UAV Toolbox
Reference

7

MATLAB&SIMULINK

R2022a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

UAV Toolbox Reference
© COPYRIGHT 2020-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

September 2020 Online only New for Version 1.0 (R2020b)
March 2021 Online only Revised for Version 1.1 (R2021a)
September 2021 Online only Revised for Version 1.2 (R2021b)

March 2022 Online only Revised for Version 1.3 (R2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Classes

1
Methods

2
Functions

3|
Blocks

4
Apps

S|
Scenes

6
Vehicles

7

iii

Classes

1 Classes

1-2

extendedObjectMesh

Mesh representation of extended object

Description

The extendedObjectMesh represents the 3-D geometry of an object. The 3-D geometry is
represented by faces and vertices. Use these object meshes to specify the geometry of an
uavPlatform for simulating lidar sensor data using uavLidarPointCloudGenerator.

Creation

Syntax

mesh = extendedObjectMesh('cuboid')

mesh = extendedObjectMesh('cylinder')
mesh = extendedObjectMesh('cylinder',n)
mesh = extendedObjectMesh('sphere')

mesh = extendedObjectMesh('sphere',n)
mesh = extendedObjectMesh(vertices, faces)

Description

mesh = extendedObjectMesh('cuboid') returns an extendedObjectMesh object, that defines
a cuboid with unit dimensions. The origin of the cuboid is located at its geometric center.

mesh = extendedObjectMesh('cylinder') returns a hollow cylinder mesh with unit
dimensions. The cylinder mesh has 20 equally spaced vertices around its circumference. The origin of
the cylinder is located at its geometric center. The height is aligned with the z-axis.

mesh = extendedObjectMesh('cylinder',n) returns a cylinder mesh with n equally spaced
vertices around its circumference.

mesh = extendedObjectMesh('sphere') returns a sphere mesh with unit dimensions. The
sphere mesh has 119 vertices and 180 faces. The origin of the sphere is located at its center.

mesh = extendedObjectMesh('sphere',n

) additionally allows you to specify the resolution, n,
of the spherical mesh. The sphere mesh has (n + 1

)2 - 2 vertices and 2n(n - 1) faces.

mesh = extendedObjectMesh(vertices, faces) returns a mesh from faces and vertices.
vertices and faces set the Vertices and Faces properties respectively.

Properties

Vertices — Vertices of defined object
N-by-3 matrix of real scalar

extendedObjectMesh

Vertices of the defined object, specified as an N-by-3 matrix of real scalars. N is the number of
vertices. The first, second, and third element of each row represents the x-, y-, and z-position of each
vertex, respectively.

Faces — Faces of defined object
M-by-3 matrix of positive integer

Faces of the defined object, specified as a M-by-3 array of positive integers. M is the number of faces.

The three elements in each row are the vertex IDs of the three vertices forming the triangle face. The
ID of the vertex is its corresponding row number specified in the Vertices property.

Object Functions

Use the object functions to develop new meshes.

translate Translate mesh along coordinate axes

rotate Rotate mesh about coordinate axes

scale Scale mesh in each dimension

applyTransform Apply forward transformation to mesh vertices

join Join two object meshes

scaleToFit Auto-scale object mesh to match specified cuboid dimensions
show Display the mesh as a patch on the current axes
Examples

Create and Translate Cuboid Mesh

Create an extendedObjectMesh object and translate the object.
Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Translate the mesh by 5 units along the negative y axis.

mesh = translate(mesh,[0 -5 0]);

Visualize the mesh.

ax = show(mesh);
ax.YLim = [-6 0O];

1-3

1 Classes

1-4

0.5

Create and Visualize Cylinder Mesh

Create an extendedObjectMesh object and visualize the object.
Construct a cylinder mesh.

mesh = extendedObjectMesh('cylinder');

Visualize the mesh.

ax = show(mesh);

0.5

extendedObjectMesh

0.5 -

0.5

Create and Auto-Scale Sphere Mesh

Create an extendedObjectMesh object and auto-scale the object to the required dimensions.
Construct a sphere mesh of unit dimensions.

sph = extendedObjectMesh('sphere');

Auto-scale the mesh to the dimensions in dims.

dims = struct('Length',5, 'Width',10, 'Height',3,'0rigin0ffset',[0 O -3]1);
sph = scaleToFit(sph,dims);

Visualize the mesh.

show(sph);

1-5

1 Classes

See Also

Objects
uavPlatform | uavLidarPointCloudGenerator

Functions
translate | rotate | scale | applyTransform| join | scaleToFit | show

Introduced in R2020b

1-6

fixedwing

fixedwing

Guidance model for fixed-wing UAVs

Description

A fixedwing object represents a reduced-order guidance model for an unmanned aerial vehicle
(UAV). The model approximates the behavior of a closed-loop system consisting of an autopilot
controller and a fixed-wing kinematic model for 3-D motion.

For multirotor UAVSs, see multirotor.

Creation

model = fixedwing creates a fixed-wing motion model with double precision values for inputs,
outputs, and configuration parameters of the guidance model.

model = fixedwing(DataType) specifies the data type precision (DataType property) for the
inputs, outputs, and configurations parameters of the guidance model.

Properties

Name — Name of UAV
"Unnamed" (default) | string scalar

Name of the UAV, used to differentiate it from other models in the workspace, specified as a string
scalar.

Example: "myUAV1"
Data Types: string

Configuration — UAV controller configuration
structure

UAV controller configuration, specified as a structure of parameters. Specify these parameters to
tune the internal control behavior of the UAV. Specify the proportional (P) and derivative (D) gains for
the dynamic model and other UAV parameters. The structure for fixed-wing UAVs contains these
fields with defaults listed:

* 'PDRoll' - [3402.97 116.67]

* 'PHeight'-3.9

* 'PFlightPathAngle’ - 39

* 'PAirspeed' -0.39

* 'FlightPathAngleLimits' - [-pi/2 pi/2] ([min max] angle in radians)
Example: struct('PDRoll"',

[3402.97,116.67], 'PHeight',3.9, 'PFlightPathAngle',39, 'PAirSpeed',0.39, 'Flight
PathAngleLimits',[-pi/2 pi/2])

1-7

1 Classes

1-8

Data Types: struct

ModelType — UAV guidance model type
'"FixedWingGuidance' (default)

This property is read-only.
UAV guidance model type, specified as 'FixedWingGuidance'.

DataType — Input and output numeric data types
'double’ (default) | 'single’

Input and output numeric data types, specified as either 'double' or 'single’'. Choose the data
type based on possible software or hardware limitations.

Object Functions

control Control commands for UAV
derivative Time derivative of UAV states
environment Environmental inputs for UAV
state UAV state vector
Examples

Simulate A Fixed-Wing Control Command

This example shows how to use the fixedwing guidance model to simulate the change in state of a
UAV due to a command input.

Create the fixed-wing guidance model.
model = fixedwing;

Set the air speed of the vehicle by modifying the structure from the state function.

Specity a control command, u, that maintains the air speed and gives a roll angle of pi/12.
u = control(model);

u.RollAngle = pi/12;

u.AirSpeed = 5;

Create a default environment without wind.

e = environment(model);
Compute the time derivative of the state given the current state, control command, and environment.
sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the fixed-wing UAV states based
on this simulation.

fixedwing

simOut = oded45(@(~,x)derivative(model,x,u,e), [0 50], s);
size(simOut.y)

ans = 1Ix2

8 904

Plot the change in roll angle based on the simulation output. The roll angle is the 7th row of the
simOut.y output.

plot(simOut.y(7,:))

D3 T T T T T T T T T

0.25| 7

0.2 1

0.1 7

0.0 7

D i i i i i i i i i
0 100 200 300 400 500 600 YOO 800 900 1000

You can also plot the fixed-wing trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 30th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
fixedwing.stl file and the positive Z-direction as "down". The displayed view shows the UAV
making a constant turn based on the constant roll angle.

downsample = 1:30:size(simOut.y,2);
translations = simOut.y(1l:3,downsample)'; % xyz-position
rotations = eul2quat([simOut.y(5,downsample)',simOut.y(6,downsample)',simOut.y(7,downsample)']);
plotTransforms(translations, rotations, ...
'MeshFilePath', 'fixedwing.stl', 'InertialZDirection', "down")
hold on
plot3(simOut.y(1,:),-simOut.y(2,:),simOut.y(3,:),"'--b') % full path
xlim([-10.0 10.0])

1-9

1 Classes

1-10

ylim([-20.0 5.0])
zlim([-0.5 4.00])
view([-45 90])
hold off

More About

UAV Coordinate Systems

The UAV Toolbox uses the North-East-Down (NED) coordinate system convention, which is also
sometimes called the local tangent plane (LTP). The UAV position vector consists of three numbers for
position along the northern-axis, eastern-axis, and vertical position. The down element complies with
the right-hand rule and results in negative values for altitude gain.

The ground plane, or earth frame (NE plane, D = 0), is assumed to be an inertial plane that is flat
based on the operation region for small UAV control. The earth frame coordinates are [X,,.,2.]. The
body frame of the UAV is attached to the center of mass with coordinates [x;,y5,2]. X;, is the preferred
forward direction of the UAV, and z;, is perpendicular to the plane that points downwards when the
UAV travels during perfect horizontal flight.

The orientation of the UAV (body frame) is specified in ZYX Euler angles. To convert from the earth
frame to the body frame, we first rotate about the z,-axis by the yaw angle, y. Then, rotate about the
intermediate y-axis by the pitch angle, ¢. Then, rotate about the intermediate x-axis by the roll angle,
o.

fixedwing

The angular velocity of the UAV is represented by [p,q,r] with respect to the body axes, [x,,V1,23].
UAV Fixed-Wing Guidance Model Equations

For fixed-wing UAVs, the following equations are used to define the guidance model of the UAV. Use
the derivative function to calculate the time-derivative of the UAV state using these governing

equations. Specify the inputs using the state, control, and environment functions.

The UAV position in the earth frame is [x,, y., h] with orientation as heading angle, flight path angle,
and roll angle, [y, y, ¢] in radians.

The model assumes that the UAV is flying under a coordinated-turn condition, with zero side-slip. The
autopilot controls airspeed, altitude, and roll angle. The corresponding equations of motion are:

Xe = Vg cos ycosy

Ve =V sin y cosy

H:%sin}f
cos(y —
X:y (x nb)mmp
Yo

V, sin(y©) = min(max(kh(h’: — h), —l:’g) ,lf;,)
y =k, (y*—vy)
Vo = ky, (Ve — Vo)
g cos(y —)

Y

¢ = kpy (@ — @) + kpg (—)

tan (¢°) =k, (3 — x)

V, and V, denote the UAV air and ground speeds.

The wind speed is specified as [V, ,V,,,V,,] for the north, east, and down directions. To generate the
structure for these inputs, use the environment function.

k« are controller gains. To specify these gains, use the Configuration property of the fixedwing
object.

From these governing equations, the model gives the following variables:

[xo. o h Vu x v ¢]

These variables match the output of the state function.

1-11

1 Classes

References

[1] Randal W. Beard and Timothy W. McLain. "Chapter 9." Small Unmanned Aircraft Theory and
Practice, NJ: Princeton University Press, 2012.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
oded45 | control | derivative | environment | state | plotTransforms

Objects
multirotor | uavWaypointFollower

Blocks
UAV Guidance Model | Waypoint Follower

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

1-12

flightLogSignalMapping

flightLogSignalMapping

Visualize UAV flight logs

Description

The flightLogSignalMapping provides visualization tools to analyze flight logs. To inspect UAV
logs, first load your file using a file or log reader like mavlinktlog or ulogreader. Use
preconfigured signal mapping and plots from ULOG or TLOG log files, or define your own signal
mapping using mapSignal. Update or add new plots with updatePlot. Then, call show with a
structure of data to display the list of configured plots defined in the AvailablePlots property.

For ease of use, specific Predefined Signals on page 1-14 and Predefined Plots on page 1-15 are
provided. Details are listed below or can be viewed by calling info for your specific object.

Creation

Description

mapper = flightLogSignalMapping creates a flight log signal mapping object with no preset
signal mapping. Before you can visualize signals, map signals using mapSignal.

mapper = flightLogSignalMapping("tlog") creates a flight log signal mapping object for the
imported MAVLink TLOG message tables.

mapper = flightLogSignalMapping("ulog") creates a flight log signal mapping object for
imported PX4 ULOG files.

Properties

MappedSignals — Names of all mapped signals

string array

Names of all mapped signals, specified as a string array.
Example: ["Accel” "Gyro" "Mag" "Barometer" "Gyro2"]
Data Types: string

AvailablePlots — Names of plots that are available
string array

Names of plots that are available based on the mapped signals, specified as a string array. To add
plots to this list, either map signals for the PreDefined Plots on page 1-15 or call updatePlot.
Example: ["Accel” "Gyro" "Mag" "Barometer" "Gyro2"]

Data Types: string

1-13

1 Classes

1-14

Object Functions
checkSignal Check mapped signal

copy Create deep copy of flight log signal mapping object

extract Extract UAV flight log signals as timetables

info Signal mapping and plot information for UAV log signal mapping
mapSignal = Map UAV flight log signal

show Display plots for inspection of UAV logs

updatePlot Update UAV flight log plot functions

More About

Predefined Signals

A set of predefined signals and plots are configured in the flightLogSignalMapping object.
Depending on your log file type, you can map specific signals to the provided signal names using
mapSignal. You can also call info to view the table for your log type and see whether you have
already mapped a signal to that plot type.

Specify the SignalName as the input to mapSignal. Signals with the format SignalName# support
mapping multiple signals of the same type. Replace # with incremental integers for each signal name
when calling mapSignal.

The predefined signals have specific names and required fields when mapping the signal.

flightLogSignalMapping

Predefined Signals

IMU sensor

Signal Name Description Fields Uni

Accel# Raw magnetometer reading from [ax ay az] m/s
IMU sensor

Airspeed# Airspeed reading of pressure [PressDiff, AirSpeed, Temp] Pa, :
differential, indicated air speed, and
temperature

AttitudeEuler Attitude of UAV in Euler (ZYX) form |[Roll, Pitch, Yaw] radi

AttitudeRate Angular velocity along each body axis | [xRotRate, yRotRate, zRotRate] rad/

AttitudeTargetEule |Target attitude of UAV in Euler (ZYX) | [TargetRoll, TargetPitch, radi

r form TargetYaw]

Barometer# Barometer readings for absolute [PressAbs, PressAltitude, Temp] Pa, :
pressure, relative pressure, and
temperature

Battery Voltage readings for battery and [Voltl,Volt2, . Voltle, V, %
remaining battery capacity (%) RemainingCapacity

GPS# GPS readings for latitude, longitude, |[lat, long, alt, groundspeed, deg:
altitude, ground speed, course angle, |courseAngle, satellites] deg:
and number of satellites visible

Gyro# Raw body angular velocity readings |[GyroX, GyroY, GyroZ] rad/
from IMU sensor

LocalNED Local NED coordinates estimated by |[XNED, yNED, zNED] met
the UAV

LocalNEDTarget Target location in local NED [xTarget, yTarget, zTarget] met
coordinates

LocalNEDVel Local NED velocity estimated by the |[vx vy vz] m/s
UAV

LocalNEDVelTarget |Target velocity in NED in local NED |[vxTarget, vyTarget, vzTarget] m/s

Mag# Raw magnetometer reading from [x y z] Gs

Predefined Plots

After mapping signals to the list of predefined signals using mapSignal, specific plots are made
available when calling show. To view a list of available plots and their associated signals for your
specific object, call info(mapper, "Plot"). If you want to define custom plots based on signals, use

updatePlot.

Each predefined plot has a set of required signals that must be mapped.

1-15

1 Classes

Predefined Plots

Attitude Stacked plot of roll, pitch, yaw angles and |AttitudeEuler,
body rotation rates AttitudeRate, Gyro#
Attitude

0.2

Roll gl lL—PLJ——LIMqu—mJA—LwTMLm—aL_ﬁ
02}

i1 ﬂ I .
Pitch g5

2 _ . _rr,_,——J__
vau EH_UI L,.Af_' _,,_JJ"JJ J“Jw“fr
= g™
0.5F — EstimatedBody Rate
RolRale 0 — L
05}
05F — EstimatedBody Rate
PitchRate 0 Cym
-115: ||||||'[|[|||||||||| 1N

YawRate ﬂ-g_ I | - ||JJ-L|ILH | J TI lli*-hl]“lﬂ | |.||'|| —Eymgﬂmmm
-05 | | | | |] | -

200 400 6p0 800 1000 1200 1400 1600

Time Teu:

1-16

flightLogSignalMapping

Plot Description Signals
AttitudeControl Estimated attitude of UAV and the attitude |AttitudeEuler,
target set point AttitudeTargetEuler
AttitudeControl
1 ——Roll
0.2 h — RollTanget
Rall |
RollTarget ®-1 | JJ_ |
.;}:_H"" -u--a_.._—lllll—--..__--w-._ k T P _J\|:L- = —_—-—'—u—%} it J“u-m——
Pitch
ok T e T e PlichTapget
Pitch l
PitchTarget.p 2 \
||'l'
p4ak
Yaw
2r]] YawTarget
aw
YawTarget
i
i i i i R R LII i i s i i
560 570 580 580 600 610 620 630 &40
Time =80
Battery Battery consumption plot Battery

1-17

1 Cclasses

Compass

| S

=]

0.5f -
Mag'
0s jL Jj nL‘L

1.8p

MagZ
= 161

f

Estimated yaw and magnetometer
readings

Compass
i —
. —

i
= PPy o

AWAL

800 1000 1200 1400 1600
Time =80

AttitudeEuler, Mag#,
GPS#

1-18

flightLogSignalMapping

Plot Description Signals
GPS2D Raw Lat-Lon plot for GPS sensor readings. |GPS#
45°46'24 4"N | ' [=
GPS
GPS3
45°46'24 2N g
o A45°4624'N [.
=
=
T
-
45°46'23.8"N 7
d
45°46'23.6"N 7
5m .""‘/
= Esri, HERE, Garmin, INCREMENT P, NG#A,
. UsSGs
15°55'03.5"E 15°65'04"E 15°55'04 .5"E 15°p5'05"E
Longitude

1-19

1 Cclasses

Height

GPS&Barometer

FusedHeight

538.2

5381

538

537.9f

49,991

43,98

4887

Stacked plots of barometer reading, GPS
altitude reading, and fused height estimate

Height

Barometer#, GPS#,

LocalNED
GPS
———— Barometgr
-

560

i
570

Time

1-20

flightLogSignalMapping

Speed Stacked plot of ground velocity and air GPS#, Airspeed#
speed
Speed

5 I"Il" I H1 h h HL
41
GroundSpeed [
2 =
1 L
0,51

Airspeed 0
05}
0 200 400 600 BOOD 1000 1200 1400 1600
Time £

1-21

1 Cclasses

Trajectory

60 -

40 -

230

20

0 .
400

200

Morth

-2

Trajectory in local coordinates versus
target set points

i
:-"“——.._.___—--—ﬁ
400
200
0
-200
D0 400 East

LocalNED,
LocalNEDTarget

600

1-22

flightLogSignalMapping

TrajectoryTracking Error between desired and actual position [LocalNED,
in NED coordinates LocalNEDia rget
TrajectoryTracking
0.5
XOiff o 'l
-05f
0.5

Yhiff O

0.6

ZDir 04
0.2

GNL-_'_ : ___I-.. ’ o A I._|_L ._J._‘.“'L__' PP A YT T .

i i i i
200 400 600 800 1000 1200 1400 1600

Time s]e.:

1-23

1 Classes

1-24

Plot Description Signals
TrajectoryVelTracking Error between desired and actual velocity |[LocalNEDVel,
in NED coordinates LocalNEDVelTarget
TrajectoryVelTracking
05¢
VXDIff O Wl b b ~]J e
05
06k
0.4r
vzoir 2]
O
0z
200 400 800 8OO 1000 1200 1400 1600
Time SRC
See Also
mavlinktlog

Introduced in R2020b

gpsSensor

gpsSensor

GPS receiver simulation model

Description
The gpsSensor System object™ models data output from a Global Positioning System (GPS) receiver.

To model a GPS receiver:

1 Create the gpsSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

GPS
GPS
GPS

gpsSensor
gpsSensor('ReferenceFrame’',RF)
gpsSensor(__ ,Name,Value)

Description

GPS = gpsSensor returns a gpsSensor System object that computes a Global Positioning System
receiver reading based on a local position and velocity input signal. The default reference position in
geodetic coordinates is

* latitude: 0° N

* longitude: 0° E

* altitude: 0 m

GPS = gpsSensor('ReferenceFrame',RF) returns a gpsSensor System object that computes a
global positioning system receiver reading relative to the reference frame RF. Specify RF as 'NED'
(North-East-Down) or 'ENU' (East-North-Up). The default value is 'NED'.

GPS = gpsSensor(__ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

1-25

1 Classes

1-26

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Update rate of receiver (Hz)

1 (default) | positive real scalar

Update rate of the receiver in Hz, specified as a positive real scalar.
Data Types: single | double

ReferencelLocation — Origin of local navigation reference frame
[0 0 O] (default) | [Latitude longitude altitude]

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude, longitude,
and altitude). Altitude is the height above the reference ellipsoid model, WGS84. The reference
location is in [degrees degrees meters]. The degree format is decimal degrees (DD).

Data Types: single | double

PositionInputFormat — Position coordinate input format
"Local’ (default) | 'Geodetic'

Position coordinate input format, specified as 'Local"' or 'Geodetic'.

» If you set the property as 'Local’, then you need to specify the truePosition input as
Cartesian coordinates with respect to the local navigation frame whose origin is fixed and defined
by the ReferencelLcation property. Additionally, when you specify the trueVelocity input,
you need to specify it with respect to this local navigation frame.

* Ifyou set the property as 'Geodetic', then you need to specify the truePosition input as
geodetic coordinates in latitude, longitude, and altitude. Additionally, when you specify the
trueVelocity input, you need to specify it with respect to the navigation frame (NED or ENU)
whose origin corresponds to the truePosition input. When setting the property as
'Geodetic', the gpsSensor object neglects the ReferenceLocation property.

Data Types: character vector

HorizontalPositionAccuracy — Horizontal position accuracy (m)
1.6 (default) | nonnegative real scalar

Horizontal position accuracy in meters, specified as a nonnegative real scalar. The horizontal position
accuracy specifies the standard deviation of the noise in the horizontal position measurement.

Tunable: Yes

Data Types: single | double

VerticalPositionAccuracy — Vertical position accuracy (m)
3 (default) | nonnegative real scalar

Vertical position accuracy in meters, specified as a nonnegative real scalar. The vertical position
accuracy specifies the standard deviation of the noise in the vertical position measurement.

Tunable: Yes

Data Types: single | double

gpsSensor

VelocityAccuracy — Velocity accuracy (m/s)
0.1 (default) | nonnegative real scalar

Velocity accuracy in meters per second, specified as a nonnegative real scalar. The velocity accuracy
specifies the standard deviation of the noise in the velocity measurement.

Tunable: Yes

Data Types: single | double

DecayFactor — Global position noise decay factor
0.999 (default) | scalar in the range [0,1]

Global position noise decay factor, specified as a scalar in the range [0,1].

A decay factor of 0 models the global position noise as a white noise process. A decay factor of 1
models the global position noise as a random walk process.

Tunable: Yes

Data Types: single | double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

* 'Global stream' -- Random numbers are generated using the current global random number
stream.

* 'mtl9937ar with seed' -- Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer scalar

Initial seed of an mt19937ar random number generator algorithm, specified as a nonnegative integer
scalar.

Dependencies
To enable this property, set RandomStreamto 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Usage

Syntax
[position,velocity,groundspeed, course] = GPS(truePosition,trueVelocity)
Description

[position,velocity,groundspeed,course] = GPS(truePosition,trueVelocity)
computes global navigation satellite system receiver readings from the position and velocity inputs.

1-27

1 Classes

1-28

Input Arguments

truePosition — Position of GPS receiver in navigation coordinate system
N-by-3 matrix

Position of the GPS receiver in the navigation coordinate system, specified as a real finite N-by-3
matrix. N is the number of samples in the current frame.

