (positive radial displacement), image
magnification decreases and a pincushion-shaped distortion occurs on the image.

• As image points move toward the principal point (negative radial displacement), image
magnification increases and a barrel-shaped distortion occurs on the image.

The camera sensor calculates the (xd,yd) radial-distorted location of a point using a two-coefficient,
three-coefficient, or six-coefficient formula. This table shows the various formulas, where:

• (x,y) = undistorted pixel locations
• k1,k2,k3,k4,k5,k6 = radial distortion coefficients of the lens
• r2 = x2 + y2

Coefficients Formula Description
[k1, k2] xd = x(1 + k1r2 + k2r4)

yd = y(1 + k1r2 + k2r4)
This model is equivalent to the
two-coefficient model used by
the RadialDistortion
property of a
cameraIntrinsics object.

[k1, k2, k3] xd = x(1 + k1r2 + k2r4 +
k3r6)
yd = y(1 + k1r2 + k2r4 +
k3r6)

This model is equivalent to the
three-coefficient model used by
the RadialDistortion
property of a
cameraIntrinsics object.

 Simulation 3D Camera

4-83

[k1, k2, k3, k4, k5, k6]
xd = x ×

1 + k1r2 + k2r4 + k3r6

1 + k4r2 + k5r4 + k6r6

yd = y ×
1 + k1r2 + k2r4 + k3r6

1 + k4r2 + k5r4 + k6r6

The six-coefficient model is
based on the OpenCV radial
distortion model.

Note The Camera Calibrator
app does not support this
model. To calibrate a camera
using this model, see Camera
Calibration and 3D
Reconstruction in the OpenCV
documentation.

Tangential distortion coefficients — Tangential distortion coefficients
[0, 0] (default) | real-valued 2-element vector

Specify the tangential distortion coefficients as a real-valued 2-element vector. Tangential distortion
occurs when the lens and the image plane are not parallel.

The camera sensor calculates the tangential distorted location of a point, (xd, yd), using this formula:
xd = x + [2p1xy + p2 × (r2 + 2x2)]
yd = y + [p1 × (r2 + 2y2) + 2p2xy]

where:

• x, y = undistorted pixel locations
• p1, p2 = tangential distortion coefficients of the lens
• r2 = x2 + y2

The undistorted pixel locations appear in normalized image coordinates, with the origin at the optical
center. The coordinates are expressed in world units.

This parameter is equivalent to the TangentialDistortion property of a cameraIntrinsics
object.

4 Blocks

4-84

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

Axis skew — Skew angle of camera axes
0 (default) | nonnegative scalar

Skew angle of the camera axes, specified as a nonnegative scalar. If the X-axis and Y-axis are exactly
perpendicular, then the skew must be 0. Units are dimensionless.

This parameter is equivalent to the Skew property of a cameraIntrinsics object.

Ground Truth

Output depth — Output depth map
off (default) | on

Select this parameter to output a depth map at the Depth port.

Output semantic segmentation — Output semantic segmentation map of label IDs
off (default) | on

Select this parameter to output a semantic segmentation map of label IDs at the Labels port.

Output location (m) and orientation (rad) — Output location and orientation of
sensor
off (default) | on

Select this parameter to output the location and orientation of the sensor at the Location and
Orientation ports, respectively.

Tips
• To visualize the camera images that are output by the Image port, use a Video Viewer or To Video

Display block.

To learn how to visualize the depth and semantic segmentation maps that are output by the Depth
and Labels ports, see the “Depth and Semantic Segmentation Visualization Using Unreal Engine
Simulation” example.

• Because the Unreal Engine can take a long time to start between simulations, consider logging
the signals that the sensors output. You can then use this data to develop perception algorithms in
MATLAB. See “Configure a Signal for Logging” (Simulink).

Algorithms
The block uses the camera model proposed by Jean-Yves Bouguet [1]. The model includes:

• The pinhole camera model [2]
• Lens distortion [3]

The pinhole camera model does not account for lens distortion because an ideal pinhole camera does
not have a lens. To accurately represent a real camera, the full camera model used by the block
includes radial and tangential lens distortion.

For more details, see “What Is Camera Calibration?” (Computer Vision Toolbox)

 Simulation 3D Camera

4-85

References
[1] Bouguet, J. Y. Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/

calib_doc

[2] Zhang, Z. "A Flexible New Technique for Camera Calibration." IEEE Transactions on Pattern
Analysis and Machine Intelligence. Vol. 22, No. 11, 2000, pp. 1330–1334.

[3] Heikkila, J., and O. Silven. “A Four-step Camera Calibration Procedure with Implicit Image
Correction.” IEEE International Conference on Computer Vision and Pattern Recognition.
1997.

See Also
Blocks
Simulation 3D Lidar | Simulation 3D Fisheye Camera | Simulation 3D UAV Vehicle | Simulation 3D
Scene Configuration

Apps
Camera Calibrator

Objects
cameraIntrinsics

Topics
“Coordinate Systems for Unreal Engine Simulation in UAV Toolbox”
“Choose a Sensor for Unreal Engine Simulation”
“Apply Semantic Segmentation Labels to Custom Scenes”
“What Is Camera Calibration?” (Computer Vision Toolbox)
“Depth Estimation From Stereo Video” (Computer Vision Toolbox)
“Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)

Introduced in R2020b

4 Blocks

4-86

Simulation 3D Lidar
Lidar sensor model in 3D simulation environment
Library: UAV Toolbox / Simulation 3D

Automated Driving Toolbox / Simulation 3D

Description
The Simulation 3D Lidar block provides an interface to the lidar sensor in a 3D simulation
environment. This environment is rendered using the Unreal Engine from Epic Games. The block
returns a point cloud with the specified field of view and angular resolution. You can also output the
distances from the sensor to object points and the reflectivity of surface materials. In addition, you
can output the location and orientation of the sensor in the world coordinate system of the scene.

If you set Sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, ensure that the Simulation 3D Scene Configuration block is in
your model.

Note The Simulation 3D Scene Configuration block must execute before the Simulation 3D Lidar
block. That way, the Unreal Engine 3D visualization environment prepares the data before the
Simulation 3D Lidar block receives it. To check the block execution order, right-click the blocks and
select Properties. On the General tab, confirm these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Lidar — 1

For more information about execution order, see “Block Execution Order”.

Ports
Output

Point cloud — Point cloud data
m-by-n-by-3 array of positive real-valued [x, y, z] points

Point cloud data, returned as an m-by-n-by 3 array of positive, real-valued [x, y, z] points. m and n
define the number of points in the point cloud, as shown in this equation:

m × n =
VFOV
VRES

×
HFOV
HRES

where:

• VFOV is the vertical field of view of the lidar, in degrees, as specified by the Vertical field of view
(deg) parameter.

 Simulation 3D Lidar

4-87

• VRES is the vertical angular resolution of the lidar, in degrees, as specified by the Vertical
resolution (deg) parameter.

• HFOV is the horizontal field of view of the lidar, in degrees, as specified by the Horizontal field of
view (deg) parameter.

• HRES is the horizontal angular resolution of the lidar, in degrees, as specified by the Horizontal
resolution (deg) parameter.

Each m-by-n entry in the array specifies the x, y, and z coordinates of a detected point in the sensor
coordinate system. If the lidar does not detect a point at a given coordinate, then x, y, and z are
returned as NaN.
Data Types: single

Distance — Distance to object points
m-by-n positive real-valued matrix

Distance to object points measured by the lidar sensor, returned as an m-by-n positive real-valued
matrix. Each m-by-n value in the matrix corresponds to an [x, y, z] coordinate point returned by the
Point cloud output port.

Dependencies

To enable this port, on the Parameters tab, select Distance outport.
Data Types: single

Reflectivity — Reflectivity of surface materials
m-by-n matrix of intensity values in range [0, 1]

Reflectivity of surface materials, returned as an m-by-n matrix of intensity values in the range [0, 1],
where m is the number of rows in the point cloud and n is the number of columns. Each point in the
Reflectivity output corresponds to a point in the Point cloud output. The block returns points that
are not part of a surface material as NaN.

To calculate reflectivity, the lidar sensor uses the Phong reflection model. This model describes
surface reflectivity as a combination of diffuse reflections (scattered reflections, such as from rough
surfaces) and specular reflections (mirror-like reflections, such as from smooth surfaces). For more
details on this model, see the Phong reflection model page on Wikipedia.

Dependencies

To enable this port, select the Reflectivity outport parameter.
Data Types: single

Location — Sensor location
real-valued 1-by-3 vector

Sensor location along the X-axis, Y-axis, and Z-axis of the scene. The Location values are in the world
coordinates of the scene. In this coordinate system, the Z-axis points up from the ground. Units are in
meters.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double

4 Blocks

4-88

https://en.wikipedia.org/wiki/Phong_reflection_model

Orientation — Sensor orientation
real-valued 1-by-3 vector

Roll, pitch, and yaw sensor orientation about the X-axis, Y-axis, and Z-axis of the scene. The
Orientation values are in the world coordinates of the scene. These values are positive in the
clockwise direction when looking in the positive directions of these axes. Units are in radians.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double

Parameters
Mounting

Sensor identifier — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. In a multisensor system, the sensor identifier
distinguishes between sensors. When you add a new sensor block to your model, the Sensor
identifier of that block is N + 1. N is the highest Sensor identifier value among existing sensor
blocks in the model.
Example: 2

Parent name — Name of parent to which sensor is mounted
Scene Origin (default) | vehicle name

Name of the parent to which the sensor is mounted, specified as Scene Origin or as the name of a
vehicle in your model. The vehicle names that you can select correspond to the Name parameters of
the simulation 3D vehicle blocks in your model. If you select Scene Origin, the block places a
sensor at the scene origin.
Example: SimulinkVehicle1

Mounting location — Sensor mounting location
Origin (default)

Sensor mounting location.

• When Parent name is Scene Origin, the block mounts the sensor to the origin of the scene,
and Mounting location can be set to Origin only. During simulation, the sensor remains
stationary.

• When Parent name is the name of a vehicle (for example, SimulinkVehicle1) the block mounts
the sensor to one of the predefined mounting locations described in the table. During simulation,
the sensor travels with the vehicle.

 Simulation 3D Lidar

4-89

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Origin Forward-facing sensor mounted
to the vehicle origin, which is on
the ground, at the geometric
center of the vehicle

[0, 0, 0]

Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-axis,
and Z-axis, respectively. When looking at a vehicle from the top down, then the yaw angle (that is, the
orientation angle) is counterclockwise-positive, because you are looking in the negative direction of
the axis.

The (X, Y, Z) mounting location of the sensor relative to the vehicle depends on the vehicle type. To
specify the vehicle type, use the Type parameter of the Simulation 3D UAV Vehicle block to which you
are mounting. To obtain the (X, Y, Z) mounting locations for a vehicle type, see the reference page for
that vehicle.

To determine the location of the sensor in world coordinates, open the sensor block. Then, on the
Ground Truth tab, select Output location (m) and orientation (rad) and inspect the data from
the Location output port.

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location by using the Relative
translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters.

Relative translation [X, Y, Z] (m) — Translation offset relative to mounting location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Translation offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [X, Y, Z]. Units are in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.

4 Blocks

4-90

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in UAV Toolbox”.
Example: [0,0,0.01]

Dependencies

To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] (deg) — Rotational offset relative to mounting
location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Rotational offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [Roll, Pitch, Yaw] . Roll, pitch, and yaw are the angles of rotation about the X-, Y-,
and Z-axes, respectively. Units are in degrees.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.
• Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-axis, Y-

axis, and Z-axis, respectively. If you view a scene from a 2D top-down perspective, then the yaw
angle (also called the orientation angle) is counterclockwise-positive because you are viewing the
scene in the negative direction of the Z-axis.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in UAV Toolbox”.
Example: [0,0,10]

Dependencies

To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds, specified as a positive scalar. The 3D simulation environment
frame rate is the inverse of the sample time.

 Simulation 3D Lidar

4-91

If you set the sample time to -1, the block inherits its sample time from the Simulation 3D Scene
Configuration block.

Parameters

Detection range (m) — Maximum distance measured by lidar sensor
120 (default) | positive scalar

Maximum distance measured by the lidar sensor, specified as a positive scalar. Points outside this
range are ignored. Units are in meters.

Range resolution (m) — Resolution of lidar sensor range
0.002 (default) | positive real scalar

Resolution of the lidar sensor range, in meters, specified as a positive real scalar. The range
resolution is also known as the quantization factor. The minimal value of this factor is Drange / 224,
where Drange is the maximum distance measured by the lidar sensor, as specified in the Detection
range (m) parameter.

Vertical field of view (deg) — Vertical field of view
40 (default) | positive scalar

Vertical field of view of the lidar sensor, specified as a positive scalar. Units are in degrees.

Vertical resolution (deg) — Vertical angular resolution
1.25 (default) | positive scalar

Vertical angular resolution of the lidar sensor, specified as a positive scalar. Units are in degrees.

Horizontal field of view (deg) — Horizontal field of view
360 (default) | positive scalar

Horizontal field of view of the lidar sensor, specified as a positive scalar. Units are in degrees.

Horizontal resolution (deg) — Horizontal angular (azimuth) resolution
0.16 (default) | positive scalar

Horizontal angular (azimuth) resolution of the lidar sensor, specified as a positive scalar. Units are in
degrees.

Distance outport — Output distance to measured object points
off (default) | on

Select this parameter to output the distance to measured object points at the Distance port.

Reflectivity outport — Output reflectivity of surface materials
off (default) | on

Select this parameter to output the reflectivity of surface materials at the Reflectivity port.

Ground Truth

Output location (m) and orientation (rad) — Output location and orientation of
sensor
off (default) | on

4 Blocks

4-92

Select this parameter to output the location and orientation of the sensor at the Location and
Orientation ports, respectively.

Tips
• To visualize point clouds that are output by the Point cloud port, you can use a pcplayer object

in a MATLAB Function block.
• The Unreal Engine can take a long time to start up between simulations, consider logging the

signals that the sensors output. You can then use this data to develop perception algorithms in
MATLAB. See “Configure a Signal for Logging” (Simulink).

See Also
Blocks
Simulation 3D Camera | Simulation 3D Fisheye Camera | Simulation 3D Scene Configuration |
Simulation 3D UAV Vehicle

Objects
pointCloud | pcplayer

Topics
“Coordinate Systems for Unreal Engine Simulation in UAV Toolbox”
“Choose a Sensor for Unreal Engine Simulation”

Introduced in R2020b

 Simulation 3D Lidar

4-93

Simulation 3D Fisheye Camera
Fisheye camera sensor model in 3D simulation environment
Library: UAV Toolbox / Simulation 3D

Automated Driving Toolbox / Simulation 3D

Description
The Simulation 3D Fisheye Camera block provides an interface to a camera with a fisheye lens in a
3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games.
The sensor is based on the fisheye camera model proposed by Scaramuzza [1] on page 4-100. This
model supports a field of view of up to 195 degrees. The block outputs an image with the specified
camera distortion and size. You can also output the location and orientation of the camera in the
world coordinate system of the scene.

If you set Sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, you must include a Simulation 3D Scene Configuration block
in your model.

Note The Simulation 3D Scene Configuration block must execute before the Simulation 3D Fisheye
Camera block. That way, the Unreal Engine 3D visualization environment prepares the data before
the Simulation 3D Fisheye Camera block receives it. To check the block execution order, right-click
the blocks and select Properties. On the General tab, confirm these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Fisheye Camera — 1

For more information about execution order, see “How Unreal Engine Simulation for UAVs Works”.

Ports
Input

Translation — Relative translation of sensor from mounting point (m)
[0 0 0] (default) | real-valued 1-by-3 vector of form [X Y Z]

Relative translation of the sensor from its mounting point on the vehicle, in meters, specified as a
real-valued 1-by-3 vector of the form [X Y Z].