* When the PositionInputFormat property is specified as 'Local’, specify truePosition as
Cartesian coordinates with respect to the local navigation frame whose origin is fixed at
ReferencelLocation.

* When the PositionInputFormat property is specified as 'Geodetic', specify truePosition
as geodetic coordinates in [latitude longitude altitude]. Latitude and longitude are
in meters. altitude is the height above the WGS84 ellipsoid model in meters.

Data Types: single | double

trueVelocity — Velocity of GPS receiver in navigation coordinate system (m/s)
N-by-3 matrix

Velocity of GPS receiver in the navigation coordinate system in meters per second, specified as a real
finite N-by-3 matrix. N is the number of samples in the current frame.

* When the PositionInputFormat property is specified as 'Local’, specify trueVelocity with
respect to the local navigation frame (NED or ENU) whose origin is fixed at
ReferencelLocation.

* When the PositionInputFormat property is specified as 'Geodetic', specify trueVelocity
with respect to the navigation frame (NED or ENU) whose origin corresponds to the
truePosition input.

Data Types: single | double
Output Arguments

position — Position in LLA coordinate system
N-by-3 matrix

Position of the GPS receiver in the geodetic latitude, longitude, and altitude (LLA) coordinate system,
returned as a real finite N-by-3 array. Latitude and longitude are in degrees with North and East
being positive. Altitude is in meters.

N is the number of samples in the current frame.

Data Types: single | double

velocity — Velocity in local navigation coordinate system (m/s)
N-by-3 matrix

Velocity of the GPS receiver in the local navigation coordinate system in meters per second, returned
as a real finite N-by-3 array. N is the number of samples in the current frame.

* When the PositionInputFormat property is specified as 'Local’, the returned velocity is with
respect to the local navigation frame whose origin is fixed at ReferencelLocation.

gpsSensor

* When the PositionInputFormat property is specified as 'Geodetic', the returned velocity is
with respect to the navigation frame (NED or ENU) whose origin corresponds to the position
output.

Data Types: single | double

groundspeed — Magnitude of horizontal velocity in local navigation coordinate system
(m/s)
N-by-1 column vector

Magnitude of the horizontal velocity of the GPS receiver in the local navigation coordinate system in
meters per second, returned as a real finite N-by-1 column vector.

N is the number of samples in the current frame.

Data Types: single | double

course — Direction of horizontal velocity in local navigation coordinate system (°)
N-by-1 column vector

Direction of the horizontal velocity of the GPS receiver in the local navigation coordinate system in
degrees, returned as a real finite N-by-1 column of values between 0 and 360. North corresponds to
360 degrees and East corresponds to 90 degrees.

N is the number of samples in the current frame.

Data Types: single | double

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Generate GPS Position Measurements From Stationary Input

Create a gpsSensor System object™ to model GPS receiver data. Assume a typical one Hz sample
rate and a 1000-second simulation time. Define the reference location in terms of latitude, longitude,
and altitude (LLA) of Natick, MA (USA). Define the sensor as stationary by specifying the true
position and velocity with zeros.

fs = 1;

duration = 1000;
numSamples = duration*fs;

1-29

1 Classes

refLoc = [42.2825 -71.343 53.0352];

truePosition
trueVelocity

zeros(numSamples,3);
zeros(numSamples,3);

gps = gpsSensor('SampleRate',fs, 'ReferenceLocation', reflLoc);

Call gps with the specified truePosition and trueVelocity to simulate receiving GPS data for a
stationary platform.

position = gps(truePosition,trueVelocity);

Plot the true position and the GPS sensor readings for position.
t = (0:(numSamples-1))/fs;

subplot(3, 1, 1)
plot(t, position(:,1),

t, ones(numSamples)*refLoc(1l))
title('GPS Sensor Readings')
ylabel('Latitude (degrees)"')

subplot(3, 1, 2)
plot(t, position(:,2),

t, ones(numSamples)*reflLoc(2))
ylabel('Longitude (degrees)"')

subplot(3, 1, 3)
plot(t, position(:,3),
t, ones(numSamples)*refLoc(3))
ylabel('Altitude (m)"')
xlabel('Time (s)')

1-30

gpsSensor

GPS Sensor Readings

qu.zazsz T T T T T T
z LT
E.4lﬁ95 hﬂlﬂx%ﬂ””i& ﬁhﬂfmfﬁ
o A e %“‘
-g A
£ 42282481 h\w‘ e
- 0 100 200 300 400 500 600 FOD BOD 900 1000
E'?"E"ngﬁ T T T T T T T T T
» ;ﬂ'»mw-'\h 1
o =
0 4
=] Bt
= 7134298} f '\ A .
o / WA e VY,
= N, Lt A f\ J
L N Yk ey
E. -71.343 ";r" i i i i i i i i i 7
- 0 100 200 300 400 500 600 70D BOD 900 1000
5‘4 T T T T T T T T T
EF 52 :JL'}I'. M‘Wﬁ*ﬂyﬁwﬁﬁ/\v\ \ 1
=] s
E L\ eV N
=f
qa 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 70D BOD 800 1000

Time (s}

The position readings have noise controlled by HorizontalPositionAccuracy,
VerticalPositionAccuracy, VelocityAccuracy, and DecayFactor. The DecayFactor
property controls the drift in the noise model. By default, DecayFactor is set to 0.999, which
approaches a random walk process. To observe the effect of the DecayFactor property:

1 Reset the gps object.

2 SetDecayFactorto0.5.

3 Call gps with variables specifying a stationary position.
4 Plot the results.

The GPS position readings now oscillate around the true position.

reset(gps)
gps.DecayFactor = 0.5;
position = gps(truePosition,trueVelocity);

subplot(3, 1, 1)
plot(t, position(:,1), ...
t, ones(numSamples)*refLoc(1l))
title('GPS Sensor Readings - Decay Factor = 0.5"')
ylabel('Latitude (degrees)')

subplot(3, 1, 2)
plot(t, position(:,2), .

t, ones(numSamples)*refLoc(2))
ylabel('Longitude (degrees)')

1-31

1 Classes

subplot(3, 1, 3)
plot(t, position(:,3), ...
t, ones(numSamples)*refLoc(3))
ylabel('Altitude (m)"')
xLlabel('Time (s)')

GPS Sensor Readings - Decay Factor = 0.5

42 ZB255 ' '

42 2p25 | "]I l.'. | 1I| ! -]1.|. ||rr m II| hlli Irlli Ir" T A Ll H['_.-T ”_!-Il |

Latitude (degrees})

42 28245
0 100 200 300 400 500 600 00 800 S0 1000

-71.34285

71343 111 r‘lr .t'l i. R A L]I rj|' II‘|||11 1|1| Hl [||l|' ._.Il. I_Irl._l.lljlllllnlll.

-71.34305]

Longitude [degrees)

-71.343
0

g

Altitude (m}
g

S

L] 100 200 300 400 500 600 00 800 900 1000
Time (s5)

Relationship Between Groundspeed and Course Accuracy

GPS receivers achieve greater course accuracy as groundspeed increases. In this example, you create
a GPS receiver simulation object and simulate the data received from a platform that is accelerating
from a stationary position.

Create a default gpsSensor System object™ to model data returned by a GPS receiver.

GPS = gpsSensor
GPS =
gpsSensor with properties:
SampleRate: 1 Hz
PositionInputFormat: 'Local'’
ReferencelLocation: [0 0 O] [deg deg m]

HorizontalPositionAccuracy: 1.6 m
VerticalPositionAccuracy: 3 m

1-32

gpsSensor

VelocityAccuracy: 0.1 m/s
RandomStream: 'Global stream'
DecayFactor: 0.999

Create matrices to describe the position and velocity of a platform in the NED coordinate system. The
platform begins from a stationary position and accelerates to 60 m/s North-East over 60 seconds,
then has a vertical acceleration to 2 m/s over 2 seconds, followed by a 2 m/s rate of climb for another
8 seconds. Assume a constant velocity, such that the velocity is the simple derivative of the position.

duration = 70

numSamples duration*GPS.SampleRate;

course = 45*ones(duration,l);

groundspeed = [(1:60)"';60*ones(10,1)];
Nvelocity = groundspeed.*sind(course);
Evelocity = groundspeed.*cosd(course);
Dvelocity = [zeros(60,1);-1;-2*ones(9,1)1;
NEDvelocity = [Nvelocity,Evelocity,Dvelocity];
Ndistance = cumsum(Nvelocity);

Edistance = cumsum(Evelocity);

Ddistance = cumsum(Dvelocity);

NEDposition = [Ndistance,Edistance,Ddistance];

Model GPS measurement data by calling the GPS object with your velocity and position matrices.
[~,~,groundspeedMeasurement, courseMeasurement] = GPS(NEDposition,NEDvelocity);

Plot the groundspeed and the difference between the true course and the course returned by the GPS
simulator.

As groundspeed increases, the accuracy of the course increases. Note that the velocity increase
during the last ten seconds has no effect, because the additional velocity is not in the ground plane.

t = (0:numSamples-1)/GPS.SampleRate;

subplot(2,1,1)

plot(t,groundspeed);

ylabel('Speed (m/s)"')

title('Relationship Between Groundspeed and Course Accuracy')

subplot(2,1,2)

courseAccuracy = courseMeasurement - course;
plot(t,courseAccuracy)

xlabel('Time (s)');

ylabel('Course Accuracy (degrees)')

1-33

1 Classes

1-34

60 Relationship Between Groundspeed and Course Accuracy

g 40 P

= .

o .

820 1

Lo -

0 el i i i i i i
0o 10 20 a0 40 50 60 7o
’%‘h f T T T T T T
@ 0.02F Moy 4
E,-' |II II'I III II N a J"" o ""- "*'.
ot NIV SVOWWIIA AN A~
) { ! () 4
d [',,-"ll
3
2-002H 1
<L f
D |
S-004 .
[=] 1 1 L 1 1 1
0
0o 10 20 30 40 50 60 7o
Time (s)

Model GPS Receiver Data
Simulate GPS data received during a trajectory from the city of Natick, MA, to Boston, MA.

Define the decimal degree latitude and longitude for the city of Natick, MA USA, and Boston, MA
USA. For simplicity, set the altitude for both locations to zero.

NatickLLA
BostonLLA

= [42.27752809999999, -71.34680909999997, 01;

= [42.3600825, -71.05888010000001, 01;

Define a motion that can take a platform from Natick to Boston in 20 minutes. Set the origin of the
local NED coordinate system as Natick. Create a waypointTrajectory ohject to output the
trajectory 10 samples at a time.

fs = 1;

duration = 60*20;

bearing = 68; % degrees

distance = 25.39e3; % meters
distanceEast = distance*sind(bearing);

distanceNorth = distance*cosd(bearing);

NatickNED
BostonNED

[0,0,0];
[distanceNorth,distanceEast,0];

gpsSensor

trajectory = waypointTrajectory(
'Waypoints', [NatickNED;BostonNED],
'TimeOfArrival', [0;duration],
'SamplesPerFrame', 10,
'SampleRate', fs);

Create a gpsSensor object to model receiving GPS data for the platform. Set the
HorizontalPositionalAccuracy to 25 and the DecayFactor to 0.25 to emphasize the noise.
Set the ReferencelLocation to the Natick coordinates in LLA.

GPS = gpsSensor(
'HorizontalPositionAccuracy', 25,
'DecayFactor',0.25,
'SampleRate’, fs,
'ReferencelLocation',NatickLLA);

Open a figure and plot the position of Natick and Boston in LLA. Ignore altitude for simplicity.

In a loop, call the gpsSensor object with the ground-truth trajectory to simulate the received GPS
data. Plot the ground-truth trajectory and the model of received GPS data.

figure(1)

plot(NatickLLA(1),NatickLLA(2), 'ko",
BostonLLA(1),BostonLLA(2), 'kx")

xlabel('Latitude (degrees)')

ylabel('Longitude (degrees)')

title('GPS Sensor Data for Natick to Boston Trajectory')

hold on

while ~isDone(trajectory)
[truePositionNED,~, trueVelocityNED] = trajectory();
reportedPositionLLA = GPS(truePositionNED, trueVelocityNED);

figure(1l)

plot(reportedPositionLLA(:,1),reportedPositionLLA(:,2),'r.")
end

1-35

1 Classes

GPS Sensor Data for Natick to Boston Trajectory
_T1 - DS T T T T T T T T

X

-7 1.1

-71.15

-71.2

Longitude {degrees)

-71.25

7131

-71.35
4227 4228 4220 423 4231 42.32 42.33 42.34 42.356 42.36 42.37

Latitude (degrees)

As a best practice, release System objects when complete.

release(GPS)
release(trajectory)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

Objects
insSensor | uavSensor

Introduced in R2020b

1-36

insSensor

insSensor

Inertial navigation system and GNSS/GPS simulation model

Description

The insSensor System object models a device that fuses measurements from an inertial navigation
system (INS) and global navigation satellite system (GNSS) such as a GPS, and outputs the fused
measurements.

To output fused INS and GNSS measurements:

1 Create the insSensor object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

INS
INS

insSensor
insSensor(Name, Value)

Description

INS = insSensor returns a System object, INS, that models a device that outputs measurements
from an INS and GNSS.

INS = insSensor(Name,Value) sets properties on page 1-37 using one or more name-value
pairs. Unspecified properties have default values. Enclose each property name in quotes.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

MountingLocation — Location of sensor on platform (m)
[0 0 O] (default) | three-element real-valued vector of form [x y 2]

Location of the sensor on the platform, in meters, specified as a three-element real-valued vector of
the form [x y z]. The vector defines the offset of the sensor origin from the origin of the platform.

Tunable: Yes

1-37

1 Classes

1-38

Data Types: single | double

RollAccuracy — Accuracy of roll measurement (deg)
0.2 (default) | nonnegative real scalar

Accuracy of the roll measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Roll is the rotation around the x-axis of the sensor body. Roll noise is modeled as a white noise
process. Rol1lAccuracy sets the standard deviation of the roll measurement noise.

Tunable: Yes

Data Types: single | double

PitchAccuracy — Accuracy of pitch measurement (deg)
0.2 (default) | nonnegative real scalar

Accuracy of the pitch measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Pitch is the rotation around the y-axis of the sensor body. Pitch noise is modeled as a white noise
process. PitchAccuracy defines the standard deviation of the pitch measurement noise.

Tunable: Yes

Data Types: single | double

YawAccuracy — Accuracy of yaw measurement (deg)
1 (default) | nonnegative real scalar

Accuracy of the yaw measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Yaw is the rotation around the z-axis of the sensor body. Yaw noise is modeled as a white noise
process. YawAccuracy defines the standard deviation of the yaw measurement noise.

Tunable: Yes

Data Types: single | double

PositionAccuracy — Accuracy of position measurement (m)
[1 1 1] (default) | nonnegative real scalar | three-element real-valued vector

Accuracy of the position measurement of the sensor body, in meters, specified as a nonnegative real
scalar or a three-element real-valued vector. The elements of the vector set the accuracy of the x-, y-,
and z-position measurements, respectively. If you specify PositionAccuracy as a scalar value, then
the object sets the accuracy of all three positions to this value.

Position noise is modeled as a white noise process. PositionAccuracy defines the standard
deviation of the position measurement noise.

Tunable: Yes

Data Types: single | double

VelocityAccuracy — Accuracy of velocity measurement (m/s)
0.05 (default) | nonnegative real scalar

insSensor

Accuracy of the velocity measurement of the sensor body, in meters per second, specified as a
nonnegative real scalar.

Velocity noise is modeled as a white noise process. VelocityAccuracy defines the standard
deviation of the velocity measurement noise.

Tunable: Yes

Data Types: single | double

AccelerationAccuracy — Accuracy of acceleration measurement (m/s?)
0 (default) | nonnegative real scalar

Accuracy of the acceleration measurement of the sensor body, in meters per second, specified as a
nonnegative real scalar.

Acceleration noise is modeled as a white noise process. AccelerationAccuracy defines the
standard deviation of the acceleration measurement noise.

Tunable: Yes

Data Types: single | double

AngularVelocityAccuracy — Accuracy of angular velocity measurement (deg/s)
0 (default) | nonnegative real scalar

Accuracy of the angular velocity measurement of the sensor body, in meters per second, specified as
a nonnegative real scalar.

Angular velocity is modeled as a white noise process. AngularVelocityAccuracy defines the
standard deviation of the acceleration measurement noise.

Tunable: Yes

Data Types: single | double

TimeInput — Enable input of simulation time
false or O (default) | trueor 1

Enable input of simulation time, specified as a logical 0 (false) or 1 (true). Set this property to
true to input the simulation time by using the simTime argument.

Tunable: No
Data Types: logical

HasGNSSFix — Enable GNSS fix
true or 1 (default) | false or 0

Enable GNSS fix, specified as a logical 1 (true) or 0 (false). Set this property to false to simulate
the loss of a GNSS receiver fix. When a GNSS receiver fix is lost, position measurements drift at a
rate specified by the PositionErrorFactor property.

Tunable: Yes

Dependencies

To enable this property, set TimeInput to true.

1-39

1 Classes

Data Types: logical

PositionErrorFactor — Position error factor without GNSS fix
[0 O O] (default) | nonnegative scalar | 1-by-3 vector of scalars

Position error factor without GNSS fix, specified as a scalar or a 1-by-3 vector of scalars.

When the HasGNSSFix property is set to false, the position error grows at a quadratic rate due to
constant bias in the accelerometer. The position error for a position component E(t) can be expressed
as E(t) = 1/2at?, where a is the position error factor for the corresponding component and t is the
time since the GNSS fix is lost. While running, the object computes t based on the simTime input.
The computed E(t) values for the x, y, and z components are added to the corresponding position
components of the gTruth input.

Tunable: Yes
Dependencies

To enable this property, set TimeInput to true and HasGNSSFix to false.
Data Types: single | double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed’

Random number source, specified as one of these options:

* 'Global stream' -- Generate random numbers using the current global random number
stream.

 'mtl9937ar with seed' -- Generate random numbers using the mt19937ar algorithm, with
the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer

Initial seed of the mt19937ar random number generator algorithm, specified as a nonnegative
integer.

Dependencies

To enable this property, set RandomStreamto 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

Usage

Syntax

measurement = INS(gTruth)
measurement = INS(gTruth,simTime)

1-40

insSensor

Description

measurement = INS(gTruth) models the data received from an INS sensor reading and GNSS
sensor reading. The output measurement is based on the inertial ground-truth state of the sensor

body, gTruth.

measurement = INS(gTruth,simTime) additionally specifies the time of simulation, simTime. To
enable this syntax, set the TimeInput property to true.

Input Arguments

gTruth — Inertial ground-truth state of sensor body

structure

Inertial ground-truth state of sensor body, in local Cartesian coordinates, specified as a structure

containing these fields:

Field

Description

'Position'

Position, in meters, specified as a real, finite N-
by-3 matrix of [x y z] vectors. N is the number of
samples in the current frame.

'Velocity'

Velocity (v), in meters per second, specified as a
real, finite N-by-3 matrix of [v, vy v,] vector. N is
the number of samples in the current frame.

'Orientation'

Orientation with respect to the local Cartesian
coordinate system, specified as one of these
options:

* N-element column vector of quaternion
objects

* 3-by-3-by-N array of rotation matrices

* N-by-3 matrix of [X;on Vpitch Zyaw] angles in
degrees

Each quaternion or rotation matrix is a frame
rotation from the local Cartesian coordinate
system to the current sensor body coordinate
system. N is the number of samples in the current
frame.

'"Acceleration’

Acceleration (a), in meters per second squared,
specified as a real, finite N-by-3 matrix of [ay ay
a,] vectors. N is the number of samples in the
current frame.

"AngularVelocity'

Angular velocity (w), in degrees per second
squared, specified as a real, finite N-by-3 matrix
of [wy wy w,] vectors. N is the number of samples
in the current frame.

The field values must be of type double or single.

The Position, Velocity, and Orientation fields are required. The other fields are optional.

1-41

1 Classes

Example: struct('Position',[0 O O], 'Velocity',[0 0O
0], 'Orientation',quaternion([1 0 0 0]))

simTime — Simulation time
nonnegative real scalar

Simulation time, in seconds, specified as a nonnegative real scalar.

Data Types: single | double
Output Arguments

measurement — Measurement of sensor body motion
structure

Measurement of the sensor body motion, in local Cartesian coordinates, returned as a structure
containing these fields:

Field Description

'"Position' Position, in meters, specified as a real, finite N-
by-3 matrix of [x y z] vectors. N is the number of
samples in the current frame.

'Velocity' Velocity (v), in meters per second, specified as a
real, finite N-by-3 matrix of [v, v, v,] vector. N is
the number of samples in the current frame.

'Orientation' Orientation with respect to the local Cartesian
coordinate system, specified as one of these
options:

* N-element column vector of quaternion
objects

* 3-by-3-by-N array of rotation matrices

* N-by-3 matrix of [X;oy Ypitch Zyawl @angles in
degrees

Each quaternion or rotation matrix is a frame
rotation from the local Cartesian coordinate
system to the current sensor body coordinate
system. N is the number of samples in the current
frame.

'"Acceleration' Acceleration (a), in meters per second squared,
specified as a real, finite N-by-3 matrix of [ay a,
a,] vectors. N is the number of samples in the
current frame.

"AngularVelocity' Angular velocity (w), in degrees per second
squared, specified as a real, finite N-by-3 matrix
of [wy wy w,] vectors. N is the number of samples
in the current frame.

The returned field values are of type double or single and are of the same type as the
corresponding field values in the gTruth input.

1-42

insSensor

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to insSensor
perturbations Perturbation defined on object
perturb Apply perturbations to object

Common to All System Objects

step Run System object algorithm

clone Create duplicate System object

isLocked Determine if System object is in use

reset Reset internal states of System object

release Release resources and allow changes to System object property values and input
characteristics

Examples

Generate INS Measurements from Stationary Input

Create a motion structure that defines a stationary position at the local north-east-down (NED) origin.
Because the platform is stationary, you need to define only a single sample. Assume the ground-truth
motion is sampled for 10 seconds with a 100 Hz sample rate. Create a default insSensor System
object™. Preallocate variables to hold output from the insSensor object.

Fs = 100;
duration = 10;
numSamples = Fs*duration;

motion = struct(
'Position',zeros(1,3),
'Velocity',zeros(1,3),
'Orientation',ones(1,1, 'quaternion'));

INS = insSensor;
positionMeasurements eros(numSamples,3);

velocityMeasurements eros(numSamples,3);
orientationMeasurements = zeros(numSamples,1, 'quaternion');

=z
=z

In a loop, call INS with the stationary motion structure to return the position, velocity, and orientation
measurements in the local NED coordinate system. Log the position, velocity, and orientation
measurements.

for i = l:numSamples
measurements = INS(motion);

positionMeasurements(i,:)
velocityMeasurements(i,:)

measurements.Position;
measurements.Velocity;

1-43

1 Classes

orientationMeasurements(i) = measurements.Orientation;
end

Convert the orientation from quaternions to Euler angles for visualization purposes. Plot the position,
velocity, and orientation measurements over time.

orientationMeasurements = eulerd(orientationMeasurements, 'ZYX', 'frame');
t = (0:(numSamples-1))/Fs;

subplot(3,1,1)
plot(t,positionMeasurements)
title('Position')
xlabel('Time (s)')
ylabel('Position (m)"')
legend('North', "East', 'Down")

subplot(3,1,2)
plot(t,velocityMeasurements)
title('Velocity"')
xlabel('Time (s)')
ylabel('Velocity (m/s)"')
legend('North', "East', 'Down")

subplot(3,1,3)
plot(t,orientationMeasurements)
title('Orientation')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
legend('Roll', 'Pitch', 'Yaw')

1-44

insSensor

Pusﬁun
-5 : |
E — Marth
i ﬂrh*;. H"L’?H' *ff”* ﬁ% WA “}.t*‘i‘ﬂ'*fww.i\w '#nrﬂ oo l‘\
&'59 1 2 3 4 5 5 T é ; 10
Time (s
E‘ﬁ2| . UekmL; . . |
E ' h | III :::::::E:: EJ
- oRthtly e ,,,:--mm =)
IR T
H arT‘::a[:iLn
%2 ull.;j%u I._ I_.LI | I M IJ_ I—IFtr.:lII
E’ 2 "MH#WW w&r‘" Mﬂ Pich
E 44} 1 2 3 4 5 6 7 8 é 10
Time (s)

Generate INS Measurements for a Turning Platform

Generate INS measurements using the insSensor System object™. Use waypointTrajectory to
generate the ground-truth path.

Specify a ground-truth orientation that begins with the sensor body x-axis aligned with North and
ends with the sensor body x-axis aligned with East. Specify waypoints for an arc trajectory and a
time-of-arrival vector for the corresponding waypoints. Use a 100 Hz sample rate. Create a
waypointTrajectory System object with the waypoint constraints, and set SamplesPerFrame so
that the entire trajectory is output with one call.

eulerAngles = [0,0,0;
0,0,0;
90,0,0;
90,0,0];
orientation = quaternion(eulerAngles, 'eulerd’,'ZYX", 'frame');
= 20;
waypoints = [0,0,0; ...
100,0,0; ..
100+r,r,0;

100+r,100+r,0] ;

toa = [0,10,10+(2*pi*r/4),20+(2*pi*r/4)];

1-45

1 Classes

1-46

Fs = 100;
numSamples = floor(Fs*toa(end));

path = waypointTrajectory('Waypoints',waypoints,
'TimeOfArrival', toa,
'Orientation',orientation,
'SampleRate’,Fs,
'SamplesPerFrame',numSamples);

Create an insSensor System object to model receiving INS data. Set the PositionAccuracy to
0.1.

ins = insSensor('PositionAccuracy',0.1);

Call the waypoint trajectory object, path, to generate the ground-truth motion. Call the INS
simulator, ins, with the ground-truth motion to generate INS measurements.

[motion.Position,motion.Orientation,motion.Velocity] = path();
insMeas = ins(motion);

Convert the orientation returned by ins to Euler angles in degrees for visualization purposes. Plot
the full path and orientation over time.

orientationMeasurementEuler = eulerd(insMeas.Orientation, 'ZYX"', 'frame');

subplot(2,1,1)
plot(insMeas.Position(:,1),insMeas.Position(:,2));
title('Path')

xlabel('North (m)")

ylabel('East (m)"')

subplot(2,1,2)

t = (0:(numSamples-1)).'/Fs;

plot(t,orientationMeasurementEuler(:,1),
t,orientationMeasurementEuler(:,2),
t,orientationMeasurementEuler(:,3));

title('Orientation')

legend('Yaw', 'Pitch', 'Roll")

xlabel('Time (s)')

ylabel('Rotation (degrees)"')

insSensor

Path
15':' T T T T T T
.
E1|:1|:1 \\
5 -'!
w sof P
_:—/_FH-FF'JF‘//
0———— — i e ____-I-__- i 7
0 20 40 &0 B0 100 120 140
Maorth (m)
Orientation
IDD T T T T T

r%« ng
i ;mlzlh
E’ i
= 50 7
=
2
L
a
o

D...;.._.. I - : : : . _

0 10 20 30 40 50 &0
Time (s)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object functions, perturbations and perturb, do not support code generation.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

Objects
gpsSensor | uavSensor

Objects

Introduced in R2020b

1-47

1 Classes

mavlinkdialect

Parse and store MAVLink dialect XML

Description

The mavlinkdialect object parses and stores message and enum definitions extracted from a
MAVLink message definition file (. xml). The message definition files define the messages supported
for this specific dialect. The structure of the message definitions is defined by the MAVLink message

protocol.

Creation

Syntax

dialect = mavlinkdialect("common.xml")
dialect = mavlinkdialect(dialectXML)

dialect = mavlinkdialect(dialectXML,version)
Description

dialect = mavlinkdialect("common.xml") creates a MAVLink dialect using the common.xml
file for standard MAVLink messages.

dialect = mavlinkdialect(dialectXML) specifies the XML file for parsing the message
definitions. The input sets the DialectXML property.

dialect = mavlinkdialect(dialectXML,version) additionally specifies the MAVLink protocol
version. The inputs set the DialectXML and Version properties, respectively.

Properties

DialectXML — MAVLink dialect name
string

MAVLink dialect name, specified as a string. This name is based on the XML file name.
Example: "ardupilotmega"

Data Types: char | string

Version — MAVLink protocol version
2 (default) | 1

MAVLink protocol version, specified as either 1 or 2.

Data Types: double

1-48

mavlinkdialect

Object Functions

createcmd Create MAVLink command message

createmsg Create MAVLink message

deserializemsg Deserialize MAVLink message from binary buffer
msginfo Message definition for message ID

enuminfo Enum definition for enum ID

enum2num Enum value for given entry

num2enum Enum entry for given value

Examples

Parse and Use MAVLink Dialect

This example shows how to parse a MAVLink XML file and create messages and commands from the
definitions.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

Parse and store the MAVLink dialect XML. Specify the XML path. The default "common.xml" dialect
is provided. This XML file contains all the message and enum definitions.

dialect = mavlinkdialect("common.xml");

Create a MAVLink command from the MAV_CMD enum, which is an enum of MAVLink commands to
send to the UAV. Specify the setting as "int" or "long", and the type as an integer or string.

cmdMsg = createcmd(dialect, "long",22)
cmdMsg = struct with fields:

MsgID: 76
Payload: [1x1 struct]

Verify the command name using num2enum. Command 22 is a take-off command for the UAV. You can
convert back to an ID using enum2num. Your dialect can contain many different enums with different
names and IDs.

cmdName = num2enum(dialect, "MAV CMD",22)

cmdName
"MAV_CMD NAV_ TAKEOFF"

cmdID = enum2num(dialect, "MAV _CMD", cmdName)

cmdID = 22

Use enuminfo to view the table of the MAV_CMD enum entries.

info = enuminfo(dialect, "MAV_CMD");
info.Entries{:}

ans=148x3 table
Name Value

1-49

1 Classes

1-50

"MAV_CMD NAV WAYPOINT"
"MAV_CMD NAV LOITER UNLIM"
"MAV_CMD NAV_LOITER TURNS"
"MAV_CMD NAV LOITER TIME"
"MAV_CMD NAV RETURN_TO LAUNCH"
"MAV_CMD_NAV_LAND"
"MAV_CMD NAV_ TAKEOFF"

"MAV_CMD NAV_LAND LOCAL"
"MAV_CMD NAV_ TAKEOFF LOCAL"
"MAV_CMD NAV_FOLLOW"

"MAV_CMD NAV_CONTINUE AND CHANGE ALT"

"MAV_CMD NAV_LOITER TO ALT"
"MAV_CMD_DO_FOLLOW"
"MAV_CMD_DO_FOLLOW REPOSITION"
"MAV_CMD DO ORBIT"
"MAV_CMD NAV ROI"

16
17
18
19
20
21
22
23
24
25
30
31
32
33
34
80

"Navigate to waypoint."

"Loiter around this waypoint an unlimited :
"Loiter around this waypoint for X turns”
"Loiter at the specified latitude, longitu
"Return to launch location"

"Land at location."

"Takeoff from ground / hand. Vehicles that
"Land at local position (local frame only)
"Takeoff from local position (local frame
"Vehicle following, i.e. this waypoint rep
"Continue on the current course and climb/
"Begin loiter at the specified Latitude an
"Begin following a target"

"Reposition the MAV after a follow target
"Start orbiting on the circumference of a
"Sets the region of interest (ROI) for a st

Query the dialect for a specific message ID. Create a blank MAVLink message using the message ID.

info

info

msg = createmsg(dialect,info.MessagelD);

= msginfo(dialect, "HEARTBEAT")
=1x4 table
MessagelID MessageName
0 "HEARTBEAT" "The heartbeat message shows that a system or component is prese

See Also

mavlinkio | mavlinkclient | mavlinksub

Topics

“Tune UAV Parameters Using MAVLink Parameter Protocol

External Websites
MAVLink Developer Guide

Introduced in R2019a

https://mavlink.io

mavlinkclient

mavlinkclient

MAVLink client information

Description

The mavlinkclient object stores MAVLink client information for connecting to UAVs (unmanned
aerial vehicles) that utilize the MAVLink communication protocol. Connect with a MAVLink client
using mavlinkio and use this object for saving the component and system information.

Creation

Syntax
client = mavlinkclient(mavlink,sysID,compID)
Description

client = mavlinkclient(mavlink,sysID,compID) creates a MAVLink client interface for a
MAVLink component. Connect to a MAVLink client using mavlinkio and specify the object in
mavlink. When a heartbeat is received by the client, the ComponentType and AutoPilotType
properties are updated automatically. Specify the SystemID and ComponentID as integers.

Properties

SystemID — MAVLink system ID
positive integer between 1 and 255

MAVLink system ID, specified as a positive integer between 1 and 255. MAVLink protocol only
supports up to 255 systems. Usually, each UAV has its own system ID, but multiple UAVs could be
considered one system.

Example: 1
Data Types: uint8

ComponentID — MAVLink component ID
positive integer between 1 and 255

MAVLink component ID, specified as a positive integer between 1 and 255.
Example: 2
Data Types: uint8

ComponentType — MAVLink component type
"Unknown" (default) | string

MAVLink component type, specified as a string. This value is automatically updated to the correct
type if a heartbeat message is received by the client with the matching system ID and component ID.
You must be connected to a client using mavlinkio.

1-51

1 Classes

Example: "MAV_TYPE GCS"
Data Types: string

AutoPilot — Autopilot type for UAV
"Unknown" (default) | string

Autopilot type for UAV, specified as a string. This value is automatically updated to the correct type if
a heartbeat message is received by the client with the matching system ID and component ID. You
must be connected to a client using mavlinkio.

Example: "MAV_AUTOPILOT INVALID"
Data Types: string

Examples

Store MAVLink Client Information

Connect to a MAVLink client.

mavlink = mavlinkio("common.xml");
connect(mavlink, "UDP");

Create the object for storing the client information. Specify the system and component ID.
client = mavlinkclient(mavlink,1,1)

client =
mavlinkclient with properties:

SystemID: 1

ComponentID: 1
ComponentType: "Unknown"
AutopilotType: "Unknown"

Disconnect from client.

disconnect(mavlink)

See Also
mavlinkio | mavlinkdialect | mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

External Websites
MAVLink Developer Guide

Introduced in R2019a

1-52

https://mavlink.io

mavlinkio

mavlinkio

Connect with MAVLink clients to exchange messages

Description

The mavlinkio object connects with MAVLink clients through UDP ports to exchange messages with
UAVs (unmanned aerial vehicles) using the MAVLink communication protocols.

Creation

Syntax

mavlink = mavlinkio(msgDefinitions)
mavlink = mavlinkio(dialectXML)

mavlink = mavlinkio(dialectXML,version)
mavlink = mavlinkio(,Name,Value)
Description

mavlink = mavlinkio(msgDefinitions) creates an interface to connect with MAVLink clients
using the input mavlinkdialect object, which defines the message definitions. This dialect object is
set directly to the Dialect property.

mavlink = mavlinkio(dialectXML) directly specifies the XML file for the message definitions as
a file name. A mavlinkdialect is created using this XML file and set to the Dialect property

mavlink = mavlinkio(dialectXML,version) additionally specifies the MAVLink protocol
version as either 1 or 2.

mavlink = mavlinkio(,Name,Value) additionally specifies arguments using the following
name-value pairs.

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

The name-value pairs directly set the MAVLink client information in the LocalClient property. See
LocalClient for more info on what values can be set.

Properties

Dialect — MAVLink dialect
mavlinkdialect object

MAVLink dialect, specified as a mavlinkdialect object. The dialect specifies the message structure
for the MAVLink protocol.

1-53

1 Classes

LocalClient — Local client information
structure

This property is read-only.

Local client information, specified as a structure. The local client is setup in MATLAB® to
communicate with other MAVLink clients. The structure contains the following fields:

* SystemID

* ComponentID

* ComponentType

* AutopilotType

To set these values when creating the mavlinkio object, use name-value pairs. For example:

mavlink = mavlinkio("common.xml","SystemID",1,"ComponentID",1)

This property is nontunable when you are connected to a MAVLink client. For more information, see
mavlinkclient.

Data Types: struct

Object Functions

connect Connect to MAVLink clients through UDP port
disconnect Disconnect from MAVLink clients

sendmsg Send MAVLink message

sendudpmsg Send MAVLink message to UDP port
serializemsg Serialize MAVLink message to binary buffer
listConnections List all active MAVLink connections

listClients List all connected MAVLink clients

listTopics List all topics received by MAVLink client
Examples

Store MAVLink Client Information

Connect to a MAVLink client.

mavlink = mavlinkio("common.xml");
connect(mavlink, "UDP");

Create the object for storing the client information. Specify the system and component ID.
client = mavlinkclient(mavlink,1,1)

client =
mavlinkclient with properties:

SystemID: 1

ComponentID: 1
ComponentType: "Unknown"
AutopilotType: "Unknown"

mavlinkio

Disconnect from client.

disconnect (mavlink)

Work with MAVLink Connection

This example shows how to connect to MAVLink clients, inspect the list of topics, connections, and
clients, and send messages through UDP ports using the MAVLink communication protocol.

Connect to a MAVLink client using the "common.xml" dialect. This local client communicates with
any other clients through a UDP port.

dialect = mavlinkdialect("common.xml");
mavlink = mavlinkio(dialect);
connect(mavlink, "UDP")

ans =
"Connectionl"

You can list all the active clients, connections, and topics for the MAVLink connection. Currently,
there is only one client connection and no topics have received messages.

listClients(mavlink)

ans=1x4 table
SystemID ComponentID ComponentType AutopilotType

255 1 "MAV_TYPE GCS" “MAV_AUTOPILOT INVALID"

listConnections(mavlink)

ans=1x2 table

ConnectionName ConnectionInfo
"Connectionl" "UDP@0.0.0.0:64030"
listTopics(mavlink)

ans =
0x5 empty table

Create a subscriber for receiving messages on the client. This subscriber listens for the
"HEARTBEAT" message topic with ID equal to 0.

sub = mavlinksub(mavlink,0);

Create a "HEARTBEAT" message using the mavlinkdialect object. Specify payload information and
send the message over the MAVLink client.

msg = createmsg(dialect, "HEARTBEAT");
msg.Payload.type(:) = enum2num(dialect, 'MAV TYPE', "MAV_TYPE QUADROTOR');
sendmsg(mavlink,msg)

1-55

1 Classes

Disconnect from the client.

disconnect (mavlink)

See Also
connect | mavlinkdialect | mavlinkclient | mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

External Websites
MAVLink Developer Guide

Introduced in R2019a

1-56

https://mavlink.io

mavlinksub

mavlinksub

Receive MAVLink messages

Description

The mavlinksub object subscribes to topics from the connected MAVLink clients using a mavlinkio
object. Use the mavlinksub object to obtain the most recently received messages and call functions
to process newly received messages.

Creation

Syntax

sub = mavlinksub(mavlink)

sub = mavlinksub(mavlink,topic)

sub = mavlinksub(mavlink,client)

sub = mavlinksub(mavlink,client,topic)
sub = mavlinksub(,Name,Value)
Description

sub = mavlinksub(mavlink) subscribes to all topics from all clients connected via the
mavlinkio object. This syntax sets the Client property to "Any".

sub = mavlinksub(mavlink, topic) subscribes to a specific topic, specified as a string or
integer, from all clients connected via the mavlinkio object. The function sets the topic input to
the Topic property.

sub = mavlinksub(mavlink,client) subscribes to all topics from the client specified as a
mavlinkclient object. The function sets the Client property to this input client.

sub = mavlinksub(mavlink,client, topic) subscribes to a specific topic on a specific client.
The function sets the Client and Topic properties.

sub = mavlinksub(,Name,Value) additionally specifies the BuffferSize or
NewMessageFcn properties using name-value pairs and the previous syntaxes. The Name input is one
of the property names.

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Properties

Client — Client information of received message
"Any" (default) | mavlinkclient object

1-57

1 Classes

Client information of the received message, specified as a mavlinkclient object. The default value
of "Any" means the subscriber is listening to all clients connected via the mavlinkio object.

Topic — Topic name
"Any" (default) | string

Topic name the subscriber listens to, specified as a string. The default value of "Any" means the
subscriber is listening to all topics on the client.

Example: "HEARTBEAT"
Data Types: char | string

BufferSize — Length of message buffer
1 (default) | positive integer

Length of message buffer, specified as a positive integer. This value is the maximum number of
messages that can be stored in this subscriber.

Data Types: double

NewMessageFcn — Callback function for new messages
[1 (default) | function handle

Callback function for new messages, specified as a function handle. This function is called when a
new message is received by the client. The function handle has the following syntax:

callback(sub,msg)

sub is a structure with fields for the Client, Topic, and BufferSize properties of the
mavlinksub object. msg is the message received as a structure with the fields:

* MsgID -- Positive integer for message ID.

* SystemID -- System ID of MAVLink client that sent message.

* ComponentID-- Component ID of MAVLink client that sent message.

* Payload -- Structure containing fields based on the message definition.
* Seq -- Positive integer for sequence of message.

The Payload is a structure defined by the message definition for the MAVLink dialect.
Data Types: function handle

Object Functions
latestmsgs Received messages from MAVLink subscriber

Examples

Subscribe to MAVLink Topic

Connect to a MAVLink client.
mavlink = mavlinkio("common.xml")

mavlink =
mavlinkio with properties:

1-58

mavlinksub

Dialect: [1x1 mavlinkdialect]
LocalClient: [1x1 struct]
connect(mavlink, "UDP")

ans =
"Connectionl"

Get the client information.

client = mavlinkclient(mavlink,1,1);
Subscribe to the "HEARTBEAT" topic.

heartbeat = mavlinksub(mavlink,client, 'HEARTBEAT');

Get the latest message. You must wait for a message to be received. Currently, no heartbeat message
has been received on the mavlink object.

latestmsgs(heartbeat, 1)
ans =
1x0 empty struct array with fields:
MsgID
SystemID
ComponentID
Payload
Seq
Disconnect from client.

disconnect (mavlink)

See Also
latestmsgs | mavlinkclient | mavlinkio | mavlinkdialect

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

External Websites
MAVLink Developer Guide

Introduced in R2019a

1-59

https://mavlink.io

1 Classes

1-60

mavlinktlog

Read MAVLink message from TLOG file

Description

The mavlinktlog object reads all messages from a telemetry log or TLOG file (. tlog). The object
gives you information about the file, including the start and end time, number of messages, available
topics, and packet loss percentage. You can specify a MAVLink dialect for parsing the messages or
use the common. xml dialect.

Creation

Syntax

tlogReader = mavlinktlog(filePath)
tlogReader = mavlinktlog(filePath,dialect)
Description

tlogReader = mavlinktlog(filePath) reads all messages from the tlog file at the given file
path and returns an object summarizing the file. This syntax uses the common.xml dialect for the
MAVLink protocol (Version 2.0) for parsing the messages. The information in filePath is used to set
the FileName property.

tlogReader = mavlinktlog(filePath,dialect) reads the MAVLink messages based on the
dialect specified as a mavlinkdialect object or string scalar specifying the XML file path. dialect
sets the Dialect property.

Properties

FileName — Name of TLOG file
string scalar | character vector

This property is read-only.

Name of the TLOG file, specified as a string scalar or character vector. The name is the last part of
the path given in the filePath input.

Example: 'flightlog.tlog'
Data Types: string | char

Dialect — MAVLink dialect
"common.xml"' (default) | mavlinkdialect object

This property is read-only.

MAVLink dialect used for parsing the message data, specified as a mavlinkdialect object.

mavlinktlog

StartTime — Time of first message recorded
datetime object

This property is read-only.

Time of the first message recorded in the TLOG file, specified as a datetime object.

Data Types: datetime

EndTime — Time of last message recorded
datetime object

This property is read-only.

Time of the last message recorded in the TLOG file, specified as a datetime object.

Data Types: datetime

NumMessages — Number of MAVLink messages in TLOG file
numeric scalar

This property is read-only.

Number of MAVLink messages in the TLOG file, specified as a numeric scalar.

Data Types: double

AvailableTopics — List of different message types
table

This property is read-only.
List of different messages, specified as a table that contains:

* MessagelD

* MessageName
* SystemID

* ComponentID
* NumMessages

Data Types: table

NumPacketsLost — Percentage of packets lost
numeric scalar from 0 through 100

This property is read-only.

Percentage of packets lost, specified as a numeric scalar from 0 through 100.

Data Types: double

Object Functions
readmsg Read specific messages from TLOG file

1-61

1 Classes

Examples

Read Messages from MAVLink TLOG File

Load the TLOG file. Specify the relative path of the file name.

tlogReader = mavlinktlog('flight.tlog');

Read the 'REQUEST DATA STREAM' messages from the file.

msgData = readmsg(result, 'MessageName', 'REQUEST DATA STREAM');

See Also
readmsg | mavlinkdialect | mavlinkclient | mavlinkio

Topics
“Visualize and Playback MAVLink Flight Log”

Introduced in R2019a

1-62

multirotor

multirotor

Guidance model for multirotor UAVs

Description

A multirotor object represents a reduced-order guidance model for an unmanned aerial vehicle
(UAV). The model approximates the behavior of a closed-loop system consisting of an autopilot
controller and a multirotor kinematic model for 3-D motion.

For fixed-wing UAVs, see fixedwing.

Creation

model = multirotor creates a multirotor motion model with double precision values for inputs,
outputs, and configuration parameters of the guidance model.

model = multirotor(DataType) specifies the data type precision (DataType property) for the
inputs, outputs, and configurations parameters of the guidance model.

Properties

Name — Name of UAV
"Unnamed" (default) | string scalar

Name of the UAV, used to differentiate it from other models in the workspace, specified as a string
scalar.

Example: "myUAV1"

Data Types: string

Configuration — UAV controller configuration
structure

UAV controller configuration, specified as a structure of parameters. Specify these parameters to
tune the internal control behaviour of the UAV. Specify the proportional (P) and derivative (D) gains
for the dynamic model and other UAV parameters. For multirotor UAVs, the structure contains these
fields with defaults listed:

* 'PDRoll'-[3402.97 116.67]
* 'PDPitch'-[3402.97 116.67]
* 'PYawRate' - 1950

* 'PThrust' -3900

* 'Mass' - 0.1 (measured in kg)

Example: struct('PDRoll"',[3402.97,116.67], 'PDPitch',[3402.97,
116.67], 'PYawRate', 1950, 'PThrust',3900, 'Mass',0.1)

1-63

1 Classes

1-64

Data Types: struct

ModelType — UAV guidance model type
'"MultirotorGuidance' (default)

This property is read-only.
UAV guidance model type, specified as 'MultirotorGuidance"'.

DataType — Input and output numeric data types
'double’ (default) | 'single’

Input and output numeric data types, specified as either 'double' or 'single’'. Choose the data

type based on possible software or hardware limitations. Specify DataType when first creating the
object.

Object Functions

control Control commands for UAV
derivative Time derivative of UAV states
environment Environmental inputs for UAV
state UAV state vector
Examples

Simulate A Multirotor Control Command

This example shows how to use the multirotor guidance model to simulate the change in state of a
UAV due to a command input.