Dependencies

To enable this port, select the Input parameter next to the Relative translation [X, Y, Z] (m)
parameter. When you select Input, the Relative translation [X, Y, Z] (m) parameter specifies the
initial relative translation and the Translation port specifies the relative translation during
simulation. For more details, see “Sensor Position Transformation” on page 4-100.

4 Blocks

4-94

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Rotation — Relative rotation of sensor from mounting point (deg)
[0 0 0] (default) | real-valued 1-by-3 vector of form [Roll Pitch Yaw]

Relative rotation of the sensor from its mounting point on the vehicle, in degrees, specified as a real-
valued 1-by-3 vector of the form [Roll Pitch Yaw].

Dependencies

To enable this port, select the Input parameter next to the Relative rotation [Roll, Pitch, Yaw]
(deg) parameter. When you select Input, the Relative translation [Roll, Pitch, Yaw] (deg)
parameter specifies the initial relative rotation and the Rotation port specifies the relative rotation
during simulation. For more details, see “Sensor Position Transformation” on page 4-100.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output

Image — 3D output camera image
m-by-n-by-3 array of RGB triplet values

3D output camera image, returned as an m-by-n-by-3 array of RGB triplet values. m is the vertical
resolution of the image, and n is the horizontal resolution of the image.
Data Types: int8 | uint8

Location — Sensor location
real-valued 1-by-3 vector

Sensor location along the X-axis, Y-axis, and Z-axis of the scene. The Location values are in the world
coordinates of the scene. In this coordinate system, the Z-axis points up from the ground. Units are in
meters.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double

Orientation — Sensor orientation
real-valued 1-by-3 vector

Roll, pitch, and yaw sensor orientation about the X-axis, Y-axis, and Z-axis of the scene. The
Orientation values are in the world coordinates of the scene. These values are positive in the
clockwise direction when looking in the positive directions of these axes. Units are in radians.

Dependencies

To enable this port, on the Ground Truth tab, select Output location (m) and orientation (rad).
Data Types: double

 Simulation 3D Fisheye Camera

4-95

Parameters
Mounting

Sensor identifier — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. In a multisensor system, the sensor identifier
distinguishes between sensors. When you add a new sensor block to your model, the Sensor
identifier of that block is N + 1. N is the highest Sensor identifier value among existing sensor
blocks in the model.
Example: 2

Parent name — Name of parent to which sensor is mounted
Scene Origin (default) | vehicle name

Name of the parent to which the sensor is mounted, specified as Scene Origin or as the name of a
vehicle in your model. The vehicle names that you can select correspond to the Name parameters of
the simulation 3D vehicle blocks in your model. If you select Scene Origin, the block places a
sensor at the scene origin.
Example: SimulinkVehicle1

Mounting location — Sensor mounting location
Origin (default)

Sensor mounting location.

• When Parent name is Scene Origin, the block mounts the sensor to the origin of the scene,
and Mounting location can be set to Origin only. During simulation, the sensor remains
stationary.

• When Parent name is the name of a vehicle (for example, SimulinkVehicle1) the block mounts
the sensor to one of the predefined mounting locations described in the table. During simulation,
the sensor travels with the vehicle.

4 Blocks

4-96

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Origin Forward-facing sensor mounted
to the vehicle origin, which is on
the ground, at the geometric
center of the vehicle

[0, 0, 0]

Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-axis,
and Z-axis, respectively. When looking at a vehicle from the top down, then the yaw angle (that is, the
orientation angle) is counterclockwise-positive, because you are looking in the negative direction of
the axis.

The (X, Y, Z) mounting location of the sensor relative to the vehicle depends on the vehicle type. To
specify the vehicle type, use the Type parameter of the Simulation 3D UAV Vehicle block to which you
are mounting. To obtain the (X, Y, Z) mounting locations for a vehicle type, see the reference page for
that vehicle.

To determine the location of the sensor in world coordinates, open the sensor block. Then, on the
Ground Truth tab, select Output location (m) and orientation (rad) and inspect the data from
the Location output port.

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location by using the Relative
translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg) parameters.

Relative translation [X, Y, Z] (m) — Translation offset relative to mounting location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Translation offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [X, Y, Z]. Units are in meters.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.

 Simulation 3D Fisheye Camera

4-97

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in UAV Toolbox”.
Example: [0,0,0.01]

Adjust Relative Translation During Simulation

To adjust the relative translation of the sensor during simulation, enable the Translation input port
by selecting the Input parameter next to the Relative translation [X, Y, Z] (m) parameter. When
you enable the Translation port, the Relative translation [X, Y, Z] (m) parameter specifies the
initial relative translation of the sensor and the Translation port specifies the relative translation of
the sensor during simulation. For more details about the relative translation and rotation of this
sensor, see “Sensor Position Transformation” on page 4-100.

Dependencies

To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] (deg) — Rotational offset relative to mounting
location
[0, 0, 0] (default) | real-valued 1-by-3 vector

Rotational offset relative to the mounting location of the sensor, specified as a real-valued 1-by-3
vector of the form [Roll, Pitch, Yaw] . Roll, pitch, and yaw are the angles of rotation about the X-, Y-,
and Z-axes, respectively. Units are in degrees.

If you mount the sensor to a vehicle by setting Parent name to the name of that vehicle, then X, Y,
and Z are in the vehicle coordinate system, where:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when looking in the forward direction of the

vehicle.
• The Z-axis points up.
• Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-axis, Y-

axis, and Z-axis, respectively. If you view a scene from a 2D top-down perspective, then the yaw
angle (also called the orientation angle) is counterclockwise-positive because you are viewing the
scene in the negative direction of the Z-axis.

The origin is the mounting location specified in the Mounting location parameter. This origin is
different from the vehicle origin, which is the geometric center of the vehicle.

If you mount the sensor to the scene origin by setting Parent name to Scene Origin, then X, Y,
and Z are in the world coordinates of the scene.

For more details about the vehicle and world coordinate systems, see “Coordinate Systems for Unreal
Engine Simulation in UAV Toolbox”.
Example: [0,0,10]

4 Blocks

4-98

Adjust Relative Rotation During Simulation

To adjust the relative rotation of the sensor during simulation, enable the Rotation input port by
selecting the Input parameter next to the Relative rotation [Roll, Pitch, Yaw] (deg) parameter.
When you enable the Rotation port, the Relative rotation [Roll, Pitch, Yaw] (deg) parameter
specifies the initial relative rotation of the sensor and the Rotation port specifies the relative rotation
of the sensor during simulation. For more details about the relative translation and rotation of this
sensor, see “Sensor Position Transformation” on page 4-100.

Dependencies

To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds, specified as a positive scalar. The 3D simulation environment
frame rate is the inverse of the sample time.

If you set the sample time to -1, the block inherits its sample time from the Simulation 3D Scene
Configuration block.

Parameters

These intrinsic camera parameters are equivalent to the properties of a fisheyeIntrinsics object.
To obtain the intrinsic parameters for your camera, use the Camera Calibrator app.

For details about the fisheye camera calibration process, see “Using the Single Camera Calibrator
App” (Computer Vision Toolbox) and “Fisheye Calibration Basics” (Computer Vision Toolbox).

Distortion center (pixels) — Center of distortion
[640, 360] (default) | real-valued 1-by-2 vector

Center of distortion, specified as real-valued 2-element vector. Units are in pixels.

Image size (pixels) — Image size produced by camera
[720, 1280] (default) | real-valued 1-by-2 vector of positive integers

Image size produced by the camera, specified as a real-valued 1-by-2 vector of positive integers of the
form [mrows,ncols]. Units are in pixels.

Mapping coefficients — Polynomial coefficients for projection function
[320, 0, 0, 0] (default) | real-valued 1-by-4 vector

Polynomial coefficients for the projection function described by Scaramuzza's Taylor model [1],
specified as a real-valued 1-by-4 vector of the form [a0 a2 a3 a4].
Example: [320, -0.001, 0, 0]

Stretch matrix — Transforms point from sensor plane to camera plane
[1, 0; 0, 1] (default) | real-valued 2-by-2 matrix

Transforms a point from the sensor plane to a pixel in the camera image plane. The misalignment
occurs during the digitization process when the lens is not parallel to sensor.
Example: [0, 1; 0, 1]

 Simulation 3D Fisheye Camera

4-99

Ground Truth

Output location (m) and orientation (rad) — Output location and orientation of
sensor
off (default) | on

Select this parameter to output the location and orientation of the sensor at the Location and
Orientation ports, respectively.

Tips
• To visualize the camera images that are output by the Image port, use a Video Viewer or To Video

Display block.
• Because the Unreal Engine can take a long time to start up between simulations, consider logging

the signals that the sensors output. You can then use this data to develop perception algorithms in
MATLAB. See “Configure a Signal for Logging” (Simulink).

Algorithms
Sensor Position Transformation

At each simulation time step, the sensor block transforms the position (translation and rotation) of
the sensor by using this equation:

TVehicle + TMount + TOffset + TPort

This equation contains these steps:

1 Take the world coordinate position of the vehicle to which the sensor is mounted. (TVehicle)
2 Transform the sensor to the mounting position specified by the Mounting location parameter.

(TMount)
3 Transform the sensor to the position specified by the Relative translation [X, Y, Z] (m) and

Relative rotation [Roll, Pitch, Yaw] (deg) parameters, if enabled. (TOffset)

To enable these parameters, select the Specify offset parameter
4 Transform the sensor from the offset position to the position specified by the Translation and

Rotation ports. (TPort)

To enable these ports, select the Input parameters corresponding to the relative translation and
rotation parameters.

References
[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating Omindirectional

Cameras." Proceedings to IEEE International Conference on Intelligent Robots and Systems
(IROS 2006). Beijing, China, October 7–15, 2006.

4 Blocks

4-100

See Also
Blocks
Simulation 3D Camera | Simulation 3D Lidar | Simulation 3D Scene Configuration | Simulation 3D
UAV Vehicle

Apps
Camera Calibrator

Objects
fisheyeIntrinsics

Topics
“Coordinate Systems for Unreal Engine Simulation in UAV Toolbox”
“Choose a Sensor for Unreal Engine Simulation”
“Apply Semantic Segmentation Labels to Custom Scenes”
“Fisheye Calibration Basics” (Computer Vision Toolbox)

Introduced in R2019b

 Simulation 3D Fisheye Camera

4-101

Video Send
Send video stream to remote hardware
Library: UAV Toolbox / Simulation 3D

Description
The Video Send block sends video streams from Simulink to a specified remote device. For hardware-
in-the-loop simulation applications, you can send grayscale and RGB images, as well as depth and
lidar point cloud data collected from Unreal Engine scenes to the remote device. You can also specify
the compression and quality of the video stream. To stream the video, this block picks the first
available local UDP port, independent of the remote port you specify. This block uses the Gstreamer
framework to handle data streaming.

Limitations
• The Video Send block is supported only for use in Windows and Mac.

Ports
Input

Image — RGB or grayscale image signal to stream
M-by-N-by-3 matrix | M-by-N matrix

RGB or grayscale image signal to stream, specified as an M-by-N-by-3 matrix or M-by-N matrix,
respectively.

Dependencies

The Image Signal parameter must be set to One multidimensional signal.
Data Types: uint8 | uint16

R — Red channel signal of the RGB image to stream
M-by-N matrix.

Red channel signal of the RGB image to stream, specified as an M-by-N matrix.

Dependencies

The Image Signal parameter must be set to Separate color signals.
Data Types: uint8

G — Green channel signal of the RGB image to stream
M-by-N matrix

Green channel signal of the RGB image to stream, specified as an M-by-N matrix.

4 Blocks

4-102

https://gstreamer.freedesktop.org/

Dependencies

The Image Signal parameter must be set to Separate color signals.
Data Types: uint8

B — Blue channel signal of the RGB image to stream
M-by-N matrix

Blue channel signal of the RGB image to stream, specified as an M-by-N matrix.

Dependencies

The Image Signal parameter must be set to Separate color signals.
Data Types: uint8

Parameters
Video parameters

Format — Input video stream signal format
RGB (default) | Grayscale | Grayscale (16-bit)

Specify the input video stream signal format as one of the following:

• RGB - RGB image (8-bit per color channel).
• Grayscale - Grayscale image (8-bit).
• Grayscale (16-bit) - Grayscale image (16-bit).

Image signal — Nature of the RGB image input signal
One multidimensional signal (default) | Separate color signals

Specify the nature of the RGB image input signal as one of the following:

• One multidimensional signal - One input port for an M-by-N-by-3 color video signal with R,
G, and B color channels.

• Separate color signals - Three separate input ports for R,G and B channels. Each port
accepts one M-by-N matrix.

Dependencies

The Format parameter must be set to RGB.

Compression — Compression format for the video stream
JPEG (default) | VP8 | VP9

Specify the compression format for the video stream as one of the following:

• JPEG - Uses jpeg GStreamer plugin.

• This uses the following GStreamer pipeline:

video/x-raw,format=I420 ! jpegenc quality=<Quality> idct-method=1 ! rtpjpegpay ! udpsink sync=false host=<Remote address> port=<Remote port>

• VP8 - Uses vpx GStreamer plugin.

 Video Send

4-103

https://gstreamer.freedesktop.org/documentation/jpeg/index.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/vpx/index.html?gi-language=c

• This uses the following GStreamer pipeline:

vp8enc deadline=<Max frame time*1000> bits-per-pixel=0.0434 target-bitrate=0 threads=8 lag-in-frames=0 ! rtpvp8pay ! udpsink sync=false host=<Remote address> port=<Remote port>

• VP9 - Uses vpx GStreamer plugin.

• This uses the following GStreamer pipeline:

vp9enc deadline=<Max frame time*1000> bits-per-pixel=0.0434 target-bitrate=0 threads=8 lag-in-frames=0 ! rtpvp9pay ! udpsink sync=false host=<Remote address> port=<Remote port>

Quality — Quality of the video stream
85 (default) | 0-100

Specify the quality of the JPEG video stream as a positive scalar. This parameter controls the
encoding speed and compression ratio of the video stream. A higher quality value increases the
image quality at the expense of a higher network bandwidth. Specify a lower value for low-bandwidth
network connections.

Dependencies

The Compression parameter must be set to JPEG.

Max frame time (ms) — Maximum time per frame
30 (default) | non-negative integer

Specify the maximum frame time of the VP8 or VP9 video stream in milliseconds, as a positive
integer. This parameter controls the maximum processing time that the codec uses to encode an
image. Set this parameter based on the frame rate of the input Image. A good starting point value is
1000/fps, where fps is the sample rate of the input video signal. Set 0 if you want the encoder to
take as long as it needs, which will increase the quality at the expense of time required for
compression.

Dependencies

The Compression parameter must be set to VP8 or VP9.

Connection parameters

Remote address — Remote IP address
127.0.0.1 (default) | character vector

Specify the IP address or host name of the remote device, to which the block sends the message, as a
character vector.

Remote port — Remote IP port
5004 (default) | 0-65535

Specify the IP port of the remote device, to which the block sends the message. When streaming the
video, this block picks the first available local UDP port, independent of the remote port you specify.

Tips
• VP8 and VP9 compression formats are bandwidth efficient but also computationally expensive.

Hence, choose JPEG compression format if you are working on machines with limited CPU
resources.

4 Blocks

4-104

https://gstreamer.freedesktop.org/documentation/vpx/index.html?gi-language=c

• To receive the video stream on the remote device, in a separate model, use the Network Video
Receive block from the MATLAB Coder™ Support Package for NVIDIA® Jetson® and NVIDIA
DRIVE® Platforms. Alternatively, you can use your custom GStreamer-based receiver.

See Also
Simulation 3D Scene Configuration | Simulation 3D Camera | Simulation 3D UAV Vehicle

Introduced in R2021b

 Video Send

4-105

Simulation 3D UAV Vehicle
Place UAV vehicle in 3D visualization
Library: UAV Toolbox / Simulation 3D

Description
The Simulation 3D UAV Vehicle block implements an unmanned aerial vehicle (UAV) in a 3D
simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The
block uses the input (X, Y, Z) position and input (roll, pitch, yaw) attitude of the UAV in the
simulation.

To use this block, ensure that the Simulation 3D Scene Configuration block is in your model. If you
set the Sample time parameter of the Simulation 3D UAV Vehicle block to -1, the block inherits the
sample time specified in the Simulation 3D Scene Configuration block.

Note The Simulation 3D UAV Vehicle block must execute before the Simulation 3D Scene
Configuration block. That way, the Simulation 3D UAV Vehicle block prepares the signal data before
the Unreal Engine 3D visualization environment receives it. To check the block execution order, right-
click the blocks and select Properties. On the General tab, confirm these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Vehicle — -1

For more information about execution order, see “Block Execution Order”.

Ports
Input

Translation — Translation of vehicle relative to scene
vector

Translated position of the vehicle relative to the Unreal Engine scene origin. Translation vector
defines the X, Y, and Z positions, in meters, of the vehicle using the Unreal Engine world coordinate
frame. For more information on the coordinate systems, see “Coordinate Systems for Unreal Engine
Simulation in UAV Toolbox”.
Data Types: double

Rotation — Rotation of vehicle relative to scene
vector

Rotation of the vehicle relative to the Unreal Engine inertial reference frame. The rotation vector
defines the Yaw, Pitch, and Roll values, in degrees, of the vehicle rotation relative to the Unreal
Engine world coordinate frame. For more information on the coordinate systems, see “Coordinate
Systems for Unreal Engine Simulation in UAV Toolbox”.

4 Blocks

4-106

Data Types: double

Parameters
Vehicle Parameters

Type — Type of vehicle
Quadcopter (default) | Fixed wing | Custom

Select the type of vehicle. To obtain the dimensions of each vehicle type, see these reference pages:

• Quadcopter — Quadrotor
• Fixed wing — Fixed Wing Aircraft
• Custom — Custom UAV

Path to custom mesh, MeshPath — Path to custom mesh
/MathWorksSimulation/UAVs/Custom/Meshes/UAV_Custom.UAV_Custom (default) | valid file
path

Path to the custom mesh for the UAV.

To create a custom UAV vehicle mesh, see “Prepare Custom UAV Vehicle Mesh for the Unreal Editor”.
Example: /MathWorksSimulation/UAVs/Custom/Meshes/UAV_Custom.UAV_Custom

Dependencies

To enable this parameter, set the Type parameter to Custom.

Color — Color of vehicle
Black (default) | Orange | Yellow | Green | Blue | Red | White | Silver

Select the color of the vehicle.

Name — Name of vehicle
SimulinkVehicle1 (default) | vehicle name

Name of vehicle. By default, when you use the block in your model, the block sets the Name
parameter to SimulinkVehicleX. The value of X depends on the number of Simulation 3D UAV
Vehicle blocks that you have in your model.

The vehicle name appears as a selection in the Parent name parameter of any UAV Toolbox
Simulation 3D sensor blocks within the same model as the vehicle. With the Parent name parameter,
you can select the vehicle on which to mount the sensor.

Initial Values

Initial Translation (m) — Initial vehicle position
[0, 0, 0] (default) | real-valued 1-by-3 vector

Initial vehicle position along the X-axis, Y-axis, and Z-axis in the inertial Z-down coordinate system, in
m.

Initial Rotation (rad) — Initial angle of vehicle rotation
[0, 0, 0] (default) | real-valued 1-by-3 vector

 Simulation 3D UAV Vehicle

4-107

Initial angle of vehicle rotation, in rad. The angle of rotation is defined by the roll, pitch, and yaw of
the vehicle.

Sample Time

Sample time — Sample time
-1 (default) | positive scalar

Sample time, Ts, in seconds. The graphics frame rate is the inverse of the sample time.

If you set the sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block.

See Also
Blocks
Simulation 3D Lidar | Simulation 3D Fisheye Camera | Simulation 3D UAV Vehicle | Simulation 3D
Scene Configuration

Tools
Quadrotor | Fixed Wing Aircraft

Topics
“Coordinate Systems for Unreal Engine Simulation in UAV Toolbox”
“Choose a Sensor for Unreal Engine Simulation”

Introduced in R2020b

4 Blocks

4-108

UAV Animation
Animate UAV flight path using translations and rotations
Library: UAV Toolbox / Utilities

Description
The UAV Animation block animates a unmanned aerial vehicle (UAV) flight path based on an input
array of translations and rotations. A visual mesh is displayed for either a fixed-wing or multirotor at
the given position and orientation. Click the Show animation button in the block mask to bring up
the figure after simulating.

Ports
Input

Translation — xyz-positions
[x y z] vector

xyz-positions specified as an [x y z] vector.
Example: [1 1 1]

Rotation — Rotations of UAV body frames
[w x y z] quaternion vector

Rotations of UAV body frames relative to the inertial frame, specified as a [w x y z] quaternion
vector.
Example: [1 0 0 0]

Parameters
UAV type — Type of UAV mesh to display
Multirotor (default) | FixedWing

Type of UAV mesh to display, specified as either FixedWing or Multirotor.

UAV size — Size of frame and attached mesh
1 (default) | positive numeric scalar

Size of frame and attached mesh, specified as positive numeric scalar.

Inertial frame z-axis direction — Direction of positive z-axis of inertial frame
Down (default) | Up

 UAV Animation

4-109

Direction of the positive z-axis of inertial frame, specified as either Up or Down. In the plot, the
positive z-axis always points up. The parameter defines the rotation between the inertia frame and
plot frame. Set this parameter to Down if the inertial frame is following 'North-East-Down'
configuration.

Sample time — Interval between outputs
–1 (default) | scalar

Interval between outputs, specified as a scalar. In simulation, the sample time follows simulation time
and not actual wall-clock time.

This default value indicates that the block sample time is inherited.

For more information about the inherited sample time type, see “Specify Sample Time” (Simulink).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
plotTransforms | state

Objects
fixedwing | multirotor | uavWaypointFollower

Blocks
Waypoint Follower

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

4 Blocks

4-110

Guidance Model
Reduced-order model for UAV
Library: UAV Toolbox / Algorithms

Description
The Guidance Model block represents a small unmanned aerial vehicle (UAV) guidance model that
estimates the UAV state based on control and environmental inputs. The model approximates the
behavior of a closed-loop system consisting of an autopilot controller and a fixed-wing or multirotor
kinematic model for 3-D motion. Use this block as a reduced-order guidance model to simulate your
fixed-wing or multirotor UAV. Specify the ModelType to select your UAV type. Use the Initial State
tab to specify the initial state of the UAV depending on the model type. The Configuration tab
defines the control parameters and physical parameters of the UAV.

Ports
Input

Control — Control commands
bus

Control commands sent to the UAV model, specified as a bus. The name of the input bus is specified
in Input/Output Bus Names.

For multirotor UAVs, the model is approximated as separate PD controllers for each command. The
elements of the bus are control command:

• Roll - Roll angle in radians.
• Pitch - Pitch angle in radians.
• YawRate - Yaw rate in radians per second. (D = 0. P only controller)
• Thrust - Vertical thrust of the UAV in Newtons. (D = 0. P only controller)

For fixed-wing UAVs, the model assumes the UAV is flying under the coordinated-turn condition. The
guidance model equations assume zero side-slip. The elements of the bus are:

• Height - Altitude above the ground in meters.
• Airspeed - UAV speed relative to wind in meters per second.
• RollAngle - Roll angle along body forward axis in radians. Because of the coordinated-turn

condition, the heading angular rate is based on the roll angle.

Environment — Environmental inputs
bus

 Guidance Model

4-111

Environmental inputs, specified as a bus. The model compensates for these environmental inputs
when trying to achieve the commanded controls.

For fixed-wing UAVs, the elements of the bus are WindNorth, WindEast,WindDown, and Gravity.
Wind speeds are in meters per second and negative speeds point in the opposite direction. Gravity
is in meters per second squared.

For multirotor UAVs, the only element of the bus is Gravity in meters per second squared.
Data Types: bus

Output

State — Simulated UAV state
bus

Simulated UAV state, returned as a bus. The block uses the Control and Environment inputs with
the guidance model equations to simulate the UAV state.

For multirotor UAVs, the state is a five-element bus:

• WorldPosition - [x y z] in meters.
• WorldVelocity - [vx vy vz] in meters per second.
• EulerZYX - [psi phi theta] Euler angles in radians.
• BodyAngularRateRPY - [r p q] in radians per second along the xyz-axes of the UAV.
• Thrust - F in Newtons.

For fixed-wing UAVs, the state is an eight-element bus:

• North - Position in north direction in meters.
• East - Position in east direction in meters.
• Height - Height above ground in meters.
• AirSpeed - Speed relative to wind in meters per second.
• HeadingAngle - Angle between ground velocity and north direction in radians.
• FlightPathAngle - Angle between ground velocity and north-east plane in radians.
• RollAngle - Angle of rotation along body x-axis in radians per second.
• RollAngleRate - Angular velocity of rotation along body x-axis in radians per second.

Data Types: bus

Parameters
ModelType — UAV guidance model type
MultirotorGuidance (default) | FixedWingGuidance

UAV guidance model type, specified as MultirotorGuidance or FixedWingGuidance. The model
type determines the elements of the UAV State and the required Control and Environment
inputs.

Tunable: No

4 Blocks

4-112

DataType — Input and output numeric data types
double (default) | single

Input and output numeric data types, specified as either double or single. Choose the data type
based on possible software or hardware limitations.

Tunable: No

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

Tunable: No

Initial State — Initial UAV state tab
multiple table entries

Initial UAV state tab, specified as multiple table entries. All entries on this tab are nontunable.

For multirotor UAVs, the initial state is:

• World Position - [x y z] in meters.
• World Velocity - [vx vy vz] in meters per second.
• Euler Angles (ZYX) - [psi phi theta] in radians.
• Body Angular Rates - [p q r] in radians per second.
• Thrust - F in Newtons.

For fixed-wing UAVs, the initial state is:

• North - Position in north direction in meters.
• East - Position in east direction in meters.
• Height - Height above ground in meters.
• Air Speed - Speed relative to wind in meters per second.
• Heading Angle - Angle between ground velocity and north direction in radians.
• Flight Path Angle - Angle between ground velocity and north-east plane in radians.
• Roll Angle - Angle of rotation along body x-axis in radians per second.
• Roll Angle Rate - Angular velocity of rotation along body x-axis in radians per second.

Tunable: No

Configuration — UAV controller configuration tab
multiple table entries

 Guidance Model

4-113

UAV controller configuration tab, specified as multiple table entries. This tab allows you to configure
the parameters of the internal control behaviour of the UAV. Specify the proportional (P) and
derivative (D) gains for the dynamic model and the UAV mass in kilograms (for multirotor).

For multirotor UAVs, the parameters are:

• PD Roll
• PD Pitch
• P YawRate
• P Thrust
• Mass(kg)

For fixed-wing UAVs, the parameters are:

• P Height
• P Flight Path Angle
• PD Roll
• P Air Speed
• Min/Max Flight Path Angle ([min max] angle in radians)

Tunable: No

Input/Output Bus Names — Simulink bus signal names tab
multiple entries of character vectors

Simulink bus signal names tab, specified as multiple entries of character vectors. These buses have a
default name based on the UAV model and input type. To use multiple guidance models in the same
Simulink model, specify different bus names that do not intersect. All entries on this tab are
nontunable.

More About
UAV Coordinate Systems

The UAV Toolbox uses the North-East-Down (NED) coordinate system convention, which is also
sometimes called the local tangent plane (LTP). The UAV position vector consists of three numbers for
position along the northern-axis, eastern-axis, and vertical position. The down element complies with
the right-hand rule and results in negative values for altitude gain.

The ground plane, or earth frame (NE plane, D = 0), is assumed to be an inertial plane that is flat
based on the operation region for small UAV control. The earth frame coordinates are [xe,ye,ze]. The
body frame of the UAV is attached to the center of mass with coordinates [xb,yb,zb]. xb is the preferred
forward direction of the UAV, and zb is perpendicular to the plane that points downwards when the
UAV travels during perfect horizontal flight.

The orientation of the UAV (body frame) is specified in ZYX Euler angles. To convert from the earth
frame to the body frame, we first rotate about the ze-axis by the yaw angle, ψ. Then, rotate about the
intermediate y-axis by the pitch angle, ϕ. Then, rotate about the intermediate x-axis by the roll angle,
ϴ.

The angular velocity of the UAV is represented by [p,q,r] with respect to the body axes, [xb,yb,zb].

4 Blocks

4-114

UAV Fixed-Wing Guidance Model Equations

For fixed-wing UAVs, the following equations are used to define the guidance model of the UAV. Use
the derivative function to calculate the time-derivative of the UAV state using these governing
equations. Specify the inputs using the state, control, and environment functions.

The UAV position in the earth frame is [xe, ye, h] with orientation as heading angle, flight path angle,
and roll angle, [χ, γ, ϕ] in radians.

The model assumes that the UAV is flying under a coordinated-turn condition, with zero side-slip. The
autopilot controls airspeed, altitude, and roll angle. The corresponding equations of motion are:

Va and Vg denote the UAV air and ground speeds.

The wind speed is specified as [Vwn
,Vwe

,Vwd
] for the north, east, and down directions. To generate the

structure for these inputs, use the environment function.

k* are controller gains. To specify these gains, use the Configuration property of the fixedwing
object.

From these governing equations, the model gives the following variables:

These variables match the output of the state function.

 Guidance Model

4-115

UAV Multirotor Guidance Model Equations

For multirotors, the following equations are used to define the guidance model of the UAV. To
calculate the time-derivative of the UAV state using these governing equations, use the derivative
function. Specify the inputs using state, control, and environment.

The UAV position in the earth frame is [xe, ye, ze] with orientation as ZYX Euler angles, [ψ, ϴ, ϕ] in
radians. Angular velocities are [p, q, r] in radians per second.

The UAV body frame uses coordinates as [xb, yb, zb].

The rotation matrix that rotates vector from body frame to world frame is:

The cos(x) and sin(x) are abbreviated as cx and sx.

The acceleration of the UAV center of mass in earth coordinates is governed by:

m is the UAV mass, g is gravity, and Fthrust is the total force created by the propellers applied to the
multirotor along the –zb axis (points upwards in a horizontal pose).

The closed-loop roll-pitch attitude controller is approximated by the behavior of 2 independent PD
controllers for the two rotation angles, and 2 independent P controllers for the yaw rate and thrust.
The angular velocity, angular acceleration, and thrust are governed by:

4 Blocks

4-116

This model assumes the autopilot takes in commanded roll, pitch, yaw rate, and a commanded
total thrust force, Fc

thrust. The structure to specify these inputs is generated from control.

The P and D gains for the control inputs are specified as KPα and KDα, where α is either the rotation
angle or thrust. These gains along with the UAV mass, m, are specified in the Configuration
property of the multirotor object.

From these governing equations, the model gives the following variables:

These variables match the output of the state function.

References
[1] Randal W. Beard and Timothy W. McLain. "Chapter 9." Small Unmanned Aircraft Theory and

Practice, NJ: Princeton University Press, 2012.

[2] Mellinger, Daniel, and Nathan Michael. "Trajectory Generation and Control for Precise Aggressive
Maneuvers with Quadrotors." The International Journal of Robotics Research. 2012, pp.
664-74.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Guidance Model

4-117

See Also
Functions
ode45 | control | derivative | environment | state | plotTransforms

Objects
fixedwing | multirotor | uavWaypointFollower

Blocks
Waypoint Follower

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

4 Blocks

4-118

UAV Scenario Configuration
Configure and simulate UAV scenarios
Library: UAV Toolbox / UAV Scenario and Sensor Modeling

Description
This block allows you to import a uavScenario object and simulate the scenario. This block must be
in a model that contains a UAV Scenario Lidar and Motion blocks in order to test perception, control,
and planning algorithms with data from a uavScenario environment. Models with a UAV Scenario
can only use one UAV Scenario Configuration block at a time and is not intended to be used in a
cross-model workflow. In a UAV scenario, this block must be executed before other UAV Scenario
blocks. Update the UAV Scenario Configuration block with the Refresh button and click Apply to
reflect any changes made to the imported uavScenario in MATLAB.