Create the multirotor guidance model.
model = multirotor;
Create a state structure. Specify the location in world coordinates.

s = state(model);
s(1:3) = [3;2;1];

Specify a control command, u, that specified the roll and thrust of the multirotor.
u = control(model);

u.Roll = pi/12;
u.Thrust = 1;

Create a default environment without wind.

e = environment (model);

Compute the time derivative of the state given the current state, control command, and environment.
sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the multirotor UAV states as a
13-by-n matrix.

multirotor

simOut = oded45(@(~,x)derivative(model,x,u,e), [0 3], s);
size(simOut.y)

ans = 1x2

13 3536

Plot the change in roll angle based on the simulation output. The roll angle (the X Euler angle) is the
9th row of the simOut.y output.

plot(simQut.y(9,:))

D3 T T T T T T T

025 [:

0.2 ! 7

0.05]

D i
0 500 1000 1500 2000 2500 3000 3500 4000

Plot the change in the Y and Z positions. With the specified thrust and roll angle, the multirotor
should fly over and lose some altitude. A positive value for Z is expected as positive Z is down.

figure

plot(simOut.y(2,:));

hold on

plot(simOut.y(3,:));
legend('Y-position','Z-position')
hold off

1-65

1 Classes

1-66

14 T T T T T T T
Y-position

Z-position
12 7 7

101 / 1

0 500 1000 1500 2000 2500 3000 3500 4000

You can also plot the multirotor trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 300th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
multirotor.stl file and the positive Z-direction as "down". The displayed view shows the UAV
translating in the Y-direction and losing altitude.

translations = simOut.y(1:3,1:300:end)'; % xyz position
rotations = eul2quat(simOut.y(7:9,1:300:end)"'); % ZYX Euler
plotTransforms(translations, rotations,...

'MeshFilePath', 'multirotor.stl', 'InertialZDirection', "down")
view([90.00 -0.60])

multirotor

0.8 7

‘\.\3
T
=

4.2 /Y
J AN
44— /W f/’/ "/

-1.6 —

.

-1.8

-2.2 7

-2.4 —

-14 12 -10 -8 % -4 -2 0

More About

UAV Coordinate Systems

The UAV Toolbox uses the North-East-Down (NED) coordinate system convention, which is also
sometimes called the local tangent plane (LTP). The UAV position vector consists of three numbers for
position along the northern-axis, eastern-axis, and vertical position. The down element complies with
the right-hand rule and results in negative values for altitude gain.

The ground plane, or earth frame (NE plane, D = 0), is assumed to be an inertial plane that is flat
based on the operation region for small UAV control. The earth frame coordinates are [X,,Ve.,2.]. The
body frame of the UAV is attached to the center of mass with coordinates [x;,y,,23]. X;, is the preferred
forward direction of the UAV, and z;, is perpendicular to the plane that points downwards when the
UAV travels during perfect horizontal flight.

The orientation of the UAV (body frame) is specified in ZYX Euler angles. To convert from the earth
frame to the body frame, we first rotate about the z,-axis by the yaw angle, y. Then, rotate about the
intermediate y-axis by the pitch angle, ¢. Then, rotate about the intermediate x-axis by the roll angle,
o.

The angular velocity of the UAV is represented by [p,q,r] with respect to the body axes, [x,,V5,2p].

1-67

1 Classes

UAV Multirotor Guidance Model Equations

For multirotors, the following equations are used to define the guidance model of the UAV. To
calculate the time-derivative of the UAV state using these governing equations, use the derivative
function. Specify the inputs using state, control, and environment.

The UAV position in the earth frame is [x,, y., z.] with orientation as ZYX Euler angles, [y, O, ¢] in
radians. Angular velocities are [p, g, r] in radians per second.

The UAV body frame uses coordinates as [x,, Vp, 2.

The rotation matrix that rotates vector from body frame to world frame is:

CQC'P CwS(ﬁSQ — C¢S¢, CQJ}CI'{,,SQ + Sq'ist,b
RE = CgSw C¢C¢, + qu.‘j‘gSw —C‘I'{_,S‘p + C{;;,SgSw
—5g CQS¢, C¢‘CE
The cos(x) and sin(x) are abbreviated as c, and s,.

The acceleration of the UAV center of mass in earth coordinates is governed by:

¥, 0 0
m|V.|=| 0 | +R] 0
fe mg _Frhrusr

m is the UAV mass, g is gravity, and F,;; is the total force created by the propellers applied to the
multirotor along the -z, axis (points upwards in a horizontal pose).

The closed-loop roll-pitch attitude controller is approximated by the behavior of 2 independent PD
controllers for the two rotation angles, and 2 independent P controllers for the yaw rate and thrust.
The angular velocity, angular acceleration, and thrust are governed by:

1-68

multirotor

| singtan@ cosgtand

J=|0 cos¢ —sing
0 sin ¢ cos¢
" cosd cosf |
¢ -
@|=J\q
; ¥
7
._ [~ 5 (._ _. 7
Pl ri o _sng 1 KRG -9 +KD,(-)

g|=|0 cosg singcosd || KP,(6°-0)+KD,(-6)

0 —sing cos¢cost

KE,(y*-y)

1:1111':i.~1' — K]?(F‘] F

thrusi thrusi)

This model assumes the autopilot takes in commanded roll, pitch, yaw rate, # | and a commanded
total thrust force, F¢;,. The structure to specify these inputs is generated from control.

The P and D gains for the control inputs are specified as KP, and KD,, where «a is either the rotation
angle or thrust. These gains along with the UAV mass, m, are specified in the Configuration
property of the multirotor object.

From these governing equations, the model gives the following variables:

[xe Ye Ze i& j-'re éﬂ t»{" 2 (ab p q r Fthrust]

These variables match the output of the state function.

References

[1] Mellinger, Daniel, and Nathan Michael. "Trajectory Generation and Control for Precise Aggressive
Maneuvers with Quadrotors." The International Journal of Robotics Research. 2012, pp.
664-74.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1-69

1 Classes

See Also

Functions
ode45 | control | derivative | environment | state | plotTransforms

Objects
fixedwing | uavWaypointFollower

Blocks
UAV Guidance Model | Waypoint Follower

Topics

“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

quaternion

quaternion

Create a quaternion array

Description

A quaternion is a four-part hyper-complex number used in three-dimensional rotations and
orientations.

A quaternion number is represented in the form a + bi + cj + dk, where a, b, ¢, and d parts are real
numbers, and i, j, and k are the basis elements, satisfying the equation: i? = j2 = k? = ijk = —1.

The set of quaternions, denoted by H, is defined within a four-dimensional vector space over the real
numbers, R%. Every element of H has a unique representation based on a linear combination of the
basis elements, i, j, and k.

All rotations in 3-D can be described by an axis of rotation and angle about that axis. An advantage of
quaternions over rotation matrices is that the axis and angle of rotation is easy to interpret. For
example, consider a point in R3. To rotate the point, you define an axis of rotation and an angle of
rotation.

8
%,, (upiteg,ug) \/ (up,ttgrtg)

b

0 o < ,

The quaternion representation of the rotation may be expressed as
q= cos(9/2) + sin(9/2)(ubi + u.j + ugk), where 6 is the angle of rotation and [u,, u,, and uy] is the axis
of rotation.

Creation

Syntax

quat = quaternion()

quat = quaternion(A,B,C,D)
quat = quaternion(matrix)

quat = quaternion(RV, 'rotvec')

1-71

1 Classes

1-72

quat = quaternion(RV, 'rotvecd')

quat = quaternion(RM, 'rotmat',PF)

quat = quaternion(E, 'euler',RS,PF)

quat = quaternion(E, 'eulerd',RS,PF)
Description

quat = quaternion() creates an empty quaternion.

quat = quaternion(A,B,C,D) creates a quaternion array where the four quaternion parts are
taken from the arrays A, B, C, and D. All the inputs must have the same size and be of the same data

type.

quat = quaternion(matrix) creates an N-by-1 quaternion array from an N-by-4 matrix, where
each column becomes one part of the quaternion.

quat = quaternion(RV, 'rotvec') creates an N-by-1 quaternion array from an N-by-3 matrix of
rotation vectors, RV. Each row of RV represents a rotation vector in radians.

quat = quaternion(RV, 'rotvecd') creates an N-by-1 quaternion array from an N-by-3 matrix of
rotation vectors, RV. Each row of RV represents a rotation vector in degrees.

quat = quaternion(RM, 'rotmat',PF) creates an N-by-1 quaternion array from the 3-by-3-by-N
array of rotation matrices, RM. PF can be either 'point"' if the Euler angles represent point rotations
or 'frame' for frame rotations.

quat = quaternion(E, 'euler',RS,PF) creates an N-by-1 quaternion array from the N-by-3
matrix, E. Each row of E represents a set of Euler angles in radians. The angles in E are rotations
about the axes in sequence RS.

quat = quaternion(E, 'eulerd',RS,PF) creates an N-by-1 quaternion array from the N-by-3
matrix, E. Each row of E represents a set of Euler angles in degrees. The angles in E are rotations
about the axes in sequence RS.

Input Arguments

A,B,C,D — Quaternion parts
comma-separated arrays of the same size

Parts of a quaternion, specified as four comma-separated scalars, matrices, or multi-dimensional
arrays of the same size.
Example: quat = quaternion(1,2,3,4) creates a quaternion of the form 1 + 2i + 3j + 4k.

Example: quat = quaternion([1,5],[2,6]1,[3,7],[4,8]) creates a 1-by-2 quaternion array
where quat(1,1) = 1 + 2i + 3j + 4kandquat(1l,2) =5 + 61 + 7] + 8k

Data Types: single | double

matrix — Matrix of quaternion parts
N-by-4 matrix

Matrix of quaternion parts, specified as an N-by-4 matrix. Each row represents a separate quaternion.
Each column represents a separate quaternion part.

Example: quat = quaternion(rand(10,4)) creates a 10-by-1 quaternion array.

quaternion

Data Types: single | double

RV — Matrix of rotation vectors
N-by-3 matrix

Matrix of rotation vectors, specified as an N-by-3 matrix. Each row of RV represents the [X Y Z]
elements of a rotation vector. A rotation vector is a unit vector representing the axis of rotation scaled
by the angle of rotation in radians or degrees.

To use this syntax, specify the first argument as a matrix of rotation vectors and the second argument
as the 'rotvec' or 'rotvecd’.

Example: quat = quaternion(rand(10,3), 'rotvec') creates a 10-by-1 quaternion array.

Data Types: single | double

RM — Rotation matrices
3-by-3 matrix | 3-by-3-by-N array

Array of rotation matrices, specified by a 3-by-3 matrix or 3-by-3-by-N array. Each page of the array
represents a separate rotation matrix.

Example: quat = quaternion(rand(3), 'rotmat', 'point')

Example: quat = quaternion(rand(3), 'rotmat', 'frame')

Data Types: single | double

PF — Type of rotation matrix

'point' | 'frame'

Type of rotation matrix, specified by 'point' or 'frame'.
Example: quat = quaternion(rand(3), 'rotmat’', 'point")
Example: quat = quaternion(rand(3), 'rotmat’', 'frame')

Data Types: char | string

E — Matrix of Euler angles
N-by-3 matrix

Matrix of Euler angles, specified by an N-by-3 matrix. If using the 'euler' syntax, specify E in
radians. If using the 'eulerd' syntax, specify E in degrees.

Example: quat = quaternion(E, 'euler','YZY', 'point"')

Example: quat = quaternion(E, 'euler','XYZ', 'frame')

Data Types: single | double

RS — Rotation sequence
character vector | scalar string

Rotation sequence, specified as a three-element character vector:

e 'YZY'
o 'YXY'
e 'ZYZ'

1-73

1 Classes

s 'ZIXZ'
+ 'XYX!
s 'XZX'
« 'XYZ'
e 'YZX'
o 'ZXY'
o 'XZY'
 'ZYX'
e 'YXZ'

Assume you want to determine the new coordinates of a point when its coordinate system is rotated
using frame rotation. The point is defined in the original coordinate system as:

point = [sqrt(2)/2,sqrt(2)/2,0];

In this representation, the first column represents the x-axis, the second column represents the y-
axis, and the third column represents the z-axis.

You want to rotate the point using the Euler angle representation [45,45,0]. Rotate the point using
two different rotation sequences:

* Ifyou create a quaternion rotator and specify the 'ZYX' sequence, the frame is first rotated 45°
around the z-axis, then 45° around the new y-axis.

quatRotator = quaternion([45,45,0], 'eulerd', 'ZYX', 'frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

0.7071 -0.0000 0.7071

g =45°
Y ¥ '
(1,0,0) (1,0,0)

® '

* Ifyou create a quaternion rotator and specify the 'YZX' sequence, the frame is first rotated 45°
around the y-axis, then 45° around the new z-axis.

quatRotator = quaternion([45,45,0], 'eulerd','YZX"', 'frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

0.8536 0.1464 0.5000

quaternion

Data Types: char | string

Object Functions

angvel

classUnderlying

compact
conj

dist
euler
eulerd
exp
\ldivide
log
meanrot

*

norm
normalize
ones

parts

., power
prod
randrot
./,rdivide
rotateframe
rotatepoint
rotmat
rotvec
rotvecd
slerp

¥ times

Zeros

Examples

Angular velocity from quaternion array

Class of parts within quaternion

Convert quaternion array to N-by-4 matrix
Complex conjugate of quaternion

Complex conjugate transpose of quaternion array
Angular distance in radians

Convert quaternion to Euler angles (radians)
Convert quaternion to Euler angles (degrees)
Exponential of quaternion array

Element-wise quaternion left division

Natural logarithm of quaternion array
Quaternion mean rotation

Quaternion subtraction

Quaternion multiplication

Quaternion norm

Quaternion normalization

Create quaternion array with real parts set to one and imaginary parts set to zero
Extract quaternion parts

Element-wise quaternion power

Product of a quaternion array

Uniformly distributed random rotations
Element-wise quaternion right division
Quaternion frame rotation

Quaternion point rotation

Convert quaternion to rotation matrix

Convert quaternion to rotation vector (radians)
Convert quaternion to rotation vector (degrees)
Spherical linear interpolation

Element-wise quaternion multiplication
Transpose a quaternion array

Quaternion unary minus

Create quaternion array with all parts set to zero

Create Empty Quaternion

quat = quaternion()

1-75

1 Classes

quat =
0x0 empty quaternion array
By default, the underlying class of the quaternion is a double.

classUnderlying(quat)

ans =
"double’

Create Quaternion by Specifying Individual Quaternion Parts

You can create a quaternion array by specifying the four parts as comma-separated scalars, matrices,
or multidimensional arrays of the same size.

Define quaternion parts as scalars.

A=1.1;
B=2.1;
C=3.1;
D =4.1;

quatScalar = quaternion(A,B,C,D)

quatScalar = quaternion
1.1 + 2.11 + 3.1j + 4.1k

Define quaternion parts as column vectors.

A=1[1.1;1.2];
B=1[2.1;2.2];
C =1[3.1;3.2];
D =1[4.1;4.2];

quatVector = quaternion(A,B,C,D)

quatVector = 2x1 quaternion array
1.1 + 2.1i + 3.1j + 4.1k
1.2 + 2.2i + 3.2j + 4.2k

Define quaternion parts as matrices.

A=11.1,1.3; ...
1.2,1.4];
B=1[2.1,2.3; ...
2.2,2.41;
Cc=1[3.1,3.3; ...
3.2,3.41;
D =1[4.1,4.3; ...
4.2,4.4];
quatMatrix = quaternion(A,B,C,D)

quatMatrix = 2x2 quaternion array
1.1 + 2.1i + 3.1j + 4.1k
1.2 + 2.2i + 3.2j + 4.2k

i+ 3.3j +4.3k
i+ 3.4 + 4.4k

~ W

1-76

quaternion

Define quaternion parts as three dimensional arrays.

quaternion(A,B,C,D)

2x2x2 quaternion array

01

A = randn(2,2,2);
B = zeros(2,2,2);
C = zeros(2,2,2);
D = zeros(2,2,2);
quatMultiDimArray
quatMultiDimArray
quatMultiDimArray(:,:,1)
0.53767 +
1.8339 +

01

quatMultiDimArray(:,:,2)

0.31877 +
-1.3077 +

01
01

+
+

+
+

+ +

+ +

0k
0k

0k
0k

-2.2588
0.86217

-0.43359
0.34262

Create Quaternion by Specifying Quaternion Parts Matrix

+ +

+ +

01
01

01
01

0]

+ +

+ +

You can create a scalar or column vector of quaternions by specify an N-by-4 matrix of quaternion

parts, where columns correspond to the quaternion parts A, B, C, and D.

Create a column vector of random quaternions.

quatParts = rand(3,4)

quatParts = 3x4
0.8147 0.9134 0.2785
0.9058 0.6324 0.5469
0.1270 0.0975 0.9575
quat = quaternion(quatParts)

quat

[cNoNoN|

To retrieve the quatParts matrix from quaternion representation, use compact.

retrievedquatParts

retrievedquatParts

0.8147 0.9134
0.9058 0.6324
0.1270 0.0975

compact(quat)

3x4

3x1 quaternion array
.81472 + 0.91338i +

.90579 + 0.632361i + 0.54688j + 0.15761k
.12699 + 0.09754i + 0.95751j + 0.97059k

0.2785
0.5469
0.9575

0.9649
0.1576
0.9706

0.9649
0.1576
0.9706

0.2785j + 0.96489k

1-77

0k
0k

0k
0k

1 Classes

1-78

Create Quaternion by Specifying Rotation Vectors

You can create an N-by-1 quaternion array by specifying an N-by-3 matrix of rotation vectors in
radians or degrees. Rotation vectors are compact spatial representations that have a one-to-one
relationship with normalized quaternions.

Rotation Vectors in Radians

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is normalized.

rotationVector = [0.3491,0.6283,0.3491];
quat = quaternion(rotationVector, 'rotvec')

quaternion
.92124 + 0.169941i + 0.30586j + 0.16994k

quat

(o]

norm(quat)

ans = 1.0000

You can convert from quaternions to rotation vectors in radians using the rotvec function. Recover
the rotationVector from the quaternion, quat.

rotvec(quat)
ans = 1x3

0.3491 0.6283 0.3491

Rotation Vectors in Degrees

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is normalized.

rotationVector = [20,36,20];
quat = quaternion(rotationVector, 'rotvecd")

quat quaternion

.92125 + 0.16993i + 0.30587j) + 0.16993k

(o]

norm(quat)
ans =1

You can convert from quaternions to rotation vectors in degrees using the rotvecd function. Recover
the rotationVector from the quaternion, quat.

rotvecd(quat)
ans = 1x3

20.0000 36.0000 20.0000

quaternion

Create Quaternion by Specifying Rotation Matrices

You can create an N-by-1 quaternion array by specifying a 3-by-3-by-N array of rotation matrices.
Each page of the rotation matrix array corresponds to one element of the quaternion array.

Create a scalar quaternion using a 3-by-3 rotation matrix. Specify whether the rotation matrix should
be interpreted as a frame or point rotation.

rotationMatrix = [1 O 0; ...
0 sqrt(3)/2 0.5; ...
0 -0.5 sqrt(3)/2];
quat = quaternion(rotationMatrix, 'rotmat','frame")
quat = quaternion
0.96593 + 0.25882i + 0] + 0k

You can convert from quaternions to rotation matrices using the rotmat function. Recover the
rotationMatrix from the quaternion, quat.

rotmat(quat, 'frame')

ans = 3x3

1.0000 0 0
0 0.8660 0.5000
0 -0.5000 0.8660

Create Quaternion by Specifying Euler Angles

You can create an N-by-1 quaternion array by specifying an N-by-3 array of Euler angles in radians or
degrees.

Euler Angles in Radians

Use the euler syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles in radians.
Specify the rotation sequence of the Euler angles and whether the angles represent a frame or point
rotation.

E = [pi/2,0,pi/4];
quat = quaternion(E, 'euler','ZYX", 'frame")

quat = quaternion
0.65328 + 0.27061i + 0.2706j + 0.65328k

You can convert from quaternions to Euler angles using the euler function. Recover the Euler
angles, E, from the quaternion, quat.

euler(quat, 'ZYX', 'frame")

ans = 1x3

1.5708 0 0.7854

1-79

1 Classes

1-80

Euler Angles in Degrees

Use the eulerd syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles in degrees.
Specify the rotation sequence of the Euler angles and whether the angles represent a frame or point
rotation.

E =1[90,0,45];
quat = quaternion(E, 'eulerd','ZYX', 'frame')

quat = quaternion
0.65328 + 0.27061i + 0.2706j + 0.65328k

You can convert from quaternions to Euler angles in degrees using the eulerd function. Recover the
Euler angles, E, from the quaternion, quat.

eulerd(quat, 'ZYX', 'frame')
ans = 1x3

90.0000 0 45.0000

Quaternion Algebra

Quaternions form a noncommutative associative algebra over the real numbers. This example
illustrates the rules of quaternion algebra.

Addition and Subtraction
Quaternion addition and subtraction occur part-by-part, and are commutative:

Q1

quaternion(1,2,3,4)

Ql = quaternion
1+ 2i+ 3j + 4k
Q2 = quaternion(9,8,7,6)

Q2 = quaternion
9 + 81+ 7j + 6k

QlplusQ2 = Q1 + Q2
QlplusQ2 = quaternion

10 + 10i + 10j + 10k
Q2plusQl = Q2 + Q1
Q2plusQl = quaternion

10 + 10i + 10j + 10k

QlminusQ2 = Q1 - Q2

quaternion

QlminusQ2 = quaternion
-8 - 61 - 4 - 2k

Q2minusQl

Q2 - Q1

Q2minusQl = quaternion
8 + 61 + 4 + 2k

You can also perform addition and subtraction of real numbers and quaternions. The first part of a
quaternion is referred to as the real part, while the second, third, and fourth parts are referred to as
the vector. Addition and subtraction with real numbers affect only the real part of the quaternion.

QlplusRealNumber = Q1 + 5

QlplusRealNumber = quaternion
6 + 21 + 3j 4K

+

QlminusRealNumber = Q1 - 5

QlminusRealNumber = quaternion
-4 + 21 + 3j + 4k

Multiplication

Quaternion multiplication is determined by the products of the basis elements and the distributive
law. Recall that multiplication of the basis elements, i, j, and k, are not commutative, and therefore
quaternion multiplication is not commutative.

QltimesQ2 = Q1 * Q2
QltimesQ2 = quaternion

-52 + 161 + 54j + 32k
Q2timesQl = Q2 * Q1
Q2timesQl = quaternion

-52 + 361 + 14j + 52k
isequal(QltimesQ2,Q2timesQl)
ans = logical

0

You can also multiply a quaternion by a real number. If you multiply a quaternion by a real number,
each part of the quaternion is multiplied by the real number individually:

Qltimes5 = Q1*5

Qltimes5 = quaternion
5+ 10i + 15j + 20k

Multiplying a quaternion by a real number is commutative.

1-81

1 Classes

isequal(Q1l*5,5*Q1l)
ans = logical

1
Conjugation

The complex conjugate of a quaternion is defined such that each element of the vector portion of the
quaternion is negated.

Q1
Q1 = quaternion
1+ 2i+ 3j + 4k
conj (Q1)
ans = quaternion
1-2i-3j - 4k
Multiplication between a quaternion and its conjugate is commutative:
isequal(Ql*conj(Ql),conj(Ql)*Ql)

ans = logical
1

Quaternion Array Manipulation

You can organize quaternions into vectors, matrices, and multidimensional arrays. Built-in MATLAB®
functions have been enhanced to work with quaternions.

Concatenate

Quaternions are treated as individual objects during concatenation and follow MATLAB rules for
array manipulation.