This block internally stores motion states from platforms and sensors in a global data store memory
block as buses within a bus with a name specified in the Scenario motion bus name parameter. The
bus contains the following fields:

• NumPlatforms — Number of UAV platforms in the scenario stored as a scalar.
• Time — Simulation time associated with the motion state stored as a scalar.
• Platforms — Bus array with name specified in the Platform motion bus name parameter

containing all platforms in the UAV Scenario with each of the following fields:

• PlatformID — ID of platform based on order of platforms in the uavScenario.Platforms
Property.

• Position — Position in NED frame specified as a 1-by-3 vector.
• Orientation — Orientation in NED frame specified as a 1-by-4 vector, quaternion, frame

rotation from NED frame to UAV body frame.
• Velocity — Velocity in NED frame specified as a 1-by-3 vector.
• Acceleration — Acceleration in NED frame specified as a 1-by-3 vector.
• AngularVelocity — Angular velocity in NED frame specified as a 1-by-3 vector.

Limitations
The UAV Scenario blocks do not support:

• Code generation
• Model reference
• Multiple instances of the UAV Scenario Configuration block
• Rapid acceleration mode

 UAV Scenario Configuration

4-119

In addition, the execution order is important when using these blocks in a closed loop simulation. The
UAV Scenario Configuration block must execute first. The UAV Scenario Motion Write block must
execute before the UAV Scenario Motion Read, UAV Scenario Lidar, and UAV Scenario Scope blocks.

Parameters
Main

MATLAB or model workspace variable name — MATLAB or model workspace variable
name
'singleUAVScenario' (default) | string

Specify uavScenario object to import from the MATLAB or model workspace, specified by variable
name as a string. Click Refresh to reload the scenario from the uavScenario object.

Sample time — Sample time
0.1 (default) | positive double

Specify sample time of the UAV scenario in seconds. This block only supports discrete sample time.

Scenario Bus and Signal Names

Sensor motion bus name — Sensor motion bus name
'SensorMotionBus' (default) | string

Specify the name of the sensor motion bus type as a string. Sensor motion read by the UAV Scenario
Motion Read uses a bus object with the specified name.

Platform motion bus name — Platform motion bus name
'PlatformMotionBus' (default) | string

Specify the name of the platform motion bus type as a string. Platform motion read and written by the
UAV Scenario Motion Read and UAV Scenario Motion Write respectively will use a bus object with the
specified name.

Scenario motion bus name — Scenario motion bus name
'SensorMotionBus' (default) | string

Specify the name of the scenario motion bus type as a string. This bus type is used by the UAV
Scenario Configuration block to store the motion data of all the platforms and sensors within the UAV
Scenario.

Scenario motion signal name — Scenario motion signal name
'ScenarioMotions' (default) | string

Specify the name of the scenario motion bus signal as a string. This is the name used for the Data
Store Read block that stores the data for the UAV Scenario.

See Also
Objects
uavScenario

4 Blocks

4-120

Blocks
UAV Scenario Get Transform | UAV Scenario Lidar | UAV Scenario Motion Read | UAV Scenario
Motion Write | UAV Scenario Scope

Topics
“UAV Scenario Tutorial”

Introduced in R2021b

 UAV Scenario Configuration

4-121

UAV Scenario Get Transform
Get transforms from UAV scenario platforms
Library: UAV Toolbox / UAV Scenario and Sensor Modeling

Description
This block outputs a 4-by-4 transformation matrix that maps points in source frame to target frame in
a UAV Scenario.

To use this block, ensure that UAV Scenario Configuration block is in your model.

This block uses the sample time specified in the UAV Scenario Configuration block.

Limitations
The UAV Scenario blocks do not support:

• Code generation
• Model reference
• Multiple instances of the UAV Scenario Configuration block
• Rapid acceleration mode

In addition, the execution order is important when using these blocks in a closed loop simulation. The
UAV Scenario Configuration block must execute first. The UAV Scenario Motion Write block must
execute before the UAV Scenario Motion Read, UAV Scenario Lidar, and UAV Scenario Scope blocks.

Ports
Output

transform — Transformation matrix
4-by-4 matrix

Output transformation specified as a 4-by-4 transformation matrix.

Parameters
Source Frame — Source frame
'ENU' (default) | 'NED' | string from UAV Scenario

Use Select to choose a global coordinate source frame from the UAV Scenario loaded in your model.
Select either North-East-Down ('NED'), or East-North-Up ('ENU').

4 Blocks

4-122

Target Frame — Target frame
'NED' (default) | 'ENU' | string from UAV Scenario

Use Select to choose a global coordinate source frame from the UAV Scenario loaded in your model.
Select either North-East-Down ('NED'), or East-North-Up ('ENU').

See Also
Functions
getTransform

Blocks
UAV Scenario Configuration | UAV Scenario Lidar | UAV Scenario Motion Read | UAV Scenario Motion
Write | UAV Scenario Scope

Introduced in R2021b

 UAV Scenario Get Transform

4-123

UAV Scenario Lidar
Simulate lidar measurements based on meshes in scenario
Library: UAV Toolbox / UAV Scenario and Sensor Modeling

Description
Use this block to simulate lidar measurements by outputting point cloud data based on meshes in a
UAV Scenario. To add meshes to your UAV Scenario, use the addMesh function to add it to the
uavScenario object included by your UAV Scenario Configuration block. See “UAV Scenario
Tutorial” for more information on adding meshes.

To use this block, ensure that UAV Scenario Configuration block is in your model.

Limitations
The UAV Scenario blocks do not support:

• Code generation
• Model reference
• Multiple instances of the UAV Scenario Configuration block
• Rapid acceleration mode

In addition, the execution order is important when using these blocks in a closed loop simulation. The
UAV Scenario Configuration block must execute first. The UAV Scenario Motion Write block must
execute before the UAV Scenario Motion Read, UAV Scenario Lidar, and UAV Scenario Scope blocks.

Ports
Output

Pointcloud — Point cloud data
N-by-M-by-3 double matrix | N-by-3 double matrix

Point cloud data reported in the Sensor Frame. When Output organized point cloud
locations is checked, the point cloud data is specified as a N-by-M-by-3 double matrix, where N is
the number of vertical scans, and M is the number of horizontal scans. When Output organized
point cloud locations is unchecked, the point cloud data is specified as an N-by-3 double
matrix, where N is the number of points in the point cloud.

Parameters
Sensor name — Lidar name
'UAV/Lidar' (default) | string

4 Blocks

4-124

Use Select to choose a lidar sensor from the UAV Scenario.

To add sensors to the UAV Scenario, create uavSensor objects with a
uavLidarPointCloudGenerator as the specified sensor model and attach the uavSensor to a
uavPlatform in UAV Scenario. This scenario must be imported into Simulink using the UAV
Scenario Configuration block. The available sensors will be listed as 'platform name/sensor name'.

Max range — Max range of lidar
120 (default) | double

Specify max range of lidar as a double scalar in meters.

Range Accuracy — Range accuracy of lidar
0.002 (default) | double

Specify range accuracy of lidar as a double scalar in meters.

Azimuthal limits — Azimuthal limits of lidar
[-180, 180] (default) | two-element vector

Specify azimuthal limits of lidar as a two-element vector in degrees.

Azimuthal resolution — Azimuthal resolution
0.16 (default) | double

Specify azimuthal resolution of lidar as a double scalar in degrees.

Elevation limits — Elevation limits of lidar
[-20, 20] (default) | two-element vector

Specify elevation limits of lidar as a two element vector in degrees.

Elevation resolution — Elevation resolution
1.25 (default) | double

Specify elevation resolution of lidar as a double scalar in degrees.

Add noise to measurement — Add noise to measurement
'on' (default) | 'off'

Check this box to add noise to measurement of lidar. The noise generation of this block currently does
not allow for a user-specified seed.

Output organized point cloud locations — Output point cloud locations
'on' (default) | 'off'

Check this box to output organized point cloud locations specified as N-by-M-by-3, where N is the
number of vertical scans, and M is the number of horizontal scans. If set to 'off', the output of the
block is an N-by-3 double matrix, where N is the number of points in the point cloud.

Sample Time — Sample time
0.1 (default) | double

Specify sample time of the lidar as a double scalar in seconds. Sample time must be a multiple of the
sample time specified in the UAV Scenario Configuration block.

 UAV Scenario Lidar

4-125

See Also
Functions
addMesh | addCustomTerrain

Objects
uavLidarPointCloudGenerator | uavScenario | uavSensor

Blocks
UAV Scenario Configuration | UAV Scenario Get Transform | UAV Scenario Motion Read | UAV
Scenario Motion Write | UAV Scenario Scope

Topics
“UAV Scenario Tutorial”

Introduced in R2021b

4 Blocks

4-126

UAV Scenario Motion Read
Read platform and sensor motions from UAV scenario simulation
Library: UAV Toolbox / UAV Scenario and Sensor Modeling

Description
Use this block to read motion as a bus from a sensor or platform in a UAV scenario simulation. The
motion bus contains the position, orientation, velocity, angular velocity, acceleration, and ID of the
platform or sensor.

To use this block, ensure that a UAV Scenario Configuration block is in your model.

This block uses the sample time specified in the UAV Scenario Configuration block.

Limitations
The UAV Scenario blocks do not support:

• Code generation
• Model reference
• Multiple instances of the UAV Scenario Configuration block
• Rapid acceleration mode

In addition, the execution order is important when using these blocks in a closed loop simulation. The
UAV Scenario Configuration block must execute first. The UAV Scenario Motion Write block must
execute before the UAV Scenario Motion Read, UAV Scenario Lidar, and UAV Scenario Scope blocks.

Ports
Output

Motion — UAV motion data
bus

Output motion from a platform or sensor specified as a bus with the following properties with the
name specified in Platform or sensor name:

• PlatformID – ID of platform based on order of platforms in the uavScenario.Platforms
property.

• Position – Position in NED frame specified as a 1-by-3 vector.
• Orientation – Orientation in NED frame specified as a 1-by-4 vector, quaternion, frame rotation

from NED frame to UAV body frame.
• Velocity – Velocity in NED frame specified as a 1-by-3 vector.

 UAV Scenario Motion Read

4-127

• Acceleration – Acceleration in NED frame specified as a 1-by-3 vector.
• AngularVelocity – Angular velocity in NED frame specified as a 1-by-3 vector.

If a sensor name is specified in Platform or sensor name, the SensorID field is added to the bus
fields of the motion output bus.

• SensorID – ID of sensor specified as a scalar based on the order of sensors in the
uavScenario.Platforms property.

The platform and sensors motion buses are of the type named in the Sensor motion bus name and
Sensor motion bus name properties of the UAV Scenario Configuration block in the model.

Parameters
Platform or sensor name — Platform or sensor name
'UAV' (default) | string

Use Select to choose one platform or sensor from the UAV Scenario to read motion from.

This parameter effects the fields of the motion bus output. See Motion output for more information.

Coordinate frame of output motion — Coordinate frame of output motion
'ENU' (default) | 'NED' | string

Specify the coordinate frame of the output motion as East-North-Up ('ENU') or North-East-Down
('NED').

See Also
Blocks
UAV Scenario Configuration | UAV Scenario Get Transform | UAV Scenario Lidar | UAV Scenario
Motion Write | UAV Scenario Scope

Introduced in R2021b

4 Blocks

4-128

UAV Scenario Motion Write
Update platform motion in UAV scenario simulation
Library: UAV Toolbox / UAV Scenario and Sensor Modeling

Description
Use this block to update the motion state of a platform in a UAV scenario simulation with input
signals at each time step. The block takes the position, orientation, velocity, acceleration, and angular
velocity as inputs to update the motion state bus of the specified platform. However, this block does
not move the platform based on velocity and acceleration inputs as there is no kinematic model being
simulated in the UAV Scenario.

To use this block, ensure that UAV Scenario Configuration block is in your model.

This block uses the sample time specified in the UAV Scenario Configuration block.

Limitations
The UAV Scenario blocks do not support:

• Code generation
• Model reference
• Multiple instances of the UAV Scenario Configuration block
• Rapid acceleration mode

In addition, the execution order is important when using these blocks in a closed loop simulation. The
UAV Scenario Configuration block must execute first. The UAV Scenario Motion Write block must
execute before the UAV Scenario Motion Read, UAV Scenario Lidar, and UAV Scenario Scope blocks.

Ports
Input

Position — Position
1-by-3 vector

Specify input position of platform in input coordinate frame as a 1-by-3 vector.

Orientation — Orientation quaternion
1-by-4 vector

Specify input orientation of platform in input coordinate frame as a 1-by-4 vector quaternion.

Velocity — Velocity
1-by-3 vector

 UAV Scenario Motion Write

4-129

Specify input velocity of platform in input coordinate frame as a 1-by-3 vector.

Acceleration — Acceleration
1-by-3 vector

Specify input acceleration of platform in input coordinate frame as a 1-by-3 vector.

AngularVelocity — Angular Velocity
1-by-3 vector

Specify input angular velocity of platform in input coordinate frame, specified as a 1-by-3 vector.

Parameters
Platform name — Platform name
'UAV' (default) | string

Use Select to choose a platform name string from the UAV Scenario.

Coordinate frame of input motion — Coordinate frame of input motion
'NED' (default) | ENU

Specify coordinate frame of input motion as 'NED'(North-East-Down) or 'ENU'(East-North-Up).

See Also
Blocks
UAV Scenario Configuration | UAV Scenario Get Transform | UAV Scenario Lidar | UAV Scenario
Motion Read | UAV Scenario Scope

Introduced in R2021b

4 Blocks

4-130

UAV Scenario Scope
Visualize UAV scenario and lidar point clouds
Library: UAV Toolbox / UAV Scenario and Sensor Modeling

Description
Use this block to visualize a UAV scenario and lidar point clouds in an animation figure window. Click
Show animation in the block parameters to visualize the UAV scenario. The visualization in the
figure window updates continuously as the model is running.

An input port is created for every sensor checked for visualization in the Visualize column of the
Lidar Sensors table.

To use this block, ensure that UAV Scenario Configuration block is in your model.

Limitations
The UAV Scenario blocks do not support:

• Code generation
• Model reference
• Multiple instances of the UAV Scenario Configuration block
• Rapid acceleration mode

In addition, the execution order is important when using these blocks in a closed loop simulation. The
UAV Scenario Configuration block must execute first. The UAV Scenario Motion Write block must
execute before the UAV Scenario Motion Read, UAV Scenario Lidar, and UAV Scenario Scope blocks.

Ports
Input

In_1, In_2, ..., In_N — Point cloud data inputs for lidar sensors
N-by-M-by-3 double matrix | N-by-3 double matrix

Input point cloud data for sensors in the UAV Scenario. An input port is created for every lidar sensor
checked for visualization in the Lidar Sensors table in the Visualize column. The name of the port
is set to the name of the of the sensor, which includes the name of the platform the sensor belongs
too. For example, an input port for a lidar sensor on a platform named EgoVehicle will have the
name, EgoVehicle/Lidar.

If the Organized point cloud locations parameter of the lidar sensor is set to 'on', then the
input port expects a N-by-M-by-3 double matrix, where N is the number of vertical scans, and M is
the number of horizontal scans. If the Organized point cloud locations of the lidar sensor is

 UAV Scenario Scope

4-131

set to 'off', the input port expects an N-by-3 double matrix, where N is the number of points in the
point cloud.

Parameters
Lidar Sensors — List of lidar sensors and their visualization
table

The Lidar Sensors table lists all of the lidar sensors in the UAV scenario. In the first column,
Sensor name, all of the sensor names are listed with their associated platform as 'platform name/
sensor name'. The second column, Visualize, contains a check-box for every lidar sensor in the table.
Setting a visualization to 'on' for a lidar sensor creates an input port with the name of that lidar
sensor.

Enter a string in the Filter table contents to filter through the list of sensors by their name in the
Sensor Name column of the table.

If the list of lidar sensors in the UAV Scenario has changed, click Refresh sensor table to update the
Lidar Sensors table.

Click Show animation to show or hide the animation figure for the UAV scenario.

Sample time — Sample time
0.1 (default)

Specify sample time of the visualization. If Sample time is set to -1, this block uses the sample time
specified in the UAV Scenario Configuration block.

More About
Animation Window Buttons

Change the focus between platforms by using the previous view and next view buttons. Previous view
will show the previous platform in the list of platforms. If the view is already focused on the first
platform in the list, it will change to home view. Next performs similarly, changing to home view if the
view is currently focused on the last platform.

Rotate, Pan, Zoom, and Home all interact with the animation the same as they do for regular plots.

See Also
Blocks
UAV Scenario Configuration | UAV Scenario Get Transform | UAV Scenario Lidar | UAV Scenario
Motion Read | UAV Scenario Motion Write

Introduced in R2021b

4 Blocks

4-132

Waypoint Follower
Follow waypoints for UAV
Library: UAV Toolbox / Algorithms

Description
The Waypoint Follower block follows a set of waypoints for an unmanned aerial vehicle (UAV) using a
lookahead point. The block calculates the lookahead point, desired course, and desired yaw given a
UAV position, a set of waypoints and a lookahead distance. Specify a set of waypoints and tune the
lookahead distance and transition radius parameters for navigating the waypoints. The block
supports both multirotor and fixed-wing UAV types.

Ports
Input

Pose — Current UAV pose
[x y z chi] vector

Current UAV pose, specified as a [x y z chi] vector. This pose is used to calculate the lookahead
point based on the input to the LookaheadDistance port. [x y z] is the current position in meters.
chi is the current course in radians.
Example: [0.5;1.75;-2.5;pi]
Data Types: single | double

Waypoints — Set of waypoints
n-by-3 matrix | n-by-4 matrix | n-by-5 matrix

Set of waypoints for the UAV to follow, specified as a matrix with number of rows, n, equal to the
number of waypoints. The number of columns depend on the Show Yaw input variable and the
Transition radius source parameter.

Each row in the matrix has the first three elements as an [x y z] position in the sequence of
waypoints.

If Show Yaw input variable is checked, specify the desired yaw angle, yaw, as the fourth element in
radians.

If Show Yaw input variable is unchecked, and Transition radius source is external, the
transition radius is the fourth element of the vector in meters.

If Show Yaw input variable is checked, and Transition radius source is external, the transition
radius is the fifth element of the vector in meters.

The block display updates as the size of the waypoint matrix changes.

 Waypoint Follower

4-133

Data Types: single | double

LookaheadDistance — Lookahead distance
positive numeric scalar

Lookahead distance along the path, specified as a positive numeric scalar in meters.
Data Types: single | double

Output

LookaheadPoint — Lookahead point on path
[x y z] position vector

Lookahead point on path, returned as an [x y z] position vector in meters.
Data Types: single | double

DesiredCourse — Desired course
numeric scalar

Desired course, returned as numeric scalar in radians in the range of [-pi, pi]. The UAV course is
the angle of direction of the velocity vector relative to north measured in radians. For fixed-wing type
UAV, the values of desired course and desired yaw are equal.
Data Types: single | double

DesiredYaw — Desired yaw
numeric scalar

Desired yaw, returned as numeric scalar in radians in the range of [-pi, pi]. The UAV yaw is the
forward direction of the UAV regardless of the velocity vector relative to north measured in radians.
The desired yaw is computed using linear interpolation between the yaw angle for each waypoint. For
fixed-wing type UAV, the values of desired course and desired yaw are equal.
Data Types: single | double

LookaheadDistFlag — Lookahead distance flag
0 (default) | 1

Lookahead distance flag, returned as 0 or 1. 0 indicates lookahead distance is not saturated, 1
indicates lookahead distance is saturated to minimum lookahead distance value specified.
Data Types: uint8

CrossTrackError — Cross track error from UAV position to path
positive numeric scalar

Cross track error from UAV position to path, returned as a positive numeric scalar in meters. The
error measures the perpendicular distance from the UAV position to the closest point on the path.
Dependencies

This port is only visible if Show CrossTrackError output port is checked.
Data Types: single | double

Status — Status of waypoint navigation
0 | 1

4 Blocks

4-134

Status of waypoint navigation, returned as 0 or 1. When the follower has navigated all waypoints, the
block outputs 1. Otherwise, the block outputs 0.
Dependencies

This port is only visible if Show UAV Status output port is checked.

Parameters
UAV type — Type of UAV
fixed-wing (default) | multirotor

Type of UAV, specified as either fixed-wing or multirotor.

This parameter is non-tunable.

StartFrom — Waypoint start behavior
first (default) | closest

Waypoint start behavior, specified as either first or closest.

When set to first, the UAV flies to the first path segment between waypoints. If the set of waypoints
input in Waypoints changes, the UAV restarts at the first path segment.

When set to closest, the UAV flies to the closest path segment between waypoints. When the
waypoints input changes, the UAV recalculates the closest path segment.

This parameter is non-tunable.

Transition radius source — Source of transition radius
internal (default) | external

Source of transition radius, specified as either internal or external. If specified as internal, the
transition radius for each waypoint is set using the Transition radius (r) parameter in the block
mask. If specified as external, specify each waypoints transition radius independently using the
input from the Waypoints port.

When the UAV is within the transition radius, the block transitions to following the next path segment
between waypoints.

This parameter is non-tunable.

Transition radius (r) — Transition radius for waypoints
10 (default) | positive numeric scalar

Transition radius for waypoints, specified as a positive numeric scalar in meters.

When the UAV is within the transition radius, the block transitions to following the next path segment
between waypoints.

This parameter is non-tunable.

Minimum lookahead distance (m) — Minimum lookahead distance
0.1 (default) | positive numeric scalar

Minimum lookahead distance, specified as a positive numeric scalar in meters.

 Waypoint Follower

4-135

When input to the LookaheadDistance port is less than the minimum lookahead distance, the
LookaheadDistFlag is returned as 1 and the lookahead distance value is specified as the value of
minimum lookahead distance.

This parameter is non-tunable.

Show Yaw input variable — Accept yaw input for waypoints
off (default) | on

Accept yaw inputs for waypoints when selected. If selected, the Waypoints input accepts yaw inputs
for each waypoint.

Show CrossTrackError output port — Output cross track error
off (default) | on

Output cross track error from the CrossTrackError port.

This parameter is non-tunable.

Show UAV Status output port — Output UAV waypoint status
off (default) | on

Output UAV waypoint status from the Status port.

This parameter is non-tunable.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but the speed of the subsequent simulations is comparable to Interpreted execution.

This parameter is non-tunable.

Tunable: No

More About
Waypoint Hyperplane Condition

When following a set of waypoints, the first waypoint may be ignored based on the pose of the UAV.
Due to the nature of the lookahead distance used to track the path, the waypoint follower checks if
the UAV is near the next waypoint to transition to the next path segment using a transition region.
However, there is also a condition where the UAV transitions when outside of this region. A 3-D
hyperplane is drawn at the next waypoint. If the UAV pose is inside this hyperplane, the waypoint
follower transitions to the next waypoint. This behavior helps to ensure the UAV follows an achievable
path.

4 Blocks

4-136

The hyperplane condition is satisfied if:

(p-w1)T (w2-w1) ≥ 0

p is the UAV position, and w1 and w2 are sequential waypoint positions.

If you find this behavior limiting, consider adding more waypoints based on your initial pose to force
the follower to navigate towards your initial waypoint.

References
[1] Park, Sanghyuk, John Deyst, and Jonathan How. "A New Nonlinear Guidance Logic for Trajectory

Tracking." AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Orbit Follower | UAV Guidance Model

Functions
ode45 | control | derivative | environment | state | plotTransforms

Objects
fixedwing | multirotor | uavWaypointFollower

 Waypoint Follower

4-137

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

4 Blocks

4-138

INS
Simulate INS sensor
Library: Navigation Toolbox / Multisensor Positioning / Sensor

Models
Automated Driving Toolbox / Driving Scenario and Sensor
Modeling
Sensor Fusion and Tracking Toolbox / Multisensor
Positioning / Sensor Models
UAV Toolbox / UAV Scenario and Sensor Modeling

Description
The block simulates an INS sensor, which outputs noise-corrupted position, velocity, and orientation
based on the corresponding inputs. The block can also optionally output acceleration and angular
velocity based on the corresponding inputs. To change the level of noise present in the output, you
can vary the roll, pitch, yaw, position, velocity, acceleration, and angular velocity accuracies. The
accuracy is defined as the standard deviation of the noise.

Ports
Input

Position — Position of INS sensor
N-by-3 real-valued matrix

Position of the INS sensor relative to the navigation frame, in meters, specified as an N-by-3 real-
valued matrix. N is the number of samples.
Data Types: single | double

Velocity — Velocity of INS sensor
N-by-3 real-valued matrix of scalar

Velocity of the INS sensor relative to the navigation frame, in meters per second, specified as an N-
by-3 real-valued matrix. N is the number of samples.
Data Types: single | double

Orientation — Orientation of INS sensor
3-by-3-by-N real-valued array | N-by-4 real-valued matrix | N-by-3 matrix of Euler angles

Orientation of the INS sensor relative to the navigation frame, specified as one of these formats:

• A 3-by-3-by-N real-valued array, where each page of the array (3-by-3 matrix) is a rotation matrix.
• An N-by-4 real-valued matrix, where each row of the matrix is the four elements of a quaternion.

 INS

4-139

• An N-by-3 matrix of Euler angles, where each row of the matrix is the three Euler angles
corresponding to the z-y-x rotation convention.

N is the number of samples.
Data Types: single | double

Acceleration — Acceleration of INS sensor
N-by-3 real-valued matrix

Acceleration of the INS sensor relative to the navigation frame, in meters per second squared,
specified as an N-by-3 real-valued matrix. N is the number of samples.
Dependencies

To enable this input port, select Use acceleration and angular velocity.
Data Types: single | double

AngularVelocity — Angular velocity of INS sensor
N-by-3 real-valued matrix

Angular velocity of the INS sensor relative to the navigation frame, in degrees per second, specified
as an N-by-3 real-valued matrix. N is the number of samples.
Dependencies

To enable this input port, select Use acceleration and angular velocity.
Data Types: single | double

HasGNSSFix — Enable GNSS fix
N-by-1 logical vector

Enable GNNS fix, specified as an N-by-1 logical vector. N is the number of samples. Specify this input
as false to simulate the loss of a GNSS receiver fix. When a GNSS receiver fix is lost, position
measurements drift at a rate specified by the Position error factor parameter.
Dependencies

To enable this input port, select Enable HasGNSSFix port.
Data Types: single | double

Output

Position — Position of INS sensor
N-by-3 real-valued matrix

Position of the INS sensor relative to the navigation frame, in meters, returned as an N-by-3 real-
valued matrix. N is the number of samples in the input.
Data Types: single | double

Velocity — Velocity of INS sensor
N-by-3 real-valued matrix

Velocity of the INS sensor relative to the navigation frame, in meters per second, returned as an N-
by-3 real-valued matrix. N is the number of samples in the input.

4 Blocks

4-140

Data Types: single | double

Orientation — Orientation of INS sensor
3-by-3-by-N real-valued array | N-by-4 real-valued matrix

Orientation of the INS sensor relative to the navigation frame, returned as one of the formats:

• A 3-by-3-by-N real-valued array, where each page of the array (3-by-3 matrix) is a rotation matrix.
• An N-by-4 real-valued matrix, where each row of the matrix is the four elements of a quaternion.
• An N-by-3 matrix of Euler angles, where each row of the matrix is the three Euler angles

corresponding to the z-y-x rotation convention.

N is the number of samples in the input.
Data Types: single | double

Acceleration — Acceleration of INS sensor
N-by-3 real-valued matrix

Acceleration of the INS sensor relative to the navigation frame, in meters per second squared,
returned as an N-by-3 real-valued matrix. N is the number of samples.

Dependencies

To enable this output port, select Use acceleration and angular velocity.
Data Types: single | double

AngularVelocity — Angular velocity of INS sensor
N-by-3 real-valued matrix

Angular velocity of the INS sensor relative to the navigation frame, in degrees per second, returned
as an N-by-3 real-valued matrix. N is the number of samples.

Dependencies

To enable this output port, select Use acceleration and angular velocity.
Data Types: single | double

Parameters
Mounting location (m) — Location of sensor on platform (m)
[0 0 0] (default) | three-element real-valued vector of form [x y z]

Location of the sensor on the platform, in meters, specified as a three-element real-valued vector of
the form [x y z]. The vector defines the offset of the sensor origin from the origin of the platform.
Data Types: single | double

Roll (X-axis) accuracy (deg) — Accuracy of roll measurement (deg)
0.2 (default) | nonnegative real scalar

Accuracy of the roll measurement of the sensor body in degrees, specified as a nonnegative real
scalar.

 INS

4-141

Roll is defined as rotation around the x-axis of the sensor body. Roll noise is modeled as white process
noise with standard deviation equal to the specified Roll accuracy in degrees.
Data Types: single | double

Pitch (Y-axis) accuracy (deg) — Accuracy of pitch measurement (deg)
0.2 (default) | nonnegative real scalar

Accuracy of the pitch measurement of the sensor body in degrees, specified as a nonnegative real
scalar.

Pitch is defined as rotation around the y-axis of the sensor body. Pitch noise is modeled as white
process noise with standard deviation equal to the specified Pitch accuracy in degrees.
Data Types: single | double

Yaw (Z-axis) accuracy (deg) — Accuracy of yaw measurement (deg)
1 (default) | nonnegative real scalar

Accuracy of the yaw measurement of the sensor body in degrees, specified as a nonnegative real
scalar.

Yaw is defined as rotation around the z-axis of the sensor body. Yaw noise is modeled as white process
noise with standard deviation equal to the specified Yaw accuracy in degrees.
Data Types: single | double

Position accuracy (m) — Accuracy of position measurement (m)
1 (default) | nonnegative real scalar | 1-by-3 vector of nonnegative values

Accuracy of the position measurement of the sensor body in meters, specified as a nonnegative real
scalar or a 1-by-3 vector of nonnegative values. If you specify the parameter as a scalar value, then
the block sets the accuracy of all three position components to this value.

Position noise is modeled as white process noise with a standard deviation equal to the specified
Position accuracy in meters.
Data Types: single | double

Velocity accuracy (m/s) — Accuracy of velocity measurement (m/s)
1 (default) | nonnegative real scalar

Accuracy of the velocity measurement of the sensor body in meters per second, specified as a
nonnegative real scalar.

Velocity noise is modeled as white process noise with a standard deviation equal to the specified
Velocity accuracy in meters per second.
Data Types: single | double

Use acceleration and angular velocity — Use acceleration and angular velocity
off (default) | on

Select this check box to enable the block inputs of acceleration and angular velocity through the
Acceleration and AngularVelocity input ports, respectively. Meanwhile, the block outputs the
acceleration and angular velocity measurements through the Acceleration and AngularVelocity
output ports, respectively. Additionally, selecting this parameter enables you to specify the
Acceleration accuracy and Angular velocity accuracy parameters.

4 Blocks

4-142

Acceleration accuracy (m/s2) — Accuracy of acceleration measurement (m/s2)
0 (default) | nonnegative real scalar

Accuracy of the acceleration measurement of the sensor body in meters, specified as a nonnegative
real scalar.

Acceleration noise is modeled as white process noise with a standard deviation equal to the specified
Acceleration accuracy in meters per second squared.