Q1 = quaternion(1,2,3,4);
Q2 = quaternion(9,8,7,6);
gVector = [Q1,Q2]

gVector = 1x2 quaternion array

1 +2i+ 3 + 4k 9 + 81+ 7j + 6k
Q3 = quaternion(-1,-2,-3,-4);
Q4 = quaternion(-9,-8,-7,-6);
gMatrix = [qVector;Q3,Q4]

gMatrix = 2x2 quaternion array
1+ 2i+ 3j + 4k 9 + 81+ 7j + 6k

1-82

quaternion

-1 - 21 - 3j - 4k -9 - 81 - 7j - 6k
gMultiDimensionalArray(:,:,1) = gMatrix;
gMultiDimensionalArray(:,:,2) = gMatrix

gMultiDimensionalArray = 2x2x2 quaternion array
gMultiDimensionalArray(:,:,1) =

1 +2i+ 3j + 4k 9 +8i+ 7j + 6k
-1 - 21 - 3j - 4k -9 - 81 -7j - 6k

gMultiDimensionalArray(:,:,2)

1 +2i+ 3j + 4k 9 +8i+ 7j + 6k
-1 - 21 - 3j - 4k -9 - 81 -7j - 6k
Indexing

To access or assign elements in a quaternion array, use indexing.

gLoc2 = gMultiDimensionalArray(2)

gLoc2 = quaternion

-1 - 2i - 3] - 4k
Replace the quaternion at index two with a quaternion one.
gMultiDimensionalArray(2) = ones('quaternion')

gMultiDimensionalArray = 2x2x2 quaternion array
gMultiDimensionalArray(:,:,1) =

1+ 2i+ 3j + 4k 9 +8i+ 7j + 6k
1+ 0i+ 0j + 0k -9 - 81 -7j - 6k

gMultiDimensionalArray(:,:,2) =

1+ 2i+ 3j + 4k 9 +8i+ 7j + 6k
-1 -2i - 3j - 4k -9 - 81 -7j - 6k
Reshape

To reshape quaternion arrays, use the reshape function.
gMatReshaped = reshape(gMatrix,4,1)

gMatReshaped = 4x1 quaternion array
1+ 2i+ 3j + 4k
-1 - 21 - 3j - 4k
9 +8i+ 7j + 6k
-9 - 81 -7j - 6K

1-83

1 Classes

Transpose

To transpose quaternion vectors and matrices, use the transpose function.

gMatTransposed = transpose(qMatrix)
gMatTransposed = 2x2 quaternion array
1+ 2i + 3] + 4k -1 - 21 - 3j - 4k
9 +8i+ 7j + 6k -9 - 81 -7j - 6k
Permute

To permute quaternion vectors, matrices, and multidimensional arrays, use the permute function.
gMultiDimensionalArray

gMultiDimensionalArray = 2x2x2 quaternion array

gMultiDimensionalArray(:,:,1) =
1 +2i+ 3 + 4k 9 + 81+ 7j + 6k
1+ 0i+ 0j + 0k -9 - 81 -7j - 6k

gMultiDimensionalArray(:,:,2) =

1 +2i+ 3 + 4k 9 + 81+ 7j + 6k
-1 - 21 - 3j - 4k -9 - 81 -7j - 6k
gMatPermute = permute(qMultiDimensionalArray,[3,1,2])

gMatPermute = 2x2x2 quaternion array
gMatPermute(:,:,1) =

1 +2i+ 3 + 4k 1 +0i+0j + 0k
1+ 2i+ 3] + 4k -1 - 21 - 3j - 4k
gMatPermute(:,:,2) =

9 +8i+7j+6k -9-8i-7]- 6k
9 +8i+7]+6k -9-8i-7]- 6k

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Introduced in R2020b

1-84

sim3d.Editor

sim3d.Editor

Interface to the Unreal Engine project

Description

Use the sim3d.Editor class to interface with the Unreal® Editor.
To develop scenes with the Unreal Editor and co-simulate with Simulink®, you need the UAV Toolbox
Interface for Unreal Engine Projects support package. The support package contains an Unreal

Engine project that allows you to customize the UAV Toolbox scenes. For information about the
support package, see “Customize Unreal Engine Scenes for UAVs”.

Creation

Syntax
sim3d.Editor(project)
Description

MATLAB creates an sim3d.Editor object for the Unreal Editor project specified in sim3d.Editor(
project).

Input Arguments

project — Project path and name
string array

Project path and name.
Example: "C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"
Data Types: string

Properties

Uproject — Project path and name
string array

This property is read-only.

Project path and name with Unreal Engine project file extension.
Example: "C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"
Data Types: string

1-85

https://www.mathworks.com/matlabcentral/fileexchange/80275-uav-toolbox-interface-for-unreal-engine-projects
https://www.mathworks.com/matlabcentral/fileexchange/80275-uav-toolbox-interface-for-unreal-engine-projects

1 Classes

Object Functions
open Open the Unreal Editor

Examples

Open Project in Unreal Editor
Open an Unreal Engine project in the Unreal Editor.

Create an instance of the sim3d.Editor class for the Unreal Engine project located in C:\Local
\AutoVrtlEnv\AutoVrtlEnv.uproject.

editor=sim3d.Editor(fullfile("C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"))

Open the project in the Unreal Editor.

editor.open();

See Also

Topics
“Customize Unreal Engine Scenes for UAVs”

Introduced in R2020b

1-86

transformTree

transformTree

Define coordinate frames and relative transformations

Description

The transformTree object contains an organized tree structure for coordinate frames and their
relative transformations over time. The object stores the relative transformations between children
frames and their parents. You can specify a timestamped transform for frames and query the relative
transformations between different frames in the tree. The object interpolates intermediate
timestamps using a constant velocity assumption for linear motion, and spherical linear interpolation
(SLERP) for angular motion. Otherwise, the relative transformations are kept constant past the range
of the timestamps specified. Times prior to the first timestamp return NaN.

Use the updateTransform function to add timestamps to the tree by defining the parent-to-child
relationships. Query specific transformations at given timestamps using getTransform and display
the frame relationships using show.

Creation

Syntax

frames = transformTree

frames = transformTree(baseName)

frames = transformTree(baseName, numFrames)

frames = transformTree(baseName,numFrames,numTransforms)

frames = transformTree(baseName,numFrames,numTransforms, rootTime)
Description

frames = transformTree creates a transformation tree data structure with a single frame,
"root", with the maximum number of frames and timestamped transforms per frame, set to 10.

frames = transformTree(baseName) specifies the name of the root frame as a string or
character vector.

frames = transformTree(baseName, numFrames) additionally sets the MaxNumFrames
property, which defines the max number of named frames in the object.

frames = transformTree(baseName, numFrames,numTransforms) additionally sets the
MaxNumTransforms property, which defines the max number of timestamped transforms per frame
name.

frames = transformTree(baseName,numFrames,numTransforms, rootTime) additionally
specifies the timestamp of the initial baseName frame as a scalar time in seconds.

1-87

1 Classes

1-88

Properties

MaxNumFrames — Maximum number of frames in tree
10 (default) | positive integer

Maximum number of frames in the tree, specified as a positive integer. Each frame has associated
timestamped transforms that define the state of the frame at those specific times.

Data Types: double

MaxNumTransforms — Maximum number of timestamped transforms per frame
10 (default) | positive integer

Maximum number of timestamped transforms per frame, specified as a positive integer. This property
sets an upper limit on the number of timestamped transforms the object can store for each frame
named in the structure. A transformTree object with MaxNumFrames and MaxNumTransforms set
to 10 can store a maximum of 100 transformations with 10 for each frame.

Data Types: double

NumFrames — Current number of coordinate frames stored
1 (default) | positive integer

Current number of coordinate frames stored, specified as a positive integer. The object starts with a
single root frame, and new frames and specific timestamps are added using updateTransform
function.

Data Types: double

Object Functions

getGraph Graph object representing tree structure
getTransform Get relative transform between frames

info List all frame names and stored timestamps
removeTransform Remove frame transform relative to its parent
show Show transform tree

updateTransform Update frame transform relative to its parent

See Also

Objects
uavScenario | fixedwing | multirotor | uavDubinsPathSegment

Functions
getGraph | getTransform| info | removeTransform | show | updateTransform

Introduced in R2020b

uavDubinsConnection

uavDubinsConnection

Dubins path connection for UAV

Description

The uavDubinsConnection object holds information for computing a uavDubinsPathSegment
path segment to connect start and goal poses of a UAV.

A UAV Dubins path segment connects two poses as a sequence of motions in the north-east-down
coordinate system.

The motion options are:

* Straight

e Left turn (counterclockwise)

* Right turn (clockwise)

* Helix left turn (counterclockwise)
» Helix right turn (clockwise)

* No motion

The turn direction is defined as viewed from the top of the UAV. Helical motions are used to ascend or
descend.

Use this connection object to define parameters for a UAV motion model, including the minimum
turning radius and options for path types. To generate a path segment between poses using this
connection type, call the connect function.

Creation

Syntax

connectionObj = uavDubinsConnection

connectionObj = uavDubinsConnection(Name,Value)

Description

connectionObj = uavDubinsConnection creates an object using default property values.

connectionObj = uavDubinsConnection(Name,Value) specifies property values using name-
value pairs. To set multiple properties, specify multiple name-value pairs.

Properties

AirSpeed — Airspeed of UAV
10 (default) | positive numeric scalar

1-89

1 Classes

1-90

Airspeed of the UAV, specified as a positive numeric scalar in m/s.

Data Types: double

MaxRollAngle — Maximum roll angle
0.5 (default) | positive numeric scalar

Maximum roll angle to make the UAV turn left or right, specified as a positive numeric scalar in
radians.

Note The minimum and maximum values for MaxRol1Angle are greater than 0 and less than pi/2,
respectively.

Data Types: double

FlightPathAngleLimit — Minimum and maximum flight path angles
[-0.5 0.5] (default) | two-element numeric vector

Flight path angle limits, specified as a two-element numeric vector [min max] in radians.

min is the minimum flight path angle the UAV takes to lose altitude, and max is the maximum flight
path angle to gain altitude.

Note The minimum and maximum values for FlightPathAngleLimit are greater than -pi/2 and
less than pi/2, respectively.

Data Types: double

DisabledPathTypes — Path types to disable
{} (default) | cell array of four-element character vectors | vector of four-element string scalars

UAV Dubins path types to disable, specified as a cell array of four-element character vectors or vector
of string scalars. The cell array defines the four prohibited sequences of motions.

Motion Type Description

"S Straight

"Lt Left turn (counterclockwise)

"R" Right turn (clockwise)

"H1" Helix left turn (counterclockwise)
"Hr" Helix right turn (clockwise)

“N" No motion

Note The no motion segment "N" is used as a filler at the end when only three path segments are
needed.

To see all available path types, see the AllPathTypes property.
Example: {'RLRN'}

uavDubinsConnection

Data Types: string | cell

MinTurningRadius — Minimum turning radius
positive numeric scalar

This property is read-only.

Minimum turning radius of the UAV, specified as a positive numeric scalar in meters. This value
corresponds to the radius of the circle at the maximum roll angle and a constant airspeed of the UAV.

Data Types: double

AllPathTypes — All possible path types
cell array of character vectors

This property is read-only.

All possible path types, returned as a cell array of character vectors. This property lists all types. To
disable certain types, specify types from this list in the DisabledPathTypes property.

For UAV Dubins connections, the available path types are: {'LSLN'} {'LSRN'} {'RSLN'}
{'RSRN'} {'RLRN'} {'LRLN'} {'HlLSL'} {'HLLSR'} {'HrRSL'} {'HrRSR'} {'HrRLR'}
{'HLLRL'} {'LSLHl'} {'LSRHr'} {'RSLH1'} {'RSRHr'} {'RLRHr'} {'LRLH1'}
{'LRSL'} {'LRSR'} {'LRLR'} {'RLSR'} {'RLRL'} {'RLSL'} {'LSRL'} {'RSRL'}
{'LSLR'} {'RSLR'}.

Data Types: cell

Object Functions
connect Connect poses with UAV Dubins connection path

Examples

Connect Poses Using UAV Dubins Connection Path

This example shows how to calculate a UAV Dubins path segment and connect poses using the
uavDubinsConnection object.

Create a uavDubinsConnection object.
connectionObj = uavDubinsConnection;
Define start and goal poses as [X, y, z, headingAngle] vectors.

startPose = [0 0 0 0]; % [meters, meters, meters, radians]
goalPose = [0 0 20 pil;

Calculate a valid path segment and connect the poses. Returns a path segment object with the lowest
path cost.

[pathSeg0Obj,pathCosts] = connect(connectionObj,startPose,goalPose);
Show the generated path.
show(pathSeg0bj{1})

1-91

1 Classes

Fath
. Transition Position
Start Position
5. . Goal Position
0.
54 h .
- T
% 10 4 e ™ \'|
o
15 |
i
20 4 {

East 20 o North

Display the motion type and the path cost of the generated path.
fprintf('Motion Type: %s\nPath Cost: %f\n',strjoin(pathSeg0Obj{1}.MotionTypes),pathCosts);

Motion Type: R LR N
Path Cost: 138.373157

Modify Connection Types for UAV Dubins Connection Path

This example shows how to modify an existing uavDubinsPathSegmentobject.
Connect Poses Using UAV Dubins Connection Path

Create a uavDubinsConnection object.

connectionObj = uavDubinsConnection;

Define start and goal poses as [X, Yy, z, headingAngle] vectors.

startPose = [0 0 O 0]; % [meters, meters, meters, radians]
goalPose = [0 0 20 pi];

Calculate a valid path segment and connect the poses. Returns a path segment object with the lowest
path cost.

[pathSeg0Obj,pathCosts] = connect(connectionObj,startPose,goalPose);

1-92

uavDubinsConnection

Show the generated path.

show(pathSeg0bj{1})
Fath
. Transition Position
Start Position
5. . Goal Position
0.
54 h .
r o _’,.-r"' T
% 10 4 e ™ \'|
0 —_—
15 |
i
20 4 {

East 20 0 North

Verify the motion type and the path cost of the returned path segment.
fprintf('Motion Type: %s\nPath Cost: %f\n',strjoin(pathSeg0Obj{1}.MotionTypes),pathCosts);

Motion Type: R LR N
Path Cost: 138.373157

Modify Connection Type and Properties

Disable this specific motion sequence in a new connection object. Specify the AirSpeed,
MaxRollAngle, and FlightPathAnglelLimit properties of the connection object.

connectionObj = uavDubinsConnection('DisabledPathTypes',{'RLRN'});
connectionObj.AirSpeed = 15;

connectionObj.MaxRollAngle = 0.8;
connectionObj.FlightPathAngleLimit = [-1.47 1.47];

Connect the poses again to get a different path. Returns a path segment object with the next lowest
path cost.

[pathSegObj,pathCosts] = connect(connectionObj,startPose,goalPose);
Show the modified path.
show(pathSeg0bj{1})

1-93

1 Classes

Fath
. Transition Position
Start Position
5. . Goal Position
0. e
{ T
;.)
o “,
% 10 4
(]
15
20 |

East 2 9 North

Verify the motion type and the path cost of the modified path segment.
fprintf('Motion Type: %s\nPath Cost: %f\n',strjoin(pathSegObj{1l}.MotionTypes),pathCosts);

Motion Type: L R L N
Path Cost: 164.674067

References

[1] Owen, Mark, Randal W. Beard, and Timothy W. McLain. "Implementing Dubins Airplane Paths on
Fixed-Wing UAVs." Handbook of Unmanned Aerial Vehicles, 2015, pp. 1677-1701.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
uavDubinsPathSegment

Introduced in R2019b

1-94

uavDubinsPathSegment

uavDubinsPathSegment

Dubins path segment connecting two poses of UAV

Description

The uavDubinsPathSegment object holds information for a Dubins path segment that connects start
and goal poses of a UAV as a sequence of motions in the north-east-down coordinate system.

The motion options are:

* Straight

e Left turn (counterclockwise)

* Right turn (clockwise)

* Helix left turn (counterclockwise)
* Helix right turn (clockwise)

* No motion

The turn direction is defined as viewed from the top of the UAV. Helical motions are used to ascend or
descend.

Creation

Syntax

pathSeg0Obj = connect(connectionObj,start,goal)

pathSeg0Obj = uavDubinsPathSegment(connectionObj,start,goal)

pathSeg0Obj = uavDubinsPathSegment(connectionObj,start,goal,motionTypes)
pathSeg0Obj = uavDubinsPathSegment(start,goal, flightPathAngle,airSpeed,

minTurningRadius,helixRadius,motionTypes,motionLengths)
Description

To generate a uavDubinsPathSegment object, use the connect function with a
uavDubinsConnection object:

pathSeg0Obj = connect(connectionObj,start,goal) connects the start and goal poses using
the specified uavDubinsConnection object. The start and goal inputs set the value of the
properties StartPose and GoalPose, respectively.

To specifically define a path segment:

pathSeg0Obj = uavDubinsPathSegment(connectionObj,start,goal) creates a Dubins path
segment to connect start and goal poses of a UAV. The uavDubinsConnection object provides the

minimum turning radius and flight path angle. It internally computes the optimal path and assigns it
to pathSeg0Obj.

1-95

1 Classes

1-96

pathSeg0Obj = uavDubinsPathSegment(connectionObj,start,goal,motionTypes) creates
a Dubins path segment to connect start and goal poses of a UAV with the given motionTypes. The
motionTypes input sets the value of the MotionTypes property.

pathSeg0Obj = uavDubinsPathSegment(start,goal, flightPathAngle,airSpeed,
minTurningRadius,helixRadius,motionTypes,motionLengths) creates a Dubins path
segment to connect start and goal poses of a UAV by explicitly specifying all the parameters. The
input values are set to their corresponding properties in the object.

Properties

StartPose — Initial pose of UAV
four-element numeric vector

This property is read-only.

Initial pose of the UAV at the start of the path segment, specified as a four-element numeric vector [Xx,
V, z, headingAngle].

x, y, and z specify the position in meters. headingAngle specifies the heading angle in radians.

Data Types: double

GoalPose — Goal pose of UAV
four-element numeric vector

This property is read-only.

Goal pose of the UAV at the end of the path segment, specified as a four-element numeric vector [x, y,
z, headingAngle].

X, y, and z specify the position in meters. headingAngle specifies the heading angle in radians.

Data Types: double

MinTurningRadius — Minimum turning radius
positive numeric scalar

This property is read-only.

Minimum turning radius of the UAV, specified as a positive numeric scalar in meters. This value
corresponds to the radius of the circle at the maximum roll angle and a constant airspeed of the UAV.

Data Types: double

HelixRadius — Helical path radius
positive numeric scalar

This property is read-only.

Helical path radius of the UAV, specified as a positive numeric scalar in meters.

Data Types: double

FlightPathAngle — Flight path angle
positive numeric scalar

uavDubinsPathSegment

This property is read-only.

Flight path angle of the UAV to reach the goal altitude, specified as a positive numeric scalar in
radians.

Data Types: double

AirSpeed — Airspeed of UAV
positive numeric scalar

This property is read-only.

Airspeed of the UAV, specified as a positive numeric scalar in m/s.

Data Types: double

MotionLengths — Length of each motion
four-element numeric vector

This property is read-only.

Length of each motion in the path segment, specified as a four-element numeric vector in meters.
Each motion length corresponds to a motion type specified in the MotionTypes property.

Data Types: double

MotionTypes — Type of each motion
four-element string cell array

This property is read-only.

Type of each motion in the path segment, specified as a three-element string cell array.

Motion Type Description

"St Straight

"L Left turn (counterclockwise)

"R" Right turn (clockwise)

"HL" Helix left turn (counterclockwise)
"Hr" Helix right turn (clockwise)

“N" No motion

Note The no motion segment "N" is used as a filler at the end when only three path segments are
needed.

Each motion type corresponds to a motion length specified in the MotionLengths property.

For UAV Dubins connections, the available path types are: {'LSLN'} {'LSRN'} {'RSLN'}
{'RSRN'} {'RLRN'} {'LRLN'} {'HlLSL'} {'HLLSR'} {'HrRSL'} {'HrRSR'} {'HrRLR'}
{'HLLRL'} {'LSLHl'} {'LSRHr'} {'RSLH1'} {'RSRHr'} {'RLRHr'} {'LRLH1'}
{'LRSL'} {'LRSR'} {'LRLR'} {'RLSR'} {'RLRL'} {'RLSL'} {'LSRL'} {'RSRL'}
{'LSLR"'} {'RSLR'}.

1-97

1 Classes

Example: {'L','R','L"','N"}
Data Types: cell

Length — Length of path segment
positive numeric scalar

This property is read-only.

Length of the path segment or the flight path, specified as a positive numeric scalar in meters. This
length is the sum of the elements in the MotionLengths vector.

Data Types: double

Object Functions
interpolate Interpolate poses along UAV Dubins path segment
show Visualize UAV Dubins path segment

Examples

Specify Motion Type for UAV Dubins Path

This example shows how to calculate a UAV Dubins path segment and connect poses using the
uavDubinsConnection object for a specified motion type.

Create a uavDubinsConnection object.
connectionObj = uavDubinsConnection;
Define start and goal poses as [X, y, z, headingAngle] vectors.

startPose = [0 0 O 0]; % [meters, meters, meters, radians]
goalPose = [0 0 20 pi];

Calculate a valid path segment and connect the poses for a specified motion type.
pathSeg0bj = uavDubinsPathSegment(connectionObj,startPose,goalPose,{'L','S"','L','N'});
Show the generated path.

show(pathSeg0bj)

1-98

uavDubinsPathSegment

5.
0 J ; -
el r—
5 - _,-"/
% 104 |
['.T'\
15 | \
“ Y —
20 N
., T
25 o -
=40
=20 20
0
0
20
East 40 20 North

Verify the motion type of the returned path segment.

[

Path

Transition Position
Start Position
Goal Position

fprintf('Motion Type: %s\n',strjoin(pathSegObj.MotionTypes));

Motion Type: L S LN

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
interpolate | show

Introduced in R2019b

1-99

1 Classes

uavlLidarPointCloudGenerator

Generate point clouds from meshes

Description

The uavLidarPointCloudGenerator System object generates detections from a statistical
simulated lidar sensor. The system object uses a statistical sensor model to simulate lidar detections
with added random noise. All detections are with respect to the coordinate frame of the vehicle-
mounted sensor. You can use the uavLidarPointCloudGenerator object in a scenario, created
using a uavSensor, containing static meshes, UAV platforms, and sensors.

To generate lidar point clouds:

1 Create the uavLidarPointCloudGenerator object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

uavLidarPointCloudGenerator
uavLidarPointCloudGenerator (Name,Value)

lidar
lidar

Description

lidar = uavLidarPointCloudGenerator creates a statistical sensor model to generate point
cloud for a lidar. This sensor model will have default properties.

lidar = uavLidarPointCloudGenerator(Name,Value) sets properties using one or more
name-value pairs. For example,

uavLidarPointCloudGenerator('UpdateRate', 100, 'HasNoise',0) creates a lidar point
cloud generator that reports detections at an update rate of 100 Hz without noise.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

UpdateRate — Update rate of the lidar sensor
10 (default) | positive real scalar

1-100

uavLidarPointCloudGenerator

Update rate of the lidar sensor, specified as a positive real scalar in Hz. This property sets the
frequency at which new detections happen.

Example: 20
Data Types: double

MaxRange — Maximum detection range
120 (default) | positive real scalar

Maximum detection range of the sensor, specified as a positive real scalar. The sensor does not detect
objects beyond this range. The units are in meters.

Example: 120
Data Types: double

RangeAccuracy — Accuracy of range measurements
0.0020 (default) | positive real scalar

Accuracy of the range measurements, specified as a positive real scalar in meters. This property sets
the one-standard-deviation accuracy of the sensor range measurements.

Example: 0.001
Data Types: single | double

AzimuthResolution — Azimuthal resolution of lidar sensor
0.1600 (default) | positive real scalar

Azimuthal resolution of lidar sensor, specified as a positive real scalar in degrees. The azimuthal
resolution defines the minimum separation in azimuth angle at which the lidar sensor can distinguish
two targets.

Example: 0.6000
Data Types: single | double

ElevationResolution — Elevation resolution of lidar sensor
1.2500 (default) | positive real scalar

Elevation resolution of lidar sensor, specified as a positive real scalar with units in degrees. The
elevation resolution defines the minimum separation in elevation angle at which the lidar can
distinguish two targets.

Example: 0.6000
Data Types: single | double

AzimuthLimits — Azimuthal limits of lidar sensor
[-180 180] (default) | two-element vector

Azimuth limits of the lidar, specified as a two-element vector of the form [min max]. Units are in
degrees.

Example: [-60 100]
Data Types: single | double

ElevationLimits — Elevation limits of lidar sensor
[-20 20] (default) | two-element vector

1-101

1 Classes

Elevation limits of the lidar, specified as a two-element vector of the form [min max]. Units are in
degrees.

Example: [-60 100]
Data Types: single | double

HasNoise — Add noise to lidar sensor measurements
true or 1 (default) | false or 0

Add noise to lidar sensor measurements, specified as true or false. Set this property to true to
add noise to the sensor measurements. Otherwise, the measurements have no noise.