Dependencies

To enable this parameter, select Use acceleration and angular velocity.
Data Types: single | double

Angular velocity accuracy (deg/s) — Accuracy of angular velocity measurement
(deg/s)
0 (default) | nonnegative real scalar

Accuracy of the angular velocity measurement of the sensor body in meters, specified as a
nonnegative real scalar.

Angular velocity noise is modeled as white process noise with a standard deviation equal to the
specified Angular velocity accuracy in degrees per second.

Dependencies

To enable this parameter, select Use acceleration and angular velocity.
Data Types: single | double

Enable HasGNSSFix port — Enable HasGNSSFix input port
off (default) | on

Select this check box to enable the HasGNSSFix input port. When the HasGNSSFix input is
specified as false, position measurements drift at a rate specified by the Position error factor
parameter.

Position error factor (m) — Position error factor (m)
[0 0 0] (default) | nonnegative scalar | 1-by-3 real-valued vector

Position error factor without GNSS fix, specified as a scalar or a 1-by-3 real-valued vector. If you
specify the parameter as a scalar value, then the block sets the position error factors of all three
position components to this value.

When the HasGNSSFix input is specified as false, the position error grows at a quadratic rate due
to constant bias in the accelerometer. The position error for a position component E(t) can be
expressed as E(t) = 1/2αt2, where α is the position error factor for the corresponding component and
t is the time since the GNSS fix is lost. The computed E(t) values for the x, y, and z components are
added to the corresponding position components of the Position output.

Dependencies

To enable this parameter, select Enable HasGNSSFix port.
Data Types: double

 INS

4-143

Intial Seed — Initial seed for randomization
67 (default) | nonnegative integer

Initial seed of a random number generator algorithm, specified as a nonnegative integer.
Data Types: single | double

Simulate using — Type of simulation to run
Interpreted Execution (default) | Code Generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C code. The first time that you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations if the model does not change. This option requires additional startup time.

See Also
insSensor

Introduced in R2021b

4 Blocks

4-144

Apps

5

Flight Log Analyzer
Analyze UAV autopilot flight logs

Description
The Flight Log Analyzer app enables you to load and analyze UAV autopilot flight log data, as well
as create a customized series of plots.

5 Apps

5-2

To use the app:

Click New Session to create a new session.

You can open saved app sessions by clicking
Open Session.

You can save your progress to a MAT-file (.mat)
by clicking Save Session.
To load a ULOG file (.ulg) or MAT-file containing
a ulogreader object, select Import > From
ULOG.

To load a TLOG file (.tlog) or MAT-file
containing a mavlinktlog object, select Import
> From TLOG.

Select Import > From Workspace to load a
ulogreader object, mavlinktlog object, or
custom log data and a
flightLogSignalMapping object from the
workspace.

 Flight Log Analyzer

5-3

Click Add Figure to add a new figure for
plotting.

You can add one or more predefined or custom
plots to a figure from the plot gallery. To see all
available plots in the plot gallery, click the down
arrow on the right side of the gallery.

Predefined Plots

• Attitude — Adds plots for roll, pitch, yaw
angles, as well as body rotation rates

• IMU — Adds plots for an accelerometer and
gyroscope

• Trajectory — Adds a 3-D plot for the UAV
trajectory and reference trajectory

• Velocity — Adds plots for velocity in the x-, y-,
and z-directions, as well as groundspeed and
airspeed

• Compass — Adds plots for a magnetometer,
estimated yaw, and course angle

• Height — Adds a plot for GPS, a barometer,
and estimated altitude

Custom Plots

• Timeseries — Adds a blank plot for
timeseries data

• XY — Adds a blank plot for 2-D data
• XYZ — Adds a blank plot for 3-D data

You can delete the selected figure or plot by
clicking Delete.
Click Map View to view or hide the satellite
image map with logged GPS data.

Note The app requires internet access to
retrieve satellite imagery.
Select Export > Export Figure to export the
currently selected figure as a .fig file.

Select Export > Export Signal to export the
signals as timetable to the MATLAB workspace or
a MAT-file (.mat).

5 Apps

5-4

Open the Flight Log Analyzer App
•

MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis, click
Flight Log Analyzer.

• MATLAB command prompt: Enter flightLogAnalyzer.

Examples

Analyze Flight Log from ULOG File

Use the Flight Log Analyzer app to load and analyze UAV autopilot flight log data from a ULOG file.

Open the Flight Log Analyzer App

In the Apps tab, under Control System Design and Analysis, click Flight Log Analyzer.

Alternatively, you can use the flightLogAnalyzer function from the MATLAB command prompt:

flightLogAnalyzer

Import a ULOG File

Select Import > From ULOG to load the UAV flight log data from a ULOG (.ulg) file.

 Flight Log Analyzer

5-5

By default, the app displays a satellite map with logged GPS data and the flight modes as a table. The
flight modes, along with their corresponding start and end times, are tabulated in the Flight Modes
pane.

Create Figures and Plots

1 To create a new figure for plotting, click Add Figure. The app adds an empty figure to the
plotting pane.

5 Apps

5-6

You can continue adding additional figures using this process.
2 The app adds a figure item corresponding to the new figure to the list in the Figures pane.

Select the check box to the left of the listed figure item to show all plots in the figure. Clear the
check box to hide them.

3 To rename a figure, select the associated figure item in the Figures pane, click the Name box in
the Details pane, and type a new name.

4 To delete a figure, select the figure item in the Figures pane and click Delete on the app
toolstrip. Deleting a figure deletes all plots in the figure.

Creating a figure enables the plot gallery. You can add one or more predefined plots or custom plots
to a figure from the plot gallery.

Add a Predefined Plot

1 To add a predefined plot to a figure, select one of the six predefined plots from the plot gallery.

2 For example, click Attitude to add plots for rotation angles and rotation rates to the figure.

 Flight Log Analyzer

5-7

You can continue adding additional plots to a figure using this process.
3 The app adds a plot item corresponding to the new plot under the associated figure item in the

Figures pane. Select the check box to the left of the listed plot item to show the plot in the
figure. Clear the check box to hide the plot.

4 To rename a plot, select the associated plot item in the Figures pane, click the Name box in the
Details pane, and type a new name.

5 Select the Show Legend check box in the Details pane to show the legend on the plot. Clear the
check box to hide the legend.

6 To rename the axis labels, double-click on the predefined labels and type a new name.
7 To delete a plot, select the plot item in the Figures pane and click Delete on the app toolstrip.

Edit Plot Signals

1 The Signals pane displays the signals in the selected plot as a table. The Signal Name column
contains the names of the signals. The subsequent columns each contain the data associated with
that signal for a specific axis.

2 Select the check box in front of a signal item to show that signal in the plot, and clear the check
box to hide the signal. The color around the check box is the color of the signal in the plot.

3 To add a new signal to the selected plot, click Add Signal.

5 Apps

5-8

To rename the signal, double-click signal in the Signal Name column and type a new name.
4 To add or update the signal data, double-click the data field for the desired signal in the

corresponding column to enable the Signal Browser pane. Choose from available signals.
5 Select one of the signals from the Signal Browser pane and click Update.

6 To delete a signal, select a signal from the Signals pane and click Delete Signal.

Change the Plot Focus Using the Panner

1 For timeseries plots, use the Panner to focus on data segments in the x-axis range. The Panner
is a strip plot beneath the main plot. To focus on a section of the main plot, drag the red and blue
handles to the start and end positions, respectively, of the desired data segment.

 Flight Log Analyzer

5-9

2 You can also move the handles by typing new values in the Left and Right boxes, beneath the
strip plot. To reset the handles to their default values, click Reset Limits.

3 The color next to each flight mode in the Flight Modes pane represents that flight mode in the
color bar under the strip plot in the Panner pane.

Add a Custom Plot

1 To add a custom plot to a figure, select one of the three custom plots from the plot gallery. You
can add the new plot to the previously created figure or to a new figure.

2 For example, click XYZ to add a blank plot for 3-D data.

5 Apps

5-10

3 To add a signal to the plot, click Add Signal in the Signals pane.
4 To rename the signal, double-click signal in the Signal Name column and type a new name.
5 To add signal data to the X-Axis, Y-Axis, and Z-Axis columns, double-click the data field for the

desired signal in the corresponding column to enable the Signal Browser pane. Choose from the
available signals.

6 For example, to create a trajectory plot in local east-north-up (ENU) Cartesian coordinates:

a Double-click the X-Axis data field for the desired signal and find the LocalENU signal group
in the Signal Browser pane.

b Expand the group and select the signal X.
c Click Update to update the signal with X-Axis data.
d Repeat these steps to update the Y-Axis and Z-Axis fields with Y and Z data, respectively, to

create a 3-D trajectory plot.

 Flight Log Analyzer

5-11

Export Figure

1 Select Export > Export Figure to export the current figure to a .fig file.

2 Select one or more plots in the current figure to export, specify a file name for the .fig file, and
click Browse to the select the destination folder. Click Export to export the selected plots to
the .fig file. The app opens a figure containing the selected plots in a new figure window.

5 Apps

5-12

3 To export each plot as an individual figure, select Export each plot as individual figure.
Specify the file name prefix for the .fig files, and click Browse to the select the destination
folder. Click Export to export the selected plots as individual .fig files. The app adds the plot
names as the suffixes of the specified file name prefix for the exported .fig files. The app opens
each exported plot in individual figure window.

Export Signal

1 Select Export > Export Signal to export the signals as a timetable to the MATLAB workspace or
a MAT file (.mat).

2 Select the signals to export. To export them to a MAT file, select To MAT-file and specify a file
name for the MAT file. To select a destination folder for the MAT file, click Browse and navigate
to the folder to which you want to export.

 Flight Log Analyzer

5-13

3 To export the signals to the MATLAB workspace, select To MATLAB workspace and specify a
name for the output workspace variable.

Save and Open Sessions

You can save the Flight Log Analyzer app session by clicking Save Session. The app writes the
current state of the app to a .mat file that you can load by clicking Open Session.

• “Analyze UAV Autopilot Flight Log Using Flight Log Analyzer”

Programmatic Use
flightLogAnalyzer opens the Flight Log Analyzer app, which enables you to analyze UAV
autopilot flight logs.

5 Apps

5-14

More About
Flight Modes

This table describes the types of flight modes:

Flight mode Description
Manual Manual remote control mode
TakeOFF Take off from the ground and travel towards the

specified position
Orbit Orbit in the specified turn direction for the

specified number of turns along the
circumference of a circle with a specified radius
and a center at the specified position

Loiter A fixed-wing UAV circle around the specified
position at the specified radius

Hold Hold at the current position

A fixed-wing UAV loiters around the current
position, and a multirotor UAV hovers at the
current position

Return To Launch Return to the launch position
Land Land at the specified position

See Also
Objects
mavlinktlog | flightLogSignalMapping | ulogreader

Topics
“Analyze UAV Autopilot Flight Log Using Flight Log Analyzer”

Introduced in R2020b

 Flight Log Analyzer

5-15

UAV Scenario Designer
Design UAV scenarios with terrain, platforms, and sensors

Description
The UAV Scenario Designer app enables you to interactively create a UAV scenario with terrain,
platforms, and sensors and simulate trajectories for a UAV platform. Using the app, you can:.

• Import, export, and create a UAV scenario
• Import terrain from Digital Terrain Elevation Data (DTED) files
• Add and edit scene objects, platforms, and sensors
• Add custom platforms and scene objects from STL files.
• Create and edit platform trajectories
• Simulate a UAV scenario

Open the UAV Scenario Designer App
• MATLAB Toolstrip: On the Apps tab, under Robotics And Autonomous Systems, click UAV

Scenario Designer .
• MATLAB command prompt: Enter uavScenarioDesigner.

5 Apps

5-16

Examples

Create Session and Add to Scenario

Open the App

Open the UAV Scenario Designer app.

uavScenarioDesigner

Add Scene Objects

Define a polygon with three vertices. For more information about defining polygon scene objects, see
“Create Polygon Scene Objects” on page 5-38.

poly = [0 0; 1 1; 2 0];

In the UAV Scenario Designer app toolstrip, in the Scene Object section, select Polygon.

In the Import Polygon dialog box, select poly and click Import. Click anywhere on the UAV
Scenario Canvas to place the polygon.

In the Property Panel pane, adjust the Position values of the polygon to for X, Y, and Z to 0, and
change Height to 5. To change the elevation of the polygon so that the bottom face makes contact
with the ground, click Snap To Ground Elevation.

 UAV Scenario Designer

5-17

Add Platform

On the app toolstrip, in the Platform section, select Quadrotor and click anywhere in the UAV
Scenario Canvas to place the quadrotor. In the Property Panel pane, set the X position of the
quadrotor to 5 and the Y and Z positions of the quadrotor to -5. Note that the reference frame of the
platform is north-east-down (NED) by default. Click Zoom to Scenario to zoom in to the polygon and
platform.

5 Apps

5-18

Add Sensor

With the quadrotor platform selected, on the app toolstrip, in the Sensors section, select Lidar, and
click anywhere on the Sensor Canvas to add a lidar sensor. In the Property Panel pane, change the
X position of the mounting point of the lidar sensor to 0 and the Y and Z positions to 0.125 and 0,
respectively, in the local reference frame of the platform.

 UAV Scenario Designer

5-19

Create Trajectory and Simulate Scenario

Import UAV Scenario and Terrain File

Create a UAV scenario and add building meshes from an OSM file containing building meshes for
Manhattan [1] on page 5-0 .

scene = uavScenario(ReferenceLocation=[40.707088 -74.012146 0]);
addMesh(scene,"terrain",{"gmted2010",[-200 200],[-200 200]},[0.6 0.6 0.6]);
addMesh(scene,"buildings",{"manhattan.osm",[-200 200],[-200 200],"auto"},[0 1 0]);

Open the UAV Scenario Designer app and click Import Scenario to import a scenario from the
MATLAB workspace. To make the each building more distinguishable, generate new colors for each of
the building meshes by clearing Preserve scenario colors at import. Select scene and click
Import.

5 Apps

5-20

The imported building meshes appear. Turn off the building markers in the UAV Scenario Canvas
and UAV Scenario View pane by selecting Hide Scene Object Markers in each pane.

 UAV Scenario Designer

5-21

Note that to move buildings, you can drag the scene object marker of the building in the UAV
Scenario Canvas pane. You can also zoom in to and delete a scene object from the Scene Browser
pane by clicking and right-clicking on the object respectively.

Add Platform and Sensor

In the Platform section, select Fixed Wing, and then click anywhere in the UAV Scenario Canvas
to add a fixed-wing UAV platform to the scenario. With the platform selected, in the Property Panel
pane, set the X value of the Position parameter to -256 and the Y and Z values to -137 and -125,
respectively. Note that the Reference Frame parameter of the platform is set to NED.

5 Apps

5-22

To add a lidar sensor to the platform, in the Sensors section, select Lidar and click anywhere in the
Sensor Canvas. Specify the mounting position of the sensor on the platform by, in the Property
Panel pane, setting the X value of the Position parameter to 0.25 and the Y and Z values to 0. All
values are in the local coordinate frame of the platform mesh.

 UAV Scenario Designer

5-23

Create Trajectory

Select the Trajectory tab and, with the platform selected, select Add Waypoints. To create a
trajectory for the platform, click in the UAV Scenario Canvas. To zoom in or out while adding points
to the trajectory, scroll with the mousewheel as needed. Add three points to the trajectory, and end
trajectory creation by pressing Esc, Enter, or double-clicking in the UAV Scenario Canvas.

5 Apps

5-24

Click Time-Altitude Plot to open the time-altitude plot in the UAV Scenario Canvas. In the time-
altitude plot, drag the first waypoint vertically to an altitude of 126 meters in the time-altitude plot.
Note that you cannot move the waypoint left or right along the Time axis. To change the time value
for waypoints, on the app toolstrip, in the Path and Orientation section, set Time to Manual. Then,
drag the second waypoint to approximately 125 meters in altitude at 20 seconds. For more
information about the other trajectory settings in the Path and Orientation section, see .

 UAV Scenario Designer

5-25

Note, in the UAV Scenario View pane, that the platform may be too close to one of the buildings at
the second waypoint. Adjust this waypoint by dragging it on the UAV Scenario Canvas, or by editing
the position of the waypoint in the Trajectory Table. Select Trajectory Table to open the Trajectory
Table pane, and click on the second waypoint. The table highlights the data of the selected waypoint
in blue. Set the X and Y elements to 65 and 0, respectively. You can edit the data of any waypoint in
this table as long as the corresponding Path and Orientation parameters are set to Manual.

5 Apps

5-26

Note that you can also delete or insert waypoints by right-clicking a waypoint or a trajectory between
waypoints in the UAV Scenario Canvas and clicking Delete Waypoint or Insert Waypoint
respectively in the right-click dialog boxes.

Simulate Scenario

In the Scene Browser pane, select the platform. Then select UAV Scenario tab and set Update
Rate to 50 Hz. In the Simulate section, select Parameters and set Number of Frames to 30.

Click Simulate to open the Simulate tab.

 UAV Scenario Designer

5-27

Run the simulation and click Zoom to Selection to center the camera over the platform as it follows
the trajectory.

5 Apps

5-28

After the platform completes the trajectory, click Close Simulate to return to the UAV Scenario tab.

Export UAV Scenario

Export the scenario or session to share the scenario or to later modify the scenario in UAV Scenario
Designer. Click Export Scenario to open the Export Scenario to Workspace dialog box. Name the
scenario and click Export to export the scenario to the MATLAB workspace as a uavScenario
object.

 UAV Scenario Designer

5-29

To save the session as a MAT file, in the File section, select Save Session.

References

[1] The file was downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/

• “Design Obstacle Avoidance Package Delivery Scenario Using UAV Scenario Designer”

Parameters
Trajectory — Trajectory settings
tab

To add or edit a trajectory and control the trajectory generation, use the trajectory settings.

• Click Waypoints to add waypoints to a trajectory of a selected platform.
• Click Delete Trajectory to delete an existing trajectory.
• Click Trajectory Table to display the trajectory table. See Trajectory Table for more

information.
• Click Time-Altitude plot to display the time vs altitude plot.

You can also choose to automatically generate the waypoint trajectory or manually input waypoints by
changing the selections of the Path and Orientation parameters.

5 Apps

5-30

Parameter Selection
Trajectory Course • Auto: When selected, the app generates the course by fitting

all the waypoints with a smooth curve.
• Table: When selected, you can manually edit the trajectory

course at each waypoint using the Trajectory Table.
Platform Orientation • Auto: When selected, the app calculates the yaw and pitch

angles of the platform to align the platform with the trajectory
and calculates the roll angle to cancel the centripetal
acceleration.

• Table: When selected, you can manually edit the yaw, pitch,
and roll angles at each waypoint using the Trajectory Table.

Time • Auto: When selected, the app calculates the visiting time at all
the waypoints.

• Table: When selected, you can manually edit the visiting time
at each waypoint using the Trajectory Table.

Ground speed • Auto: When selected, the app uses the default ground speed
for each platform class at each waypoint.

• Table: When selected, you can manually edit the ground speed
at each waypoint using the Trajectory Table.

Climb Rate • Auto: When selected, the app calculates the climb rate at each
waypoint to smoothly fit all the waypoints.

• Table: When selected, you can manually edit the climb rate at
each waypoint using the Trajectory Table.

Trajectory Table — Trajectory information
table

Trajectory information for each waypoint, specified as a table of scalars. When you insert waypoints
on the platform canvas, the table is automatically generated. Click Trajectory Table under the
Trajectory tab to display the table.

Edit the parameters in the table to adjust or fine-tune the trajectory. After you change the parameter
values in the table, the platform trajectory changes accordingly on the canvas. The table includes
these trajectory parameters.

Parameter Description
Times Time at which the platform visits the waypoint,

specified as a scalar in seconds.
X x coordinate of the waypoint in the scenario

navigation frame.
Y y coordinate of the waypoint in the scenario

navigation frame.
Altitude Altitude of the platform waypoint in the scenario

navigation frame.
Course The direction of motion on the x-y plane, specified

as an angle measurement from the x direction.

 UAV Scenario Designer

5-31

Parameter Description
Ground speed Magnitude of the projected velocity on the x-y

plane, specified as a scalar in meters.
Climb Rate Climb rate of the waypoint, which is the

projection of the platform velocity in the z
direction.

Roll Orientation angle of the platform about the x-axis
of the scenario frame, in degrees, specified as a
scalar.

Pitch Orientation angle of the platform about the y-axis
of the scenario frame, in degrees, specified as a
scalar.

Yaw Orientation angle of the platform about the z-axis
of the scenario frame, in degrees, specified as a
scalar.

Simulate — Simulate UAV scenario tab
tab

Click Simulate in the UAV Scenario tab to open the Simulate tab.

Use the toolstrip buttons to control the simulation.

Click Hide Scene Object Markers in the UAV Scenario View pane to hide the object markers.

Click Zoom to Selection in the UAV Scenario View pane to zoom in on the selected object.
Enable Zoom to Selection in simulation mode to follow the selected object.

Property Panel (Platforms) — Platform properties
pane

Use the Property Panel to edit the properties of a selected platform, such as geometry, body
properties, mesh offset, and ego properties.

Platform

Parameter Description
Name Name of the platform.
Color Color of the platform and platform trajectory.
Reference Frame Reference frame of the platform, specified as NED

(north-east-down) or ENU (east-north-up).
Start Time Start time of the platform, in seconds.
Elevation Control Select Snap To Ground Elevation to set the

elevation of the platform to ground level.

To edit the geometry of the platform, use the Geometry parameters.

5 Apps

5-32

Geometry

Parameter Description
Scale Scale of the platform mesh. Default is 1. If the

platform is a cuboid platform, this parameter is
read-only.

Length Length of the mesh, in meters. For quadrotor,
fixed-wing, and custom platforms, this property is
read-only and affected by the Scale parameter.

Width Width of the mesh, in meters. For quadrotor,
fixed-wing, and custom platforms, this property is
read-only and affected by the Scale parameter.

Height Height of the mesh, in meters. For quadrotor,
fixed-wing, and custom platforms, this property is
read-only and affected by the Scale parameter.

To edit the body properties of the scene object, use the Body Properties parameters.

Body Properties

Parameter Description
Position Specify the X, Y, and Z positions of the platform

in the global coordinate frame, in meters. The
properties change depending on the selected
reference frame.

• ENU — X (East), Y (North), Z (Up)
• NED — X (North), Y (East), Z (Down)

Orientation Specify the Yaw, Pitch, Roll orientation from the
world frame to the body frame in Z-Y-X order in
degrees.

• ENU — Yaw (East), Pitch (North), Roll (Up)
• NED — Yaw (North), Pitch (East), Roll (Down)

To edit the mesh offset of the scene object, use the Mesh Offset parameters.

Mesh Offset

Parameter Description
Position Offset Mesh position offset, in meters, from the platform

frame in the X, Y, and Z directions.
Orientation Offset Mesh orientation offset, in degrees, from the

platform frame in Roll, Pitch, and Yaw
directions.

To edit the ego properties of the scene object, use the Ego Properties parameters. The ego
properties are initial conditions that move the mesh during simulation. If the platform has a
trajectory, then these properties are read-only.

 UAV Scenario Designer

5-33

Ego Properties

Parameter Description
Acceleration Acceleration of the platform, in meters, per

second squared.
Velocity Velocity of the platform, in meters, per second.
Angular Velocity Angular velocity of the platform, in degrees, per

second.

Property Panel (Scene Objects) — Scene object properties
pane

Use the Property Panel to edit the scene object parameters and body properties of a selected object.
Cylinders, polygons, and custom objects all share these object parameters:

Object Parameters

Parameter Description
Name Name of the scene object.
Color Color of the scene object.
Elevation Control Select Snap To Ground Elevation to set the

elevation of the scene object to ground level.
Use Local Coordinates Select to use a local coordinate frame, specifying

Position as X, Y, and Z. Clear this parameter to
specify Position as Longitude, Latitude, and
Altitude.

Note Scene objects coordinates are always defined in east-north-up (ENU).

The Body Properties contains the position of the scene object, Position. If you select Use Local
Coordinates, these values are in Cartesian coordinates, in meters. Otherwise these values are the
latitude and longitude of the object, in degrees, and the altitude in meters.

To edit the geometry of the scene object, use the Geometry parameters.

Geometry

Parameter Description
Radius (Cylinder only) Radius of the cylinder, in meters.
Height Height of the cylinder or polygon, in meters

Property Panel (Sensors) — Sensor properties
pane

To view and edit sensor properties in the Property Panel, select a sensor. UAV Scenario Designer
supports these three sensors: GPS, INS, and lidar. These MATLAB object equivalents for these
sensors are equivalent to the gpsSensor, insSensor, and uavLidarPointCloudGenerator
MATLAB objects respectively.

5 Apps

5-34

Use the Sensor Parameters and Mounting Properties to edit sensor parameters and their
mounting position on the platform mesh respectively. These properties are the same for all sensor
objects.

Sensor Parameters

Parameter Description
Name Name of the sensor.
Update Rate Update rate of the sensor, in hertz

Mounting Properties

Parameter Description
Position Mounting position of the sensor with respect to

the platform body origin.
Orientation Mounting orientation of the sensor with respect

to the platform body orientation.

To edit the GPS Parameters, select a GPS sensor.

GPS Parameters

Parameter Description
Reference Location Reference location of the sensor, specified in

geodetic coordinates with latitude and longitude
in degrees and altitude in meters.

Position Input Format Position input format of the sensor, specified in
local Cartesian or geodetic coordinates.

Reference Frame Reference frame of the sensor, specified as NED
(north-east-down) or ENU (east-north-up).

Horizontal Position Accuracy Horizontal position accuracy of the sensor,
specified in meters.

Vertical Position Accuracy Vertical position accuracy of the sensor, specified
in meters.

Velocity Accuracy Velocity accuracy of the sensor, specified in
meters per second.

Decay Factor Decay factor of the sensor, specified as a number
in the range [0, 1].

Random Stream Random stream, specified as Global stream or
mt19937ar with seed.

Seed Specify seed random stream.

To edit the INS Parameters, select an INS sensor.

 UAV Scenario Designer

5-35

INS Parameters

Parameter Description
Position Accuracy Position accuracy of the INS sensor, specified as

X, Y, and Z, in meters.
Orientation Accuracy Orientation accuracy of the INS sensor, specified

as Roll, Pitch, and Yaw, in degrees.
Position Error Factor Position error factor of the INS sensor, specified

in meters.
Velocity Accuracy Velocity accuracy of the INS sensor, specified in

meters per second.
Acceleration Accuracy Acceleration accuracy of the INS sensor, specified

in meters per second squared.
Angular Velocity Accuracy Angular velocity accuracy of the INS sensor,

specified in degrees.
Fix GNSS Select to lock the GNSS readings of the INS

sensor.

To edit the Lidar Parameters, select a lidar sensor.

Lidar Parameters

Parameter Description
Max Range Maximum range of the lidar sensor, in meters.
Range Accuracy Range accuracy of the lidar sensor, in meters.
Azimuth Resolution Azimuth resolution of the lidar sensor, in degrees.
Elevation Resolution Elevation resolution of the lidar sensor, in

degrees.
Add Noise Select to add noise to the lidar sensor output.
Organize Output Select to output an organized point cloud.
Elevation Limits Elevation scanning limits of the lidar sensor, in

degrees.
Azimuth Limits Azimuth scanning limits of the lidar sensor, in

degrees.

Property Panel (Import Terrain) — Terrain import properties
pane

Use the Property Panel to set the terrain import properties for the selected terrain after clicking
Import Terrain.

5 Apps

5-36

Terrain Properties

Parameter Description
Name Name of the terrain file. This parameter is read-

only.
Import Terrain Select to import the terrain, once you have set all

the parameters.
Use Local Coordinates Select to specify the terrain limits and bounds

using local coordinates. To use geodetic
coordinates for the terrain limits and bounds,
clear this parameter.

To edit the terrain limits, use the Terrain Limits parameters.

Terrain Limits

Parameter Description
X (m) and Y (m) Minimum and maximum X- and Y-axis limits of

the terrain. To enable this parameter, select Use
Local Coordinates.

Latitude Limits (deg) and Longitude Limits
(deg) |

Minimum and maximum latitude and longitude
limits of the terrain. To enable this parameter,
clear Use Local Coordinates.

To edit the terrain bounds, use the Terrain Bounds parameters.

Terrain Bounds

Parameter Description
X (m) and Y (m) Minimum and maximum X- and Y-axis limits of

the terrain bounds. To enable this parameter,
select Use Local Coordinates.

Latitude Limits (deg) and Longitude Limits
(deg) |

Minimum and maximum latitude and longitude
limits of the terrain bounds. To enable this
parameter, clear Use Local Coordinates.

Programmatic Use
uavScenarioDesigner opens the UAV Scenario Designer app.

Limitations
• UAV Scenario Designer may run slowly if MATLAB is using a software implementation of

OpenGL®. To solve the problem, upgrade your graphics hardware driver or use opengl to switch
to a hardware-accelerated implementation of OpenGL. See “Resolving Low-Level Graphics Issues”
for more information.

 UAV Scenario Designer

5-37

More About
Create Polygon Scene Objects

To import 3-D polygons into a scene in UAV Scenario Designer, define a polygon in MATLAB as an
N-by-2 matrix of vertices, where each row represents the x- and y-position of each vertex. The rows
should be sequential either clockwise or counter-clockwise. When you import a polygon into the app,
the default height of the polygon is set to 10 meters. Select the polygon to edit the height and center
of position of the polygon by using the “Property Panel (Scene Objects)” on page 5-0 .
Example: polygon = [0 0; 1 1; 2 0]

See Also
Objects
uavScenario | gpsSensor | insSensor | uavLidarPointCloudGenerator

Functions
addMesh

Topics
“Design Obstacle Avoidance Package Delivery Scenario Using UAV Scenario Designer”

Introduced in R2022a

5 Apps

5-38

Scenes

6

US City Block
US city block Unreal Engine environment

Description
The US City Block scene is an Unreal Engine environment of a US city block that contains 15
intersections and 30 traffic lights. The scene is rendered using the Unreal Engine from Epic Games.

To simulate a UAV flight in this scene:

1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In this block, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to US city block.

Intersections

The US city block scene has 15 intersections, as indicated in this diagram.

6 Scenes

6-2

This table provides the intersection locations in the world coordinate system. Dimensions are in m.

Intersection Center Location
X

(m)

Y

(m)

Z

(m)
1 -202.60 -108 .01
2 -112.60 -108 .01
3 -20.38 -108 .01
4 74.58 -108 .01
5 166.40 -108 .01
6 -184.60 0 .01
7 -112.60 0 .01
8 -20.34 0 .01
9 76.40 0 .01
10 166.46 0 .01
11 -184.60 110.50 .01
12 -112.60 110.50 .01
13 -22.60 110.50 .01
14 76.40 110.50 .01

 US City Block

6-3

Intersection Center Location
X

(m)

Y

(m)

Z

(m)
15 166.40 112.50 .01

Barrier

This table provides the object names and locations in the world coordinate system. Dimensions are in
m.