Example: false

Data Types: logical

HasOrganizedOutput — Output generated data as organized point cloud
true or 1 (default) | falseor®

Output generated data as organized point cloud, specified as true or false. Set this property to
true to output an organized point cloud. Otherwise, the output is unorganized.

Example: false

Data Types: logical
Usage

Syntax

ptCloud = lidar(tgts,simTime)
[ptCloud,isValidTime] = lidar(tgts,simTime)

Description

ptCloud = lidar(tgts,simTime) generates a lidar point cloud object ptCloud from the
specified target object, tgts, at the specified simulation time simTime.

[ptCloud,isValidTime] = lidar(tgts,simTime) additionally returns isValidTime which
specifies if the specified simTime is a multiple of the sensor's update interval (1/UpdateRate).

Input Arguments

tgts — Target object data
structure | structure array

Target object data, specified as a structure or structure array. Each structure corresponds to a mesh.
The table shows the properties that the object uses to generate detections.

1-102

uavLidarPointCloudGenerator

Target Object Data

Field Description

Mesh An extendedObjectMesh object representing
the geometry of the target object in its own
coordinate frame.

Position A three-element vector defining the coordinate
position of the target with respect to the sensor
frame.

Orientation A quaternion object or a 3-by-3 matrix,

containing Euler angles, defining the orientation
of the target with respect to the sensor frame.

simTime — Current simulation time
positive real scalar

Current simulation time, specified as a positive real scalar. The lidar object calls the lidar point
cloud generator at regular intervals to generate new point clouds at a frequency defined by the
updateRate property. The value of the UpdateRate property must be an integer multiple of the
simulation time interval. Updates requested from the sensor between update intervals do not
generate a point cloud. Units are in seconds.

Output Arguments

ptCloud — Point cloud data
pointCloud object

Point cloud data, returned as a pointCloud object.

isValidTime — Valid time to generate point cloud
falseorQ| trueorl

Valid time to generate point cloud, returned as logical @ (false) or 1 (false). isValidTime is 0
when the requested update time is not a multiple of the updateRate property value.

Data Types: Logical

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

1-103

1 Classes

1-104

Generate Point Clouds from Mesh

This example shows how to use a statistical lidar sensor model to generate point clouds from a mesh.

Create Sensor Model

Create a statistical sensor model, lidar, using the uavLidarPointCloudGenerator System
object.

lidar = uavLidarPointCloudGenerator('HasOrganizedOutput', false);

Create Floor

Use the extendedObjectMesh object to create mesh for the target object.
tgts.Mesh = scale(extendedObjectMesh('cuboid'),[100 100 2]);
Define the position of the target object with respect to the sensor frame.
tgts.Position = [0 0 -10];
Define the orientation of the target with respect to the sensor frame.
tgts.Orientation = quaternion([1 0 0 0]);
Generate Point Clouds from Floor
ptCloud = lidar(tgts,0);
Visualize

Use the translate function to translate the object mesh to its specified location and use the show
function to visualize it. Use the scatter3 function to plot the point clouds stored in ptCloud.

figure

show(translate(tgts.Mesh,tgts.Position));

hold on

scatter3(ptCloud.Location(:,1),ptCloud.Location(:,2),
ptCloud.Location(:,3));

uavLidarPointCloudGenerator

See Also
uavScenario

Topics
“UAV Scenario Tutorial”

Introduced in R2020b

1-105

1 Classes

1-106

uavOrbitFollower

Orbit location of interest using a UAV

Description

The uavOrbitFollower object is a 3-D path follower for unmanned aerial vehicles (UAVs) to follow
circular paths that is based on a lookahead distance. Given the circle center, radius, and the pose, the
orbit follower computes a desired yaw and course to follow a lookahead point on the path. The object
also computes the cross-track error from the UAV pose to the path and tracks how many times the
circular orbit has been completed.

Tune the LlookaheadDistance input to help improve path tracking. Decreasing the distance can
improve tracking, but may lead to oscillations in the path.

To orbit a location using a UAV:

1 Create the uavOrbitFollower object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

uavOrbitFollower
uavOrbitFollower (Name,Value)

orbit
orbit

Description
orbit = uavOrbitFollower returns an orbit follower object with default property values.

orbit = uavOrbitFollower(Name,Value) creates an orbit follower with additional options
specified by one or more Name, Value pair arguments.

Name is a property name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name-value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

uavOrbitFollower

UAV type — Type of UAV
'fixed-wing' (default) | ‘'multirotor!’

Type of UAV, specified as either ' fixed-wing' or 'multirotor’.

OrbitCenter — Center of orbit
[x y z] vector

Center of orbit, specified asan [x y z] vector. [Xx y z] is the orbit center position in NED-
coordinates (north-east-down) specified in meters.

Example: [5,5, -10]

Data Types: single | double

OrbitRadius — Radius of orbit

positive scalar

Radius of orbit, specified as a positive scalar in meters.

Example: 5

Data Types: single | double

TurnDirection — Direction of orbit
scalar

Direction of orbit, specified as a scalar. Positive values indicate a clockwise turn as viewed from

above. Negative values indicate a counter-clockwise turn. A value of 0 automatically determines the
value based on the input Pose.

Example: -1
Data Types: single | double

MinOrbitRadius — Minimum orbit radius
1 (default) | positive numeric scalar

Minimum orbit radius, specified as a positive numeric scalar in meters.

Data Types: single | double

MinLookaheadDistance — Minimum lookahead distance
0.1 (default) | positive numeric scalar

Minimum lookahead distance, specified as a positive numeric scalar in meters.

Data Types: single | double
Usage

Syntax

[lookaheadPoint,desiredCourse,desiredYaw,orbitRadiusFlag, lookaheadDistFlag,
crossTrackError,numTurns] = orbit(currentPose, lookaheadDistance)

1-107

1 Classes

1-108

Description

[lookaheadPoint,desiredCourse,desiredYaw,orbitRadiusFlag, lookaheadDistFlag,
crossTrackError,numTurns] = orbit(currentPose, lookaheadDistance) follows the set of
waypoints specified in the waypoint follower object. The object takes the current position and
lookahead distance to compute the lookahead point on the path. The desired course, yaw, and cross
track error are also based on this lookahead point compared to the current position. status returns
zero until the UAV has navigated all the waypoints.

Input Arguments

currentPose — Current UAV pose
[X y z course] vector

Current UAV pose, specified asa [X y z course] vector. This pose is used to calculate the
lookahead point based on the input LookaheadDistance. [x y z] is the current position in meters.
course is the current course in radians. The UAV course is the angle of direction of the velocity
vector relative to north measured in radians.

Data Types: single | double

lookaheadDistance — Lookahead distance
positive numeric scalar

Lookahead distance along the path, specified as a positive numeric scalar in meters.

Data Types: single | double
Output Arguments

lookaheadPoint — Lookahead point on path
[X y z] position vector

Lookahead point on path, returned as an [X y z] position vector in meters.

Data Types: double

desiredCourse — Desired course
numeric scalar

Desired course, returned as numeric scalar in radians in the range of [-pi, pil]. The UAV course is
the angle of direction of the velocity vector relative to north measured in radians. For fixed-wing type
UAV, the values of desired course and desired yaw are equal.

Data Types: double

desiredYaw — Desired yaw
numeric scalar

Desired yaw, returned as numeric scalar in radians in the range of [-pi, pi]. The UAV yaw is the
forward direction of the UAV regardless of the velocity vector relative to north measured in radians.
For fixed-wing type UAV, the values of desired course and desired yaw are equal.

Data Types: double

orbitRadiusFlag — Orbit radius flag
0 (default) | 1

uavOrbitFollower

Orbit radius flag, returned as 0 or 1. 0 indicates orbit radius is not saturated, 1 indicates orbit radius
is saturated to minimum orbit radius value specified.

Data Types: uint8

lookaheadDistFlag — Lookahead distance flag
0 (default) | 1

Lookahead distance flag, returned as 0 or 1. 0 indicates lookahead distance is not saturated, 1
indicates lookahead distance is saturated to minimum lookahead distance value specified.

Data Types: uint8

crossTrackError — Cross track error from UAV position to path
positive numeric scalar

Cross track error from UAV position to path, returned as a positive numeric scalar in meters. The
error measures the perpendicular distance from the UAV position to the closest point on the path.

Data Types: double

numTurns — Number of times the UAV has completed the orbit
numeric scalar

Number of times the UAV has completed the orbit, specified as a numeric scalar. As the UAV circles
the center point, this value increases or decreases based on the specified Turn Direction property.
Decimal values indicate partial completion of a circle. If the UAV cross track error exceeds the
lookahead distance, the number of turns is not updated.

NumTurns is reset whenever Center, Radius, or TurnDirection properties are changed.

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate Control Commands for Orbit Following

This example shows how to use the uavOrbitFollower to generate course and yaw commands for
orbiting a location of interest with a UAV.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

1-109

1 Classes

1-110

Create the orbit follower. Set the center of the location of interest and the radius of orbit. Set a
TurnDirection of 1 for counter-clockwise rotation around the location.

orbFollower = uavOrbitFollower;

orbFollower.OrbitCenter
orbFollower.0OrbitRadius
orbFollower.TurnDirection

Specify the pose of the UAV and the lookahead distance for tracking the path.

pose = [0;0;5;0];
lookaheadDistance = 2;

Call the orbFollower object with the pose and lookahead distance. The object returns a lookahead
point on the path, the desired course, and yaw. You can use the desired course and yaw to generate
control commands for the UAV.

[lookaheadPoint,desiredCourse,desiredYaw,~,~] = orbFollower(pose, lookaheadDistance);

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
See Also

Functions
control | derivative | environment | state | plotTransforms

Objects
uavWaypointFollower | fixedwing | multirotor

Blocks
Orbit Follower | Waypoint Follower | UAV Guidance Model

Introduced in R2019a

uavPathManager

uavPathManager

Compute and execute a UAV autonomous mission

Description

The uavPathManager System object computes mission parameters for an unmanned aerial vehicle
(UAV) by sequentially switching between the mission points specified in the MissionData property.
The MissionCmd property changes the execution order at runtime. The object supports both
multirotor and fixed-wing UAV types.

To compute mission parameters:

1 Create the uavPathManager object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

pathManagerObj = uavPathManager

pathManagerObj = uavPathManager (Name,Value)

Description

pathManagerObj = uavPathManager creates a UAV path manager System object with default

property values.

pathManagerObj = uavPathManager(Name,Value) creates a UAV path manager object with
additional options specified by one or more Name, Value pair arguments.

Name is a property name and Value is the corresponding value. Name must appear inside single

quotes (' '). You can specify several name-value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: uavPathManager('UAVType', 'fixed-wing")

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

1-111

1 Classes

1-112

UAVType — Type of UAV
‘multirotor’' (default) | 'fixed-wing'

Type of UAV, specified as either 'multirotor' or 'fixed-wing'.
Data Types: string

LoiterRadius — Loiter radius for fixed-wing UAV
25 (default) | positive numeric scalar

Loiter radius for the fixed-wing UAYV, specified as a positive numeric scalar in meters.

Dependencies: To enable this parameter, set the UAV type property to ' fixed-wing'.
Data Types: single | double

MissionData — UAV mission data
n-by-1 array of structures

UAV mission data, specified as an n-by-1 array of structures. n is the number of mission points. The
fields of each structure are:
* mode — Mode of the mission point, specified as an 8-bit unsigned integer between 1 and 6.

* position — Position of the mission point, specified as a three-element column vector of
[x;y;z].x,y, and z is the position in north-east-down (NED) coordinates specified in meters.

* params — Parameters of the mission point, specified as a four-element column vector.

This table describes types of mode and the corresponding values for the position and params fields
in a mission point structure.

mode position params Mode description

uint8(1) [x;y;2] [pl;p2;p3;p4] Takeoff — Take off from
the ground and travel
towards the specified
position

uint8(2) [x;y;2] [yaw; radius;p3;p4] |Waypoint — Navigate
to waypoint

yaw — Yaw angle in
radians in the range [-
pi, pil

radius — Transition
radius in meters

uavPathManager

mode position params Mode description
uint8(3) [x;y;2] [radius;turnDir;nu |Orbit — Orbit along the
) mTurns;p4] circumference of a
X, y, and z is the center circle defined by the
of the circular orbit in |radius — Radius of the |parameters
NED coordinates orbit in meters
specified in meters
turnDir — Turn
direction, specified as
one of these:
* 1 — Clockwise turn
* -1 — Counter-
clockwise turn
* 0 — Automatic
selection of turn
direction
numTurns — Number of
turns
uint8(4) [x;y;2] [pl;p2;p3;p4] Land — Land at the
specified position
uint8(5) [x;y;2] [pl;p2;p3;p4] RTL — Return to launch
position
The launch position is
specified in the Home
property
uint8(6) [x;y;z] [pl;p2;p3;p4] Custom — Custom

pl, p2, p3, and p4 are
user-specified
parameters
corresponding to the
custom mission point

mission point

Note pl, p2, p3, and p4 are user-specified parameters.

Example: [struct('mode’',uint8(1), 'position',[0;0;100], 'params',[0;0;0;0])]

Tunable: Yes

IsModeDone — Determine if mission point was executed

false (default) | true

Determine if the mission point was executed, specified as true (1) or false (0).

Tunable: Yes

Data Types: logical

1-113

1 Classes

1-114

MissionCmd — Command to change mission
uint8(0) (default) | 8-bit unsigned integer between 0 and 3

Command to change mission at runtime, specified as an 8-bit unsigned integer between 0 and 3.

This table describes the possible mission commands.

Mission Command Description

uint8(0) Default — Execute the mission from first to the
last mission point in the sequence

uint8(1) Hold — Hold at the current mission point

Loiter around the current position for fixed-wing,
and hover at the current position for multirotor

UAVs

uint8(2) Repeat — Repeat the mission after reaching the
last mission point

uint8(3) RTL — Execute return to launch (RTL) mode

After RTL, the mission resumes if the
MissionCmd property is changed to Default or
Repeat

Tunable: Yes

Data Types: uint8

Home — UAV home location
three-element column vector

UAV home location, specified as a three-element column vector of [x;y;Zz]. x, y, and z is the position
in north-east-down (NED) coordinates specified in meters.

Tunable: Yes

Data Types: single | double

Usage

Syntax

missionParams = pathManagerQObj (pose)
Description

missionParams = pathManagerQObj (pose)

Input Arguments

pose — Current UAV pose
four-element column vector

uavPathManager

Current UAV pose, specified as a four-element column vector of [x;y;z;courseAngle]. x, y, and z
is the current position in north-east-down (NED) coordinates specified in meters. courseAngle
specifies the course angle in radians in the range [-pi, pil.

Data Types: single | double
Output Arguments

missionParams — UAV mission parameters
2-by-1 array of structures

UAV mission parameters, returned as a 2-by-1 array of structures. The first row of the array contains
the structure of the current mission point, and the second row of the array contains the structure of
the previous mission point. The fields of each structure are:

* mode — Mode of the mission point, returned as an 8-bit unsigned integer between 0 and 7.

* position — Position of the mission point based on the mode, returned as a three-element column
vector of [x;y;z]. x, y, and z is the position in north-east-down (NED) coordinates specified in
meters.

* params — Parameters of the mission point based on the mode, returned as a four-element column
vector.

At start of simulation, the previous mission point is set to the Armed mode.

struct('mode',uint8(0), 'position’',[x;y;z], " 'params',[-1;-1;-1;-1])

Note The Armed mode cannot be configured by the user.

Set the end mission point to RTL or Land mode, else the end mission point is automatically set to
Hold mode.

* Multirotor UAVs hover at the current position.

struct('mode',uint8(7), 'position',[x;y;z], 'params',[-1;-1;-1;-1])

* Fixed-wing UAVs loiter around the current position.

struct('mode',uint8(7), 'position',[x;y;z], 'params',[radius;turnDir;-1;-1])

Note The Hold mode cannot be configured by the user.

This table describes the output mission parameters depending on the mission mode.

Current Mission Output Mission Parameters

previous mission
point

previous mission
point

Mode Mission Points |mode position params
Takeoff Row 1: Current uint8(1) [x;y;2] [pl;p2;p3;p4]
Row 2: Previous mode of the position of the [params of the

previous mission
point

1-115

1 Classes

Current Mission
Mode

Output Mission Parameters

Mission Points

mode

position

params

Waypoint

Row 1: Current

uint8(2)

[x;y;z]

[yaw; radius;p3
ip4]

yaw — Yaw angle
in radians in the
range [-pi, pi]

radius —
Transition radius
in meters

Row 2: Previous

mode of the
previous mission
point

position of the
previous mission
point

* [yaw;radius;
p3;p4] if the
previous
mission point
was Takeoff

* [courseAngle
125;p3;p4]
otherwise

courseAngle —
Angle of the line
segment between
the previous and
the current
position, specified
in radians in the
range [-pi, pi]

1-116

Orbit

Row 1: Current

uint8(3)

[x;y;z]

X, y, and z is the
center of the
circular orbit in
NED coordinates
specified in meters

[radius;turnDi
rynumTurns;p4]

radius — Radius of
the orbit in meters

turnDir — Turn
direction, specified
as one of these:

¢ 1 — Clockwise
turn

¢ -1 — Counter-
clockwise turn

¢ 0 — Automatic
selection of
turn direction

numTurns —
Number of turns

uavPathManager

Current Mission
Mode

Output Mission Parameters

Mission Points

mode

position

params

Row 2: Previous

mode of the
previous mission
point

position of the
previous mission
point

params of the
previous mission
point

Land Row 1: Current uint8(4) [x;y;2] [pl;p2;p3;p4]
Row 2: Previous mode of the position of the [params of the
previous mission |previous mission |previous mission
point point point
RTL Row 1: Current uint8(5) [x;y;2] [pl;p2;p3;p4]
The launch
position is
specified in the
Home property
Row 2: Previous mode of the position of the |[params of the
previous mission |previous mission |previous mission
point point point
Custom Row 1: Current uint8(6) [x;y;2] [pl;p2;p3;p4]
pl, p2, p3, and p4
are user-specified
parameters
corresponding to
the custom mission
point
Row 2: Previous mode of the position of the [params of the

previous mission
point

previous mission
point

previous mission
point

Note pl, p2, p3, and p4 are user-specified parameters.

This table describes the output mission parameters when the input to the MissionCmd property is

set to Hold mode.

previous mission
point

UAV Type Output Mission Parameters
Mission Points mode position params
Multirotor Row 1: Current uint8(7) [x;y;2z] [-1;-1;-1;-1]
Row 2: Previous mode of the position of the [params of the

previous mission
point

previous mission
point

1-117

1 Classes

1-118

previous mission
point

previous mission
point

UAV Type Output Mission Parameters
Mission Points mode position params
Fixed-Wing Row 1: Current uint8(7) [x;y;2] [radius;turnDi
Pr=dlg=ll]
X, y, and z is the
center of the radius — Loiter
circular orbit in radius is specified
NED coordinates |in the
specified in meters |LoiterRadius
property
turnDir — Turn
direction is
specified as 0 for
automatic
selection of turn
direction
Row 2: Previous mode of the position of the [params of the

previous mission
point

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects

step Run System object algorithm
Release resources and allow changes to System object property values and input

release

characteristics

reset

See Also

Reset internal states of System object

uavWaypointFollower | uavOrbitFollower | fixedwing | multirotor

Introduced in R2020b

uavPlatform

uavPlatform

UAV platform for sensors in scenario

Description

The uavPlatform object represents an unmanned aerial vehicle (UAV) platform in a given UAV
scenario. Use the platform to define and track the trajectory of a UAV in the scenario. To simulate
sensor readings for the platform, mount sensors such as the gpsSensor, insSensor, and
uavLidarPointCloudGenerator System object to the platform as uavSensor objects. Add a body
mesh to the platform for visualization using the updateMesh object function. Set geofencing
limitations using the addGeoFence object and check those limits using the checkPermission object
function.

Creation

Syntax

platform = uavPlatform(name,scenario)
platform uavPlatform(name,scenario,Name,Value)

Description

platform = uavPlatform(name,scenario) creates a platform with a specified name name and
adds it to the scenario, specified as a uavScenario object. Specify the name argument as a string
scalar. The name argument sets the Name property.

platform = uavPlatform(name,scenario,Name,Value) specifies options using one or more
name-value pair arguments. You can specify properties as name-value pair arguments as well. For

example, uavPlatform("UAV1",scene, 'StartTime', 10) sets the initial time for the platform
trajectory to 10 seconds. Enclose each property name in quotes

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'StartTime', 10 sets the initial time of the platform trajectory to 10 seconds.

StartTime — Initial time of platform trajectory
0 (default) | scalar in seconds

Initial time of the platform trajectory, specified as the comma-separated pair consisting of
'StartTime' and a scalar in seconds. The UAV platform starts following the trajectory at the time of
the first waypoint in the trajectory plus the start time of the platform.

Data Types: double

1-119

1 Classes

1-120

InitialPosition — Initial platform position for UAV
[0 0 O] (default) | vector of the form [x y z]

Initial platform position for UAV, specified as the comma-separated pair consisting of
"InitialPosition' and a vector of the form [x y z]. Only specify this name-value pair if not
specifying the Trajectory property.

Data Types: double

InitialOrientation — Initial platform orientation for UAV
[1 0 0 0] (default) | vector of the form [w X y z]

Initial platform orientation for UAV, specified as the comma-separated pair consisting of
'InitialOrientation' and a vector of the form [w X y z], representing a quaternion. Only
specify this name-value pair if not specifying the Trajectory property.

Data Types: double

InitialVelocity — Initial platform velocity for UAV
[0 0 0] (default) | vector of the form [vx vy vz]

Initial platform velocity for UAV, specified as the comma-separated pair consisting of
'InitialVelocity' and a vector of the form [vx vy vz]. Only specify this name-value pair if not
specifying the Trajectory property.

Data Types: double

InitialAcceleration — Initial platform acceleration for UAV
[0 0 O] (default) | vector of the form [ax ay az]

Initial platform acceleration for UAV, specified as the comma-separated pair consisting of
'InitialAcceleration' and a vector of the form [ax ay az]. Only specify this name-value pair
if not specifying the Trajectory property.

Data Types: double

InitialAngularVelocity — Initial platform angular velocity for UAV
[0 0 0] (default) | three-element vector of the form [x y z] | vector

Initial platform angular velocity for UAV, specified as the comma-separated pair consisting of
'InitialAngularVelocity' and a three-element vector of the form [x y z]. The magnitude of
the vector defines the angular speed in radians per second. The xyz-coordinates define the axis of
clockwise rotation. Only specify this name-value pair if not specifying the Trajectory property.

Data Types: double

Trajectory — Trajectory for UAV platform motion
[1 (default) | waypointTrajectory object

Trajectory for UAV platform motion, specified as a waypointTrajectory object. By default, the
platform is assumed to be stationary and at the origin. To move the platform at each simulation step
of the scenario, use the move object function .

Note The uavPlatform object must specify the same ReferenceFrame property as the specified
waypointTrajectory object.

uavPlatform

ReferenceFrame — Reference frame for computing UAV platform motion
string scalar

Reference frame for computing UAV platform motion, specified as string scalar, which matches any
reference frame in the uavScenario. All platform motion is computed relative to this inertial frame.

Data Types: string

Properties

Name — Identifier for UAV platform

string scalar | character vector

Identifier for the UAV platform, specified as a string scalar or character vector.
Example: "uavl"

Data Types: string | char

Trajectory — Trajectory for UAV platform motion
[1 (default) | waypointTrajectory object

Trajectory for UAV platform motion, specified as a waypointTrajectory object. By default, the
object assumes the platform is stationary and at the scenario origin. To move the platform at each
simulation step of the scenario, use the move object function .

Note The uavPlatform object must specify the same ReferenceFrame property as the specified
waypointTrajectory object.

ReferenceFrame — Reference frame for computing UAV platform motion
string scalar | character vector

Reference frame for computing UAV platform motion, specified as string scalar or character vector,
which matches any reference frame in the uavScenario. The object computes all platform motion
relative to this inertial frame.

Data Types: string | char

Mesh — UAV platform body mesh
extendedObjectMesh ohject

UAV platform body mesh, specified as an extendedObjectMesh object. The body mesh describes the
3-D model of the platform for visualization purposes.