Object Unreal
Engine
Editor Name

Location
X Y Z Roll Pitch Yaw

Barrier SM_Barrier 163.5 -146.95 0 0 0 90°
SM_Barrier
2

166.35 -146.95 0 0 0 90°

SM_Barrier
3

169.2 -146.95 0 0 0 90°

SM_Barrier
7

163.5 150.15 0 0 0 90°

SM_Barrier
8

166.35 150.15 0 0 0 90°

SM_Barrier
9

169.2 150.15 0 0 0 90°

SM_Barrier
11

197.05 109.65 0 0 0 -180°

SM_Barrier
13

197.05 112.5 0 0 0 -180°

SM_Barrier
14

197.05 115.34 0 0 0 -180°

SM_Barrier
18

197.05 -2.9 0 0 0 -180°

6 Scenes

6-4

Object Unreal
Engine
Editor Name

Location
X Y Z Roll Pitch Yaw

SM_Barrier
19

197.05 -0.05 0 0 0 -180°

SM_Barrier
20

197.05 2.8 0 0 0 -180°

SM_Barrier
21

-240.5 107.65 0 0 0 -180°

SM_Barrier
22

197.05 -110.9 0 0 0 -180°

SM_Barrier
24

197.05 5.6 0 0 0 -180°

SM_Barrier
27

197.05 -108.05 0 0 0 -180°

SM_Barrier
28

197.05 -105.25 0 0 0 -180°

SM_Barrier
31

-240.5 110.5 0 0 0 -180°

SM_Barrier
32

-240.5 113.35 0 0 0 -180°

SM_Barrier
36

-240.1 -2.9 0 0 0 -180°

SM_Barrier
37

-240.1 -0.05 0 0 0 -180°

SM_Barrier
38

-240.1 2.8 0 0 0 -180°

SM_Barrier
43

-242.15 110.9 0 0 0 -180°

SM_Barrier
44

-242.15 -108.05 0 0 0 -180°

SM_Barrier
45

-242.15 -105.25 0 0 0 -180°

SM_Barrier
48

73.4 150.15 0 0 0 90°

SM_Barrier
49

76.25 150.15 0 0 0 90°

SM_Barrier
50

79.1 150.15 0 0 0 90°

SM_Barrier
54

-25.55 150.15 0 0 0 90°

SM_Barrier
55

-22.7 150.15 0 0 0 90°

 US City Block

6-5

Object Unreal
Engine
Editor Name

Location
X Y Z Roll Pitch Yaw

SM_Barrier
56

-19.85 150.15 0 0 0 90°

SM_Barrier
59

-115.3 150.15 0 0 0 90°

SM_Barrier
60

-112.45 150.15 0 0 0 90°

SM_Barrier
61

-109.6 150.15 0 0 0 90°

SM_Barrier
66

69.25 -147.35 0 0 0 90°

SM_Barrier
68

75.45 -147.5 0.15 0 0 90°

SM_Barrier
69

72.45 -147.5 0.15 0 0 90°

SM_Barrier
70

-25.55 -146.45 0 0 0 90°

SM_Barrier
71

-22.15 -146.45 0 0 0 90°

SM_Barrier
72

-18.65 -146.45 0 0 0 90°

SM_Barrier
75

-115.3 -147.6 0 0 0 90°

SM_Barrier
76

-112.45 -147.6 0 0 0 90°

SM_Barrier
77

-109.6 -147.6 0 0 0 90°

SM_Barrier
84

-15.45 -146.45 0 0 0 90°

SM_Barrier
88

-187.5 150.15 0 0 0 90°

SM_Barrier
89

-184.65 150.15 0 0 0 90°

SM_Barrier
90

-181.8 150.15 0 0 0 90°

SM_Barrier
94

-205.6 -147.4 0 0 0 90°

SM_Barrier
95

-202.75 -147.4 0 0 0 90°

SM_Barrier
96

-199.9 -147.4 0 0 0 90°

6 Scenes

6-6

Object Unreal
Engine
Editor Name

Location
X Y Z Roll Pitch Yaw

SM_Barrier
101

44.15 3.05 0 0 0 -50°

SM_Barrier
102

39.15 0.55 0 0 0 -90°

SM_Barrier
103

41.95 1.3 0 0 0 -50°

SM_Barrier
104

36.5 .55 0 0 0 -90°

SM_Barrier
105

33.85 .55 0 0 0 -90°

SM_Barrier
106

31.2 .55 0 0 0 -90°

SM_Barrier
107

28.45 .55 0 0 0 -90°

SM_Barrier
108

25.8 .55 0 0 0 -90°

SM_Barrier
109

23.15 .55 0 0 0 -90°

SM_Barrier
110

20.5 .55 0 0 0 -90°

SM_Barrier
111

17.95 .55 0 0 0 -90°

SM_Barrier
112

15.3 .55 0 0 0 -90°

SM_Barrier
113

12.65 .55 0 0 0 -90°

SM_Barrier
114

10.0 .55 0 0 0 -90°

SM_Barrier
115

7.01 1.38 0 0 0 -125°

SM_Barrier
116

4.75 3.05 0 0 0 -125°

 US City Block

6-7

Traffic Lights

The US City Scene contains 30 traffic lights, two at each of the 15 intersections. Each intersection
has a traffic light group. If you have the “Customize Unreal Engine Scenes for UAVs” for customizing
scenes, you can control the timing of the traffic lights.

This table provides the traffic light names and locations in the world coordinate system. Dimensions
are in m. Only one of the traffic lights in the group can be green at a time. The traffic lights are green
for 10 s and yellow for 3 s. At the start of the simulation, the first traffic lights in the group are green
(for example, SM_TrafficLights1_3 and SM_TrafficLights2_4). The second lights in the group
are red (for example, SM_TrafficLights1_4 and SM_TrafficLights2_3).

Intersect
ion

Unreal Engine
Editor Name

Location

Traffic Light
Group

Traffic
Light

X Y Z Roll Pitch Yaw

1 TrafficLig
htGroup

SM_Tr
affic
Light
s1_3

-196.55 -100.65 0 0 0 -90°

SM_Tr
affic
Light
s1_4

-210.20 -113.40 0 0 0 0

2 TrafficLig
htGroup2

SM_Tr
affic
Light
s2_4

-120.40 -113.50 0 0 0 0

SM_Tr
affic
Light
s2_3

-106.35 98.35 0 0 0 -90°

3 TrafficLig
htGroup3

SM_Tr
affic
Light
s3_1

-13.10 -116.20 0.2 0 0 90°

6 Scenes

6-8

Intersect
ion

Unreal Engine
Editor Name

Location

Traffic Light
Group

Traffic
Light

X Y Z Roll Pitch Yaw

SM_Tr
affic
Light
s3_4

-30.60 -113.80 0 0 0 0

4 TrafficLig
htGroup4

SM_Tr
affic
Light
s4_4

64.80 -113.0 0 0 0 0

SM_Tr
affic
Light
s4_3

71.40 -100.30 0 0 0 -100°

5 TrafficLig
htGroup5

SM_Tr
affic
Light
s5_1

171.50 -115.70 0 0 0 90°

SM_Tr
affic
Light
s5_4

157.40 -113.50 0 0 0 0

6 TrafficLig
htGroup6

SM_Tr
affic
Light
s6_3

-189.60 7.40 0 0 0 -90°

SM_Tr
affic
Light
s6_2

-177.30 5.70 0 0 0 180°

7 TrafficLig
htGroup7

SM_Tr
affic
Light
s7_3

-117.80 7.70 0.2 0 0 -90°

SM_Tr
affic
Light
s7_2

-105.20 5.50 0 0 0 180°

8 TrafficLig
htGroup8

SM_Tr
affic
Light
s8_2

-10.90 5.60 0 0 0 180°

 US City Block

6-9

Intersect
ion

Unreal Engine
Editor Name

Location

Traffic Light
Group

Traffic
Light

X Y Z Roll Pitch Yaw

SM_Tr
affic
Light
s8_1

-13.10 -7.60 0.1 0 0 90°

9 TrafficLig
htGroup9

SM_Tr
affic
Light
s9_3

70.90 9.20 0 0 0 -90°

SM_Tr
affic
Light
s9_2

85.90 7.60 0.2 0 0 180°

10 TrafficLig
htGroup10

SM_Tr
affic
Light
s10_2

173.70 7.50 0 0 0 180°

SM_Tr
affic
Light
s10_1

172.10 -7.70 0 0 0 90°

11 TrafficLig
htGroup11

SM_Tr
affic
Light
s11_3

-189.80 118.45 0 0 0 -90°

SM_Tr
affic
Light
s11_4

-191.05 104.55 0 0 0 0

12 TrafficLig
htGroup12

SM_Tr
affic
Light
s12_4

-120.50 105.40 0 0 0 0

SM_Tr
affic
Light
s12_3

-117.60 117.60 0 0 0 -90°

13 TrafficLig
htGroup13

SM_Tr
affic
Light
s13_1

-12.80 102.50 0 0 0 90°

6 Scenes

6-10

Intersect
ion

Unreal Engine
Editor Name

Location

Traffic Light
Group

Traffic
Light

X Y Z Roll Pitch Yaw

SM_Tr
affic
Light
s13_4

-30.50 105.30 0 0 0 0

14 TrafficLig
htGroup14

SM_Tr
affic
Light
s14_4

69.30 105.30 0 0 0 0

SM_Tr
affic
Light
s14_3

70.90 118.70 0 0 0 -90°

15 TrafficLig
htGroup15

SM_Tr
affic
Light
s15_1

171.40 105.20 0 0 0 90°

SM_Tr
affic
Light
s15_4

158.40 107.20 0 0 0 0

Tips
• If you have the UAV Toolbox Interface for Unreal Engine Projects support package, then you can

modify this scene. In the Unreal Engine project file that comes with the support package, this
scene is named USCityBlock.

For more details on customizing scenes, see “Customize Unreal Engine Scenes for UAVs”.

See Also
Simulation 3D Scene Configuration | “Coordinate Systems for Unreal Engine Simulation in UAV
Toolbox”

 US City Block

6-11

Vehicles

7

Quadrotor
Quadrotor vehicle dimensions

Description

Quadrotot is one of the UAVs that you can use within the Unreal Engine simulation environment.
This environment is rendered using the Unreal Engine from Epic Games. The origin is located at the
center of the camera gimbal located on the underside of the aircraft. For detailed specifications of the
vehicle dimensions , see the Dimensions section.

To add this type of vehicle to the Unreal Engine simulation environment:

1 Add a Simulation 3D UAV Vehicle block to your Simulink model.
2 In the block, set the Type parameter to Quadrotor.

Dimensions
Top-down view — Vehicle width dimensions
diagram

7 Vehicles

7-2

Side view — Vehicle length, front overhang, and rear overhang dimensions
diagram

Front view — Tire width and front axle dimensions
diagram

 Quadrotor

7-3

Rear view — Vehicle height and rear axle dimensions
diagram

See Also
Simulation 3D UAV Vehicle | Simulation 3D Scene Configuration

Topics
“Unreal Engine Simulation for Unmanned Aerial Vehicles”
“Coordinate Systems for Unreal Engine Simulation in UAV Toolbox”

7 Vehicles

7-4

Fixed Wing Aircraft
Fixed wing aircraft dimensions

Description

Fixed Wing Aircraft is one of the vehicles that you can use within the Unreal Engine simulation
environment. This environment is rendered using the Unreal Engine from Epic Games. The origin is
located at the center of the camera gimbal located on the underside of the aircraft. For detailed
specifications of the vehicle dimensions , see the Dimensions section.

To add this type of vehicle to the 3D simulation environment:

1 Add a Simulation 3D UAV Vehicle block to your Simulink model.
2 In the block, set the Type parameter to Fixed wing.

Dimensions
Top-down view — Vehicle width dimensions
diagram

 Fixed Wing Aircraft

7-5

Side view — Vehicle length, landing gear height, and camera dimensions
diagram

7 Vehicles

7-6

Front view — Tire width dimensions
diagram

Rear view — Vehicle height and rear axle dimensions
diagram

See Also
Simulation 3D UAV Vehicle | Simulation 3D Scene Configuration

Topics
“How Unreal Engine Simulation for UAVs Works”
“Coordinate Systems for Unreal Engine Simulation in UAV Toolbox”

 Fixed Wing Aircraft

7-7

	Classes
	extendedObjectMesh
	fixedwing
	flightLogSignalMapping
	gpsSensor
	insSensor
	mavlinkdialect
	mavlinkclient
	mavlinkio
	mavlinksub
	mavlinktlog
	multirotor
	quaternion
	sim3d.Editor
	transformTree
	uavDubinsConnection
	uavDubinsPathSegment
	uavLidarPointCloudGenerator
	uavOrbitFollower
	uavPathManager
	uavPlatform
	uavScenario
	uavSensor
	uav.SensorAdaptor
	uavWaypointFollower
	ulogreader
	waypointTrajectory
	pcplayer
	hide
	isOpen
	show
	view
	pointCloud
	findNearestNeighbors
	findNeighborsInRadius
	findPointsInROI
	removeInvalidPoints
	select

	Methods
	applyTransform
	join
	rotate
	scale
	scaleToFit
	show
	translate
	control
	derivative
	environment
	state
	checkSignal
	copy
	extract
	info
	mapSignal
	show
	updatePlot
	createcmd
	createmsg
	enum2num
	enuminfo
	msginfo
	connect
	disconnect
	listClients
	listConnections
	listTopics
	sendmsg
	serializemsg
	sendudpmsg
	latestmsgs
	num2enum
	readmsg
	deserializemsg
	angvel
	classUnderlying
	compact
	conj
	ctranspose
	dist
	euler
	eulerd
	exp
	ldivide
	log
	meanrot
	minus
	mtimes, *
	norm
	normalize
	ones
	parts
	power
	prod
	rdivide
	randrot
	rotateframe
	rotatepoint
	rotmat
	rotvec
	rotvecd
	slerp
	times
	transpose, .'
	uminus
	zeros
	open
	getGraph
	getTransform
	info
	removeTransform
	show
	updateTransform
	connect
	interpolate
	show
	addGeoFence
	checkPermission
	move
	read
	updateMesh
	addInertialFrame
	addMesh
	advance
	restart
	setup
	show
	show3D
	terrainHeight
	updateSensors
	read
	uav.SensorAdaptor.getEmptyOutputs
	uav.SensorAdaptor.getMotion
	uav.SensorAdaptor.read
	uav.SensorAdaptor.reset
	uav.SensorAdaptor.setup
	readLoggedOutput
	readParameters
	readSystemInformation
	readTopicMsgs
	lookupPose
	waypointInfo
	perturb
	perturbations

	Functions
	addCustomTerrain
	angdiff
	axang2quat
	axang2rotm
	axang2tform
	cart2hom
	createCustomSensorTemplate
	enu2lla
	eul2quat
	eul2rotm
	eul2tform
	hom2cart
	lla2enu
	lla2ned
	minjerkpolytraj
	minsnappolytraj
	ned2lla
	plotTransforms
	quat2axang
	quat2eul
	quat2rotm
	quat2tform
	removeCustomTerrain
	rotm2axang
	rotm2eul
	rotm2quat
	rotm2tform
	tform2axang
	tform2eul
	tform2quat
	tform2rotm
	tform2trvec
	trvec2tform

	Blocks
	Coordinate Transformation Conversion
	GPS
	Fixed-Wing UAV Point Mass
	MAVLink Blank Message
	MAVLink Deserializer
	MAVLink Serializer
	Minimum Jerk Polynomial Trajectory
	Minimum Snap Polynomial Trajectory
	Obstacle Avoidance
	Orbit Follower
	Path Manager
	Simulation 3D Scene Configuration
	Simulation 3D Camera
	Simulation 3D Lidar
	Simulation 3D Fisheye Camera
	Video Send
	Simulation 3D UAV Vehicle
	UAV Animation
	Guidance Model
	UAV Scenario Configuration
	UAV Scenario Get Transform
	UAV Scenario Lidar
	UAV Scenario Motion Read
	UAV Scenario Motion Write
	UAV Scenario Scope
	Waypoint Follower
	INS

	Apps
	Flight Log Analyzer
	UAV Scenario Designer

	Scenes
	US City Block

	Vehicles
	Quadrotor
	Fixed Wing Aircraft