MeshColor — UAV platform body mesh color
RGB triplet

UAV platform body mesh color when displayed in the scenario, specified as an RGB triplet.
Data Types: double

MeshTransform — Transform between UAV platform body and mesh frame
4-by-4 homogeneous transformation matrix

1-121

1 Classes

1-122

Transform between UAV platform body and mesh frame, specified as a 4-by-4 homogeneous
transformation matrix that maps points in the platform mesh frame to points in the body frame.

Data Types: double

Sensors — Sensors mounted on UAV platform
array of uavSensor objects

Sensors mount on UAV platform, specified as an array of uavSensor objects.

GeoFences — Geofence restrictions for UAV platform
structure array

Geofence restrictions for UAV platform, specified as a structure array with these fields:

* Geometry — An extendedObjectMesh object representing the 3-D space for the geofence in the
scenario frame.

* Permission — Alogical scalar that indicates if the platform is permitted inside the geofence
(true) or not permitted (false).

Data Types: double

Object Functions

move Move UAV platform in scenario
read Read UAV motion vector
updateMesh Update body mesh for UAV platform

addGeoFence Add geographical fencing to UAV platform
checkPermission Check UAV platform permission based on geofencing

Examples

UAV Scenario Tutorial

Create a scenario to simulate unmanned aerial vehicle (UAV) flights between a set of buildings. The
example demonstrates updating the UAV pose in open-loop simulations. Use the UAV scenario to
visualize the UAV flight and generate simulated point cloud sensor readings.

Introduction

To test autonomous algorithms, a UAV scenario enables you to generate test cases and generate
sensor data from the environment. You can specify obstacles in the workspace, provide trajectories of
UAVs in global coordinates, and convert data between coordinate frames. The UAV scenario enables
you to visualize this information in the reference frame of the environment.

Create Scenario with Polygon Building Meshes

A uavScenario object is model consisting of a set of static obstacles and movable objects called
platforms. Use uavPlatform objects to model fixed-wing UAVs, multirotors, and other objects within
the scenario. This example builds a scenario consisting of a ground plane and 11 buildings as by
extruded polygons. The polygon data for the buildings is loaded and used to add polygon meshes.

% Create the UAV scenario.
scene = uavScenario("UpdateRate",2,"ReferencelLocation",[75 -46 0]);

uavPlatform

% Add a ground plane.

color.Gray =
color.Green =
color.Red =

addMesh(scene,

0.651*ones(1,3);

[0.3922 0.8314 0.0745];

[100];

"polygon",{[-250 -150; 200 -150; 200 180;

% Load building polygons.
load("buildingData.mat");

% Add sets of

addMesh(scene,
scene,
scene,
scene,
scene,
scene,
scene,
scene,
scene,
scene,
scene,

addMesh
addMesh
addMesh
addMesh
addMesh
addMesh
addMesh
addMesh
addMesh
addMesh

~ N~~~ o~~~ o~ o~

polygons as extruded meshes with varying heights from 10-30.

"polygon",{buildingData{1}(1:4,:),[0 30]},color.Green)
"polygon",{buildingData{2}(2:5,:),[0 30]},color.Green)
"polygon",{buildingData{3}(2 0,:),[0 30]1},color.Green)
"polygon",{buildingData{4}(2:9,:),[0 30]},color.Green)
"polygon",{buildingData{5}(1l:end-1,:),[0 30]},color.Green)
"polygon",{buildingData{6}(1l:end-1,:),[0 15]},color.Green)
"polygon",{buildingData{7}(1l:end-1,:),[0 30]},color.Green)
"polygon",{buildingData{B}(Z end-1,:),[0 10]},color.Green)
"polygon",{buildingData{9}(1l:end-1,:),[0 15]},color.Green)
"polygon",{buildingData{10}(1l:end-1,:),[0 30]},color.Green)
"polygon",{buildingData{11l}(1l:end-2,:),[0 30]},color.Green)

% Show the scenario.

show3D(scene);

xlim([-250 200])
ylim([-150 180])

zlim([0 50])

-250 180],[-4 0]1},color.Gray)

1-123

1 Classes

1-124

-100
North (m) -200 East (m)

Define UAV Platform and Mount Sensor

You can define a uavPlatform in the scenario as a carrier of your sensor models and drive them
through the scenario to collect simulated sensor data. You can associate the platform with various
meshes, such as fixedwing, quadrotor, and cuboid meshes. You can define a custom mesh
defined ones represented by vertices and faces. Specify the reference frame for describing the motion
of your platform.

Load flight data into the workspace and create a quadrotor platform using an NED reference frame.
Specify the initial position and orientation based on loaded flight log data. The configuration of the
UAV body frame orients the x-axis as forward-positive, the y-axis as right-positive, and the z-axis
downward-positive.

load("flightData.mat")

% Set up platform
plat = uavPlatform("UAV",scene, "ReferenceFrame", "NED",
"InitialPosition",position(:,:,1),"InitialOrientation",eul2quat(orientation(:,:,1)));

% Set up platform mesh. Add a rotation to orient the mesh to the UAV body frame.
updateMesh(plat, "quadrotor",{10},color.Red, [0 O O],eul2quat([0 O pil))

You can choose to mount different sensors, such as the insSensor, gpsSensor, or
uavLidarPointCloudGenerator System objects to your UAV. Mount a lidar point cloud generator
and a uavSensor object that contains the lidar sensor model. Specify a mounting location of the
sensor that is relative to the UAV body frame.

uavPlatform

lidarmodel = uavLidarPointCloudGenerator("AzimuthResolution",0.3324099,...
"ElevationLimits",[-20 20],"ElevationResolution",1.25,...
"MaxRange",90, "UpdateRate", 2, "HasOrganizedOutput", true);

lidar = uavSensor("Lidar",plat,lidarmodel, "MountinglLocation",[0,0,-1]);

Fly the UAV Platform Along Pre-Defined Trajectory and Collect Point Cloud Sensor Readings

Move the UAV along a pre-defined trajectory, and collect the lidar sensor readings along the way. This

data could be used to test lidar-based mapping and localization algorithms.

Preallocate the traj and scatterPlot line plots and then specify the plot-specific data sources.
During the simulation of the uavScenario, use the provided plotFrames output from the scene as

the parent axes to visualize your sensor data in the correct coordinate frames.
Visualize the scene.

[ax,plotFrames] = show3D(scene);

Update plot view for better visibility.

x1im
ylim

[-250 200])
[-150 180])
zlim([0 501])
view([-110 301])
axis equal

hold on

— o~ o~ —~

Create a line plot for the trajectory. First create the plot with plot3, then manually modify the data

source properties of the plot. This improves performance of the plotting.

traj = plot3(nan,nan,nan,"Color",[1 1 1],"LineWidth",2);
traj.XDataSource "position(:,2,1:idx+1)";
traj.YDataSource "position(:,1,1:idx+1)";
traj.ZDataSource "-position(:,3,1:idx+1)";

Create a scatter plot for the point cloud. Update the data source properties again.

colormap("jet")
pt = pointCloud(nan(1,1,3));

scatterplot = scatter3(nan,nan,nan,1,[0.3020 0.7451 0.9333],...

"Parent",plotFrames.UAV.Lidar);

scatterplot.XDataSource
scatterplot.YDataSource
scatterplot.ZDataSource
scatterplot.CDataSource

"reshape(pt.Location(:

yo 1), 01,10
"reshape(pt.Location(:,:,2),[1,1)";
"reshape(pt.Location(:,:,3),[1,1)";
"reshape(pt.Location(:,:,3),[1,1) -

_— e~ o~ o~

min(reshape(pt.Location(:

Set up the simulation. Then, iterate through the positions and show the scene each time the lidar

sensor updates. Advance the scene, move the UAV platform, and update the sensors.

setup(scene)
for idx = 0:size(position, 3)-1
[isupdated, lidarSampleTime, pt] = read(lidar);
if isupdated
% Use fast update to move platform visualization frames.
show3D(scene, "Time",lidarSampleTime, "FastUpdate", true, "Parent",ax);
% Refresh all plot data and visualize.
refreshdata

1-125

1 Cclasses

drawnow limitrate
end
% Advance scene simulation time and move platform.
advance(scene);
move(plat, [position(:,:,idx+1),zeros(1,6),eul2quat(orientation(:,:,idx+1)),zeros(1,3)])
% Update all sensors in the scene.
updateSensors(scene)
end
hold off

Up (m)
Db

50
Morth (m)

150 100

See Also

Functions
move | read | updateMesh | addGeoFence | checkPermission

Objects
uavScenario | uavSensor

Topics
“UAV Scenario Tutorial”

Introduced in R2020b

1-126

uavScenario

uavScenario

Generate UAV simulation scenario

Description

The uavScenario object generates a simulation scenario consisting of static meshes, UAV platforms,
and sensors in a 3-D environment.

Creation

scene = uavScenario creates an empty UAV scenario with default property values. The default
inertial frames are the north-east-down (NED) and the east-north-up (ENU) frames.

scene = uavScenario(Name,Value) configures a uavScenario object with properties using one
or more Name, Value pair arguments. Name is a property name and Value is the corresponding
value. Name must appear inside quotes. You can specify several name-value pair arguments in any
order as Namel,Valuel, ...,NameN,ValueN. Any unspecified properties take default values.

Using this syntax, you can specify the UpdateRate, StopTime, HistoryBufferSize,
ReferencelLocation, and MaxNumFrames properties. You cannot specify other properties of the
uavScenario object, which are read-only.

Properties

UpdateRate — Simulation update rate
10 (default) | positive scalar

Simulation update rate, specified as a positive scalar in Hz. The step size of the scenario when using
an advance object function is equal to the inverse of the update rate.

Example: 2
Data Types: double

StopTime — Stop time of simulation
Inf (default) | nonnegative scalar

Stop time of the simulation, specified as a nonnegative scalar. A scenario stops advancing when it
reaches the stop time.

Example: 60.0
Data Types: double

HistoryBufferSize — Maximum number of steps stored in scenario
100 (default) | positive integer greater than 1

Maximum number of steps stored in scenario, specified as a positive integer greater than 1. This
property determines the maximum number of frames of platform poses stored in the scenario. If the

1-127

1 Classes

1-128

number of simulated steps exceeds the value of this property, then the scenario stores only latest
steps.

Example: 60
Data Types: double

ReferenceLocation — Scenario origin in geodetic coordinates
[0 O O] (default) | 3-element vector of scalars

Scenario origin in geodetic coordinates, specified as a 3-element vector of scalars in the form
[Latitude longitude altitude]. latitude and longitude are geodetic coordinates in degrees.
altitude is the height above the WGS84 reference ellipsoid in meters.

Data Types: double

MaxNumFrames — Maximum number of frames in the scenario
10 (default) | positive integer

Maximum number of frames in the scenario, specified as a positive integer. The combined number of
inertial frames, platforms, and sensors added to the scenario must be less than or equal to the value
of this property.

Example: 15
Data Types: double

CurrentTime — Current simulation time
nonnegative scalar

This property is read-only.

Current simulation time, specified as a nonnegative scalar.

Data Types: double

IsRunning — Indicate whether scenario is running
true | false

This property is read-only.

Indicate whether the scenario is running, specified as true or false. After a scenario simulation
starts, it runs until it reaches the stop time.

Data Types: logical

TransformTree — Transformation information between frames
tranformTree object

This property is read-only.

Transformation information between all the frames in the scenario, specified as a transformTree
object. This property contains the transformation information between the inertial, platform, and
sensor frames associated with the scenario.

Data Types: object

InertialFrames — Names of inertial frames in scenario
vector of string

uavScenario

This property is read-only.

Names of the inertial frames in the scenario, specified as a vector of strings.

Data Types: string

Platforms — UAV platforms in scenario
array of uavPlatform objects

This property is read-only.

UAV platforms in the scenario, specified as an array of uavPlatform objects.

Object Functions

setup Prepare UAV scenario for simulation
addCustomTerrain Add custom terrain data

addMesh Add new static mesh to UAV scenario
addInertialFrame Define new inertial frame in UAV scenario
advance Advance UAV scenario simulation by one time step
updateSensors Update sensor readings in UAV scenario
removeCustomTerrain Remove custom terrain data

restart Reset simulation of UAV scenario

show Visualize UAV scenario in 2-D

show3D Visualize UAV scenario in 3-D
terrainHeight Returns terrain height in UAV scenarios
Examples

Create and Simulate UAV Scenario

Create a UAV scenario and set its local origin.

scene = uavScenario("UpdateRate",200,"StopTime",2,"ReferenceLocation",[46, 42, 0]);
Add an inertial frame called MAP to the scenario.

scene.addInertialFrame("ENU", "MAP",trvec2tform([1 0 0]));

Add one ground mesh and two cylindrical obstacle meshes to the scenario.
scene.addMesh("Polygon", {[-100 0; 100 0; 100 100; -100 100],[-5 0]1},[0.3 0.3 0.3]);

scene.addMesh("Cylinder", {[20 10 10]1,[0 30]}, [0 1 0]);
scene.addMesh("Cylinder", {[46 42 5],[0 20]}, [0 1 O], "UseLatLon", true);

Create a UAV platform with a specified waypoint trajectory in the scenario. Define the mesh for the
UAV platform.

traj = waypointTrajectory("Waypoints", [0 -20 -5; 20 -20 -5; 20 0 -5],"TimeOfArrival",[0 1 2]);
uavPlat = uavPlatform("UAV",scene,"Trajectory",traj);

updateMesh(uavPlat, "quadrotor", {4}, [1 0 0],eul2tform([0 O pil));

addGeoFence(uavPlat, "Polygon", {[-50 0; 50 0; 50 50; -50 50],[0 100]},true, "ReferenceFrame","ENU

Attach an INS sensor to the front of the UAV platform.

1-129

1 Classes

insModel = insSensor();
ins = uavSensor("INS",uavPlat,insModel, "MountingLocation",[4 0 0]);

Visualize the scenario in 3-D.

ax = show3D(scene);
axis(ax,"equal");

Simulate the scenario.

setup(scene);

while advance(scene)
% Update sensor readings
updateSensors(scene);

% Visualize the scenario
show3D(scene, "Parent",ax, "FastUpdate", true);
drawnow limitrate

end

30
= 20
— 10

S 0 100

100

0

North (m) -100

1-130

uavScenario

Add Terrain and Buildings to UAV Scenario
This example shows how to add terrain and custom building mesh to a UAV scenario.

Add Terrain Surface

Add terrain surface based on terrain elevation data from the n39 w106 3arc v2.dt1l DTED file.

addCustomTerrain("CustomTerrain", "n39 wl06 3arc v2.dtl");
scenario = uavScenario("ReferenceLocation", [39.5 -105.5 0]);

addMesh(scenario, "terrain", {"CustomTerrain", [-200 200], [-200 200]}, [0.6 0.6 0.6]1);
show3D(scenario);

2900

2800

(m)

(=]
= 2700 J

Add Buildings

Add a couple custom building meshes using vertices and polygon meshes into the scenario. Use the
terrainHeight function to get ground height for each build base.

buildingCenters

[-50, -50; 160 100];

buildingHeights [30 100];

buildingBoundary = [-25 -25; -25 50; 50 50; 50 -25];

for idx = 1l:size(buildingCenters,1)
buildingVertices = buildingBoundary+buildingCenters(idx,:);
buildingBase = min(terrainHeight(scenario,buildingVertices(:,1),buildingVertices(:,2)));
addMesh(scenario, "polygon", {buildingVertices, buildingBase+[0 buildingHeights(idx)]}, [0.39

end

1-131

1 Classes

show3D(scenario);

view([0 15])

1-132

2050 -
2000 -
2850 -

= 2800

5 2750 -
2700 -
2650 -

2600

[[[[
=200 -100 1] 100

East (m)
Remove Custom Terrain

Remove the custom terrain that was imported.

removeCustomTerrain("CustomTerrain")

See Also
uavPlatform | uavSensor

Topics
“UAV Scenario Tutorial”

Introduced in R2020b

Morth {rm)

uavSensor

uavSensor

Sensor for UAV scenario

Description

The uavSensor object creates a sensor that is rigidly attached to a UAV platform, specified as a
uavPlatform object. You can specify different mounting positions and orientations. Configure this
object to automatically generate readings from a sensor specified as an insSensor, gpsSensor,
uavLidarPointCloudGenerator System object, or uav.SensorAdaptor class.

Creation

Syntax

sensor = uavSensor(name,platform,sensormodel)
sensor = uavSensor(___ ,Name,Value)

Description

sensor = uavSensor(name,platform,sensormodel) creates a sensor with the specified name
name and sensor model sensormodel, which set the Name and SensorModel properties
respectively. The sensor is added to the platform platform specified as a uavPlatform object.

sensor = uavSensor(__ ,Name,Value) sets properties on page 1-133 using one or more name-
value pair arguments in addition to the input arguments in the previous syntax. You can specify the
MountinglLocation, MountingAngles, or UpdateRate properties as name-value pairs. For
example, uavSensor("uavLidar",plat, lidarmodel, 'MountinglLocation',[1 O 0])" places
the sensor one meter forward in the x-direction relative to the platform body frame. Enclose each
property name in quotes.

Properties

Name — Sensor name
string scalar

Sensor name, specified as a string scalar. Choose a name to identify this specific sensor.
Example: "uavLidar"

Data Types: string | char

MountingLocation — Sensor position on platform
vector of the form [x y Zz]

Sensor position on platform, specified as a vector of the form [x y z] in the platform frame. Units
are in meters.

Example: [1 0 0] is 1 m in the x-direction.

1-133

1 Classes

1-134

Data Types: double

MountingAngles — Sensor orientation rotation angles
vector of the form [z y X]

Sensor orientation rotation angles, specified as a vector of the form [z y x] where z, y, x are
rotations about the z-axis, y-axis, and x-axis, sequentially, in degrees. The orientation is relative to the
platform body frame.

Example: [30 90 0]
Data Types: double

UpdateRate — Update rate of sensor
positive scalar

Update rate of the sensor, specified as a positive scalar in hertz . By default, the object uses the
UpdateRate property of the specified sensor model object.

The sensor update interval (1/UpdateRate) must be a multiple of the update interval for the
associated uavScenario object.

Data Types: double

SensorModel — Sensor model for generating readings
insSensor System object | gpsSensor System object | uavLidarPointCloudGenerator System
object

Sensor model for generating readings, specified as an insSensor, gpsSensor, or

uavLidarPointCloudGenerator System object.

Object Functions
read Gather latest reading from UAV sensor

Examples

UAV Scenario Tutorial

Create a scenario to simulate unmanned aerial vehicle (UAV) flights between a set of buildings. The
example demonstrates updating the UAV pose in open-loop simulations. Use the UAV scenario to
visualize the UAV flight and generate simulated point cloud sensor readings.

Introduction

To test autonomous algorithms, a UAV scenario enables you to generate test cases and generate
sensor data from the environment. You can specify obstacles in the workspace, provide trajectories of
UAVs in global coordinates, and convert data between coordinate frames. The UAV scenario enables
you to visualize this information in the reference frame of the environment.

Create Scenario with Polygon Building Meshes

A uavScenario object is model consisting of a set of static obstacles and movable objects called
platforms. Use uavPlatform objects to model fixed-wing UAVs, multirotors, and other objects within

uavSensor

the scenario. This example builds a scenario consisting of a ground plane and 11 buildings as by
extruded polygons. The polygon data for the buildings is loaded and used to add polygon meshes.

% Create the UAV scenario.
scene = uavScenario("UpdateRate",2,"ReferenceLocation",[75 -46 0]);

% Add a ground plane.

color.Gray = 0.651*ones(1,3);

color.Green = [0.3922 0.8314 0.0745];

color.Red = [1 0 0];

addMesh(scene, "polygon", {[-250 -150; 200 -150; 200 180; -250 180],[-4 0]},color.Gray)

% Load building polygons.
load("buildingData.mat");

% Add sets of polygons as extruded meshes with varying heights from 10-30.
addMesh(scene, "polygon", {buildingData{1}(1:4,:),[0 30]1},color.Green)

addMesh
addMesh
addMesh
addMesh
addMesh

scene, "polygon", {buildingData{7} end-1,:),[0 30]1},color.Green)
scene, "polygon", {buildingData{8} end-1,:),[0 10]},color.Green)
scene, "polygon",{buildingData{9}(1l:end-1,:),[0 15]},color.Green)
scene, "polygon", {buildingData{10}(1:end-1,:),[0 30]},color.Green)
scene, "polygon", {buildingData{11}(1l:end-2,:),[0 30]},color.Green)

addMesh(scene, "polygon", {buildingData{2}(2:5,:),[0 30]1},color.Green)
addMesh scene,"polygon",{buildingData{3}(2 0,:),[0 301},color.Green)
addMesh(scene, "polygon", {buildingData{4}(2:9,:),[0 30]1},color.Green)
addMesh(scene, "polygon", {buildingData{5}(1:end-1,:),[0 301},color.Green)
addMesh(scene, "polygon", {buildingData{6}(1:end-1,:),[0 15]1},color.Green)
(1:
(2:

PP

% Show the scenario.
show3D(scene);
x1lim([-250 200])
ylim([-150 180])
zlim([0 50])

1-135

1 Classes

1-136

-100
North (m) -200 East (m)

Define UAV Platform and Mount Sensor

You can define a uavPlatform in the scenario as a carrier of your sensor models and drive them
through the scenario to collect simulated sensor data. You can associate the platform with various
meshes, such as fixedwing, quadrotor, and cuboid meshes. You can define a custom mesh
defined ones represented by vertices and faces. Specify the reference frame for describing the motion
of your platform.

Load flight data into the workspace and create a quadrotor platform using an NED reference frame.
Specify the initial position and orientation based on loaded flight log data. The configuration of the
UAV body frame orients the x-axis as forward-positive, the y-axis as right-positive, and the z-axis
downward-positive.

load("flightData.mat")

% Set up platform
plat = uavPlatform("UAV",scene, "ReferenceFrame", "NED",
"InitialPosition",position(:,:,1),"InitialOrientation",eul2quat(orientation(:,:,1)));

% Set up platform mesh. Add a rotation to orient the mesh to the UAV body frame.
updateMesh(plat, "quadrotor",{10},color.Red, [0 O O],eul2quat([0 O pil))

You can choose to mount different sensors, such as the insSensor, gpsSensor, or
uavLidarPointCloudGenerator System objects to your UAV. Mount a lidar point cloud generator
and a uavSensor object that contains the lidar sensor model. Specify a mounting location of the
sensor that is relative to the UAV body frame.

uavSensor

lidarmodel = uavLidarPointCloudGenerator("AzimuthResolution",0.3324099,...
"ElevationLimits",[-20 20],"ElevationResolution",1.25,...
"MaxRange",90, "UpdateRate", 2, "HasOrganizedOutput", true);

lidar = uavSensor("Lidar",plat,lidarmodel, "MountinglLocation",[0,0,-1]);

Fly the UAV Platform Along Pre-Defined Trajectory and Collect Point Cloud Sensor Readings

Move the UAV along a pre-defined trajectory, and collect the lidar sensor readings along the way. This

data could be used to test lidar-based mapping and localization algorithms.

Preallocate the traj and scatterPlot line plots and then specify the plot-specific data sources.
During the simulation of the uavScenario, use the provided plotFrames output from the scene as

the parent axes to visualize your sensor data in the correct coordinate frames.
Visualize the scene.

[ax,plotFrames] = show3D(scene);

Update plot view for better visibility.

x1im
ylim

[-250 200])
[-150 180])
zlim([0 501])
view([-110 301])
axis equal

hold on

— o~ o~ —~

Create a line plot for the trajectory. First create the plot with plot3, then manually modify the data

source properties of the plot. This improves performance of the plotting.

traj = plot3(nan,nan,nan,"Color",[1 1 1],"LineWidth",2);
traj.XDataSource "position(:,2,1:idx+1)";
traj.YDataSource "position(:,1,1:idx+1)";
traj.ZDataSource "-position(:,3,1:idx+1)";

Create a scatter plot for the point cloud. Update the data source properties again.

colormap("jet")
pt = pointCloud(nan(1,1,3));

scatterplot = scatter3(nan,nan,nan,1,[0.3020 0.7451 0.9333],...

"Parent",plotFrames.UAV.Lidar);

scatterplot.XDataSource
scatterplot.YDataSource
scatterplot.ZDataSource
scatterplot.CDataSource

"reshape(pt.Location(:

yo 1), 01,10
"reshape(pt.Location(:,:,2),[1,1)";
"reshape(pt.Location(:,:,3),[1,1)";
"reshape(pt.Location(:,:,3),[1,1) -

_— e~ o~ o~

min(reshape(pt.Location(:

Set up the simulation. Then, iterate through the positions and show the scene each time the lidar

sensor updates. Advance the scene, move the UAV platform, and update the sensors.

setup(scene)
for idx = 0:size(position, 3)-1
[isupdated, lidarSampleTime, pt] = read(lidar);
if isupdated
% Use fast update to move platform visualization frames.
show3D(scene, "Time",lidarSampleTime, "FastUpdate", true, "Parent",ax);
% Refresh all plot data and visualize.
refreshdata

1-137

1 Cclasses

drawnow limitrate
end
% Advance scene simulation time and move platform.
advance(scene);
move(plat, [position(:,:,idx+1),zeros(1,6),eul2quat(orientation(:,:,idx+1)),zeros(1,3)])
% Update all sensors in the scene.
updateSensors(scene)
end
hold off

150 North (m)

See Also

Functions
read

Objects
uavScenario | uavPlatform| insSensor | gpsSensor | uavLidarPointCloudGenerator |
uav.SensorAdaptor

Topics
“UAV Scenario Tutorial”

Introduced in R2020b

1-138

uav.SensorAdaptor class

uav.SensorAdaptor class

Package: uav

Custom UAV sensor interface

Description

The uav.SensorAdaptor class is an interface for adapting custom sensor models to for use with the
uavScenario object for UAV scenario simulation.

The uav.SensorAdaptor class is a handle class.
Class Attributes
Abstract true

For information on class attributes, see “Class Attributes”.

Creation

Syntax
sensorObj = uav.SensorAdaptor(sensorModel)
Description

sensorObj = uav.SensorAdaptor(sensorModel) creates a sensor object compatible with the
uavScenario object. sensorModel is an object handle for a custom implementation of the
SensorAdaptor class.

To get a template for a custom sensor implementation, use the createCustomSensorTemplate
function.

Properties

UpdateRate — Sensor update rate
positive scalar

Sensor update rate, specified as a positive scalar in Hz.
Example: 10 Hz
Data Types: double

SensorModel — Custom sensor model implementation
object handle

Custom sensor model implementation, specified as an object handle. To get a template for a custom
sensor implementation, use the createCustomSensorTemplate function.

1-139

1 Classes

1-140

Attributes:

SetAccess private

Methods

Public Methods

setup Set up custom sensor model

read Read from custom sensor model

reset Reset custom sensor model

getEmptyOutputs Return empty sensor outputs without sensor inputs

Static Methods
uav.SensorAdaptor.getMotion Get sensor motion in platform reference frame

See Also

Functions
uav.SensorAdaptor.getMotion | getEmptyOQutputs | reset | setup | read

Objects
uavSensor | uavPlatform | uavScenario

Topics
“Simulate Radar Sensor Mounted On UAV”

Introduced in R2021a

uavWaypointFollower

uavWaypointFollower

Follow waypoints for UAV

Description

The uavWaypointFollower System object follows a set of waypoints for an unmanned aerial vehicle
(UAV) using a lookahead point. The object calculates the lookahead point, desired course, and desired
yaw given a UAV position, a set of waypoints, and a lookahead distance. Specify a set of waypoints
and tune thelookAheadDistance input argument and TransitionRadius property for navigating
the waypoints. The object supports both multirotor and fixed-wing UAV types.

To follow a set of waypoints:

1 Create the uavWaypointFollower object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

wpFollowerQObj
wpFollowerQObj

uavWaypointFollower
uavWaypointFollower (Name,Value)

Description

wpFollowerObj
properties.

uavWaypointFollower creates a UAV waypoint follower with default

wpFollowerObj = uavWaypointFollower (Name,Value) creates a UAV waypoint follower with
additional options specified by one or more Name, Value pair arguments.

Name is a property name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name-value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

1-141

1 Classes

1-142

UAV type — Type of UAV
'fixed-wing' (default) | ‘'multirotor!’

Type of UAV, specified as either ' fixed-wing' or 'multirotor'.

StartFrom — Waypoint start behavior
"first' (default) | 'closest"

Waypoint start behavior, specified as either 'first' or 'closest’.

When set to 'first', the UAV flies to the first path segment between waypoints listed in
Waypoints. When set to 'closest ', the UAV flies to the closest path segment between waypoints
listed in Waypoints. When the waypoints input changes, the UAV recalculates the closest path
segment.

Waypoints — Set of waypoints

n-by-3 matrix of [x y z] vectors

Set of waypoints for UAV to follow, specified as a n-by-3 matrix of [X y z] vectors in meters.
Data Types: single | double

YawAngles — Yaw angle for each waypoint
scalar | n-element column vector | []

Yaw angle for each waypoint, specified as a scalar or n-element column vector in radians. A scalar is
applied to each waypoint in Waypoints. An input of [] keeps the yaw aligned with the desired
course based on the lookahead point.

Data Types: single | double

TransitionRadius — Transition radius for each waypoint
numeric scalar | n-element column vector

Transition radius for each waypoint, specified as a scalar or n-element vector in meter. When
specified as a scalar, this parameter is applied to each waypoint in Waypoints. When the UAV is
within the transition radius, the object transitions to following the next path segment between
waypoints.

Data Types: single | double

MinLookaheadDistance — Minimum lookahead distance
0.1 (default) | positive numeric scalar

Minimum lookahead distance, specified as a positive numeric scalar in meters.

Data Types: single | double
Usage

Syntax

[LlookaheadPoint,desiredCourse,desiredYaw, lookaheadDistFlag,crossTrackError,
status] = wpFollowerQObj(currentPose,lookaheadDistance)

uavWaypointFollower

Description

[lookaheadPoint,desiredCourse,desiredYaw, lookaheadDistFlag,crossTrackError,
status] = wpFollowerObj(currentPose, lookaheadDistance) follows the set of waypoints
specified in the waypoint follower object. The object takes the current position and lookahead
distance to compute the lookahead point on the path. The desired course, yaw, and cross track error
are also based on this lookahead point compared to the current position. status returns zero until
the UAV has navigated all the waypoints.

Input Arguments

currentPose — Current UAV pose
[X y z chi] vector

Current UAV pose, specified asa [x y z chi] vector. This pose is used to calculate the lookahead
point based on the input lookaheadDistance. [x y z] is the current position in meters. chi is the
current course in radians.

Data Types: single | double

lookaheadDistance — Lookahead distance along the path
positive numeric scalar

Lookahead distance along the path, specified as a positive numeric scalar in meters.

Data Types: single | double
Output Arguments

lookaheadPoint — Lookahead point on path
[X y z] position vector

Lookahead point on path, returned as an [X y z] position vector in meters.

Data Types: single | double

desiredCourse — Desired course
numeric scalar

Desired course, returned as a numeric scalar in radians in the range of [-pi, pi]. The UAV course
is the direction of the velocity vector. For fixed-wing type UAV, the values of desired course and
desired yaw are equal.

Data Types: single | double

desiredYaw — Desired yaw
numeric scalar

Desired yaw, returned as a numeric scalar in radians in the range of [-pi, pil]. The UAV yaw is the
angle of the forward direction of the UAV regardless of the velocity vector. The desired yaw is
computed using linear interpolation between the yaw angle for each waypoint. For fixed-wing type
UAV, the values of desired course and desired yaw are equal.

Data Types: single | double

lookaheadDistFlag — Lookahead distance flag
0 (default) | 1

1-143

1 Classes

Lookahead distance flag, returned as 0 or 1. 0 indicates lookahead distance is not saturated, 1
indicates lookahead distance is saturated to minimum lookahead distance value specified.

Data Types: uint8

crossTrackError — Cross track error from UAV position to path
positive numeric scalar

Cross track error from UAV position to path, returned as a positive numeric scalar in meters. The
error measures the perpendicular distance from the UAV position to the closest point on the path.

Data Types: single | double

status — Status of waypoint navigation
01

Status of waypoint navigation, returned as 0 or 1. When the follower has navigated all waypoints, the
object outputs 1. Otherwise, the object outputs 0.

Data Types: uint8

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)
Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
More About

Waypoint Hyperplane Condition

When following a set of waypoints, the first waypoint may be ignored based on the pose of the UAV.
Due to the nature of the lookahead distance used to track the path, the waypoint follower checks if
the UAV is near the next waypoint to transition to the next path segment using a transition region.
However, there is also a condition where the UAV transitions when outside of this region. A 3-D
hyperplane is drawn at the next waypoint. If the UAV pose is inside this hyperplane, the waypoint
follower transitions to the next waypoint. This behavior helps to ensure the UAV follows an achievable
path.

1-144

uavWaypointFollower

Pl Hyperplane Regioh

Lookahead Distance

. |

wl w2

T
Transition Region ™

w3

(p1-w2)T(w2-w1)<0 (p2-w2)T(w2-w1)=0

The hyperplane condition is satisfied if:
(p-wl)T (w2-wl) = 0
p is the UAV position, and w1 and w2 are sequential waypoint positions.

If you find this behavior limiting, consider adding more waypoints based on your initial pose to force
the follower to navigate towards your initial waypoint.

References

[1] Park, Sanghyuk, John Deyst, and Jonathan How. "A New Nonlinear Guidance Logic for Trajectory
Tracking." AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
control | derivative | environment | state | plotTransforms

Objects
uavOrbitFollower | fixedwing | multirotor

Blocks
UAV Guidance Model

1-145

1 Classes

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

1-146

ulogreader

ulogreader

Read messages from ULOG file

Description

The ulogreader object reads a ULOG file (.ulg). The object stores information about the file,
including start and end logging times, summary of available topics, and dropout intervals.

Creation

Syntax
ulogOBJ = ulogreader(filePath)
Description

ulogOBJ = ulogreader(filePath) reads the ULOG file from the specified path and returns an
object containing information about the file. The information in filePath is used to set the
FileName property.

Properties

FileName — Name of ULOG file
string scalar | character vector

This property is read-only.

Name of the ULOG file, specified as a string scalar or character vector. The FileName is the path
specified in the filePath input.

Data Types: char | string

StartTime — Start time of logging
duration object

This property is read-only.

Start time of logging offset from the system start time in the ULOG file, specified as a duration
object in the 'hh:mm:ss.SSSSSS' format.

Data Types: duration

EndTime — Timestamp of last timestamped message
duration object

This property is read-only.

Timestamp of the last timestamped message logged in the ULOG file, specified as a duration object
in the "hh:mm:ss.SSSSSS' format.

1-147

1 Classes

Data Types: duration

AvailableTopics — Table of all logged topics
table

This property is read-only.
Summary of all the logged topics, specified as a table that contains the columns:

* TopicNames

* InstancelD

* StartTimestamp
* LastTimestamp
* NumMessages

Data Types: table

DropoutIntervals — Time intervals in which messages were dropped while logging
n-by-2 matrix

This property is read-only.

Time intervals in which messages were dropped while logging, specified as an n-by-2 matrix of
duration arrays in the 'hh:mm:ss.SSSSSS' format, where n is the number of dropouts.

Data Types: duration

Object Functions

readTopicMsgs Read topic messages
readSystemInformation Read information messages
readParameters Read parameter values
readLoggedOutput Read logged output messages
Examples

Read Messages from ULOG File

Load the ULOG file. Specify the relative path of the file.
ulog = ulogreader('flight.ulg");

Read all topic messages.

msg = readTopicMsgs(ulog);

Specify the time interval between which to select messages.

dl
d2

ulog.StartTime;
dl + duration([O0 O 55],'Format', 'hh:mm:ss.S5S55555");

Read messages from the topic 'vehicle attitude' with an instance ID of 0 in the time interval
[d1 d2].

1-148

ulogreader

data = readTopicMsgs(ulog, 'TopicNames',{'vehicle attitude'},

"InstancelID', {0}, 'Time', [d1l d2]);

Extract topic messages for the topic.

vehicle attitude = data.TopicMessages{l,1};
Read all system information.

systeminfo = readSystemInformation(ulog);
Read all initial parameter values.

params = readParameters(ulog);

Read all logged output messages.

loggedoutput = readLoggedOutput(ulog);

Read logged output messages in the time interval.

log = readlLoggedOutput(ulog, 'Time', [d1l d2]);

References

[1] PX4 Developer Guide. "ULog File Format." Accessed December 6, 2019. https://dev.px4.io/

v1.9.0/en/log/ulog file format.html.

See Also
mavlinktlog

Introduced in R2020b

1-149

https://dev.px4.io/v1.9.0/en/log/ulog_file_format.html
https://dev.px4.io/v1.9.0/en/log/ulog_file_format.html

1 Classes

1-150

waypointTrajectory

Waypoint trajectory generator

Description

The waypointTrajectory System object generates trajectories using specified waypoints. When
you create the System object, you can optionally specify the time of arrival, velocity, and orientation
at each waypoint. See “Algorithms” on page 1-177 for more details.

To generate a trajectory from waypoints:

1 Create the waypointTrajectory object and set its properties.
2 (Call the object as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax

trajectory = waypointTrajectory

trajectory = waypointTrajectory(Waypoints,TimeOfArrival)

trajectory = waypointTrajectory(Waypoints,TimeOfArrival,Name,Value)
Description

trajectory = waypointTrajectory returns a System object, trajectory, that generates a

trajectory based on default stationary waypoints.

trajectory = waypointTrajectory(Waypoints,TimeOfArrival) specifies the Waypoints
that the generated trajectory passes through and the TimeOfArrival at each waypoint.

trajectory = waypointTrajectory(Waypoints,TimeOfArrival,Name,Value) sets each
creation argument or property Name to the specified Value. Unspecified properties and creation
arguments have default or inferred values.

Example: trajectory = waypointTrajectory([10,10,0;20,20,0;20,20,10],[0,0.5,10])
creates a waypoint trajectory System object, trajectory, that starts at waypoint [10,10,0], and
then passes through [20,20,0] after 0.5 seconds and [20,20,10] after 10 seconds.

Creation Arguments

Creation arguments are properties which are set during creation of the System ohject and cannot be
modified later. If you do not explicitly set a creation argument value, the property value is inferred.

If you specify any creation argument, then you must specify both the Waypoints and TimeOfArrival
creation arguments. You can specify Waypoints and TimeOfArrival as value-only arguments or
name-value pairs.

waypointTrajectory

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of trajectory (Hz)
100 (default) | positive scalar

Sample rate of trajectory in Hz, specified as a positive scalar.

Tunable: Yes

Data Types: double

SamplesPerFrame — Number of samples per output frame
1 (default) | positive scalar integer

Number of samples per output frame, specified as a positive scalar integer.

Tunable: Yes

Data Types: double

Waypoints — Positions in the navigation coordinate system (m)
N-by-3 matrix

Positions in the navigation coordinate system in meters, specified as an N-by-3 matrix. The columns of
the matrix correspond to the first, second, and third axes, respectively. The rows of the matrix, N,
correspond to individual waypoints.

Dependencies
To set this property, you must also set valid values for the TimeOfArrival property.

Data Types: double

TimeOfArrival — Time at each waypoint (s)
N-element column vector of nonnegative increasing numbers

Time corresponding to arrival at each waypoint in seconds, specified as an N-element column vector.
The first element of TimeOfArrival must be 0. The number of samples, N, must be the same as the
number of samples (rows) defined by Waypoints.

Dependencies

To set this property, you must also set valid values for the Waypoints property.

Data Types: double

Velocities — Velocity in navigation coordinate system at each waypoint (m/s)
N-by-3 matrix

Velocity in the navigation coordinate system at each waypoint in meters per second, specified as an
N-by-3 matrix. The columns of the matrix correspond to the first, second, and third axes, respectively.

1-151

1 Classes

The number of samples, N, must be the same as the number of samples (rows) defined by
Waypoints.

If the velocity is specified as a non-zero value, the object automatically calculates the course of the
trajectory. If the velocity is specified as zero, the object infers the course of the trajectory from
adjacent waypoints.

Dependencies

To set this property, you must also set valid values for the Waypoints and TimeOfArrival properties.

Data Types: double

Course — Horizontal direction of travel (degree)
N-element real vector

Horizontal direction of travel, specified as an N-element real vector in degrees. The number of
samples, N, must be the same as the number of samples (rows) defined by Waypoints. If neither
Velocities nor Course is specified, course is inferred from the waypoints.

Dependencies

To set this property, the Velocities property must not be specified in object creation.

Data Types: double

GroundSpeed — Groundspeed at each waypoint (m/s)
N-element real vector

Groundspeed at each waypoint, specified as an N-element real vector in m/s. If the property is not
specified, it is inferred from the waypoints. The number of samples, N, must be the same as the
number of samples (rows) defined by Waypoints.

Dependencies

To set this property, the Velocities property must not be specified at object creation.

Data Types: double

ClimbRate — Climb rate at each waypoint (m/s)
N-element real vector

Climb Rate at each waypoint, specified as an N-element real vector in degrees. The number of
samples, N, must be the same as the number of samples (rows) defined by Waypoints. If neither
Velocities nor Course is specified, climb rate is inferred from the waypoints.

Dependencies

To set this property, the Velocities property must not be specified at object creation.

Data Types: double

Orientation — Orientation at each waypoint
N-element quaternion column vector | 3-by-3-by-N array of real numbers

Orientation at each waypoint, specified as an N-element quaternion column vector or 3-by-3-by-N
array of real numbers. Each quaternion must have a norm of 1. Each 3-by-3 rotation matrix must be
an orthonormal matrix. The number of quaternions or rotation matrices, N, must be the same as the
number of samples (rows) defined by Waypoints.

1-152

waypointTrajectory

If Orientation is specified by quaternions, the underlying class must be double.

Dependencies

To set this property, you must also set valid values for the Waypoints and TimeOfArrival properties.

Data Types: double

AutoPitch — Align pitch angle with direction of motion
false (default) | true

Align pitch angle with the direction of motion, specified as true or false. When specified as true,
the pitch angle automatically aligns with the direction of motion. If specified as false, the pitch
angle is set to zero (level orientation).

Dependencies
To set this property, the Orientation property must not be specified at object creation.

AutoBank — Align roll angle to counteract centripetal force
false (default) | true

Align roll angle to counteract the centripetal force, specified as true or false. When specified as
true, the roll angle automatically counteracts the centripetal force. If specified as false, the roll
angle is set to zero (flat orientation).

Dependencies
To set this property, the Orientation property must not be specified at object creation.

ReferenceFrame — Reference frame of trajectory
"NED' (default) | 'ENU'

Reference frame of the trajectory, specified as 'NED' (North-East-Down) or 'ENU' (East-North-Up).
Usage

Syntax
[position,orientation,velocity,acceleration,angularVelocity] = trajectory()
Description

[position,orientation,velocity,acceleration,angularVelocity] = trajectory()
outputs a frame of trajectory data based on specified creation arguments and properties.

Output Arguments

position — Position in local navigation coordinate system (m)
M-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

1-153

1 Classes

orientation — Orientation in local navigation coordinate system
M-element quaternion column vector | 3-by-3-by-M real array

Orientation in the local navigation coordinate system, returned as an M-by-1 quaternion column
vector or a 3-by-3-by-M real array.

Each quaternion or 3-by-3 rotation matrix is a frame rotation from the local navigation coordinate
system to the current body coordinate system.

M is specified by the SamplesPerFrame property.
Data Types: double

velocity — Velocity in local navigation coordinate system (m/s)
M-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an M-by-3
matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

acceleration — Acceleration in local navigation coordinate system (m/s?)
M-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared, returned as an
M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

angularVelocity — Angular velocity in local navigation coordinate system (rad/s)
M-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned as an M-
by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to waypointTrajectory
waypointInfo Get waypoint information table

lookupPose Obtain pose information for certain time
perturbations Perturbation defined on object
perturb Apply perturbations to object

1-154

waypointTrajectory

Common to All System Objects

clone Create duplicate System object

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

isDone End-of-data status

Examples

Create Default waypointTrajectory
trajectory = waypointTrajectory

trajectory =
waypointTrajectory with properties:

SampleRate: 100
SamplesPerFrame: 1
Waypoints: [2x3 double]
TimeOfArrival: [2x1 double]
Velocities: [2x3 double]
Course: [2x1 double]
GroundSpeed: [2x1 double]
ClimbRate: [2x1 double]
Orientation: [2x1 quaternion]
AutoPitch: 0
AutoBank: 0
ReferenceFrame: 'NED'

Inspect the default waypoints and times of arrival by calling waypointInfo. By default, the
waypoints indicate a stationary position for one second.

waypointInfo(trajectory)

ans=2x2 table

TimeOfArrival Waypoints
0 0 0 0
1 0 0 0

Create Square Trajectory

Create a square trajectory and examine the relationship between waypoint constraints, sample rate,
and the generated trajectory.

Create a square trajectory by defining the vertices of the square. Define the orientation at each

waypoint as pointing in the direction of motion. Specify a 1 Hz sample rate and use the default
SamplesPerFrame of 1.

1-155

1 Classes

1-156

waypoints = [. % Initial position

; % Final position
toa = 0:4; % time of arrival

orientation = quaternion([0,0,0;
45,0,0;
135,0,0;
225,0,0;
0,0,01, ...
'eulerd', 'ZYX', 'frame');

trajectory = waypointTrajectory(waypoints,
'TimeOfArrival', toa,
'Orientation',orientation,
'SampleRate',1);

Create a figure and plot the initial position of the platform.

figure(1)
plot(waypoints(1l,1),waypoints(1,2), 'b*")
title('Position')

axis([-1,2,-1,2])

axis square

xlabel('X")

ylabel('Y")

grid on

hold on

waypointTrajectory

Position
2 T T T T T

> 05| .

-1 0.5 0 0.5 1 1.5 2

In a loop, step through the trajectory to output the current position and current orientation. Plot the
current position and log the orientation. Use pause to mimic real-time processing.

orientationLog = zeros(toa(end)*trajectory.SampleRate,1, 'quaternion');
count = 1;
while ~isDone(trajectory)

[currentPosition,orientationLog(count)] = trajectory();

plot(currentPosition(1l),currentPosition(2), 'bo")
pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
count = count + 1;

end
hold off

1-157

1 Classes

Position
2 T T T T T
15871 4
1¢ O o -
> 057 1
or & 0 4
0.57T T
__1 i i i i i
-1 0.5 0 0.5 1 1.5 2
A
Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time.
figure(2)
eulerAngles = eulerd([orientation(1l);orientationLog],'ZYX', 'frame');
plot(toa,eulerAngles(:,1), 'ko"',
toa,eulerAngles(:,2),'bd",

toa,eulerAngles(:,3),'r.");
title('Orientation Over Time')
legend('Rotation around Z-axis', 'Rotation around Y-axis', 'Rotation around X-axis')
xlabel('Time (seconds)"')
ylabel('Rotation (degrees)"')
grid on

1-158

waypointTrajectory

Orientation Over Time

150 T T T T T T T
O O Retation around Z-axis
£ Rotation around Y-axis
100 F . Raotation around X-axis | 4
W 8l i
ﬂ 2
&
o
=
= 0@ & & & @
=
o
[=]
X so0f 1
-100 -
O
—15D 1 1 i 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

So far, the trajectory object has only output the waypoints that were specified during construction. To
interpolate between waypoints, increase the sample rate to a rate faster than the time of arrivals of
the waypoints. Set the trajectory sample rate to 100 Hz and call reset.

trajectory.SampleRate = 100;
reset(trajectory)

Create a figure and plot the initial position of the platform. In a loop, step through the trajectory to
output the current position and current orientation. Plot the current position and log the orientation.
Use pause to mimic real-time processing.

figure(1)
plot(waypoints(1l,1),waypoints(1,2), 'b*")
title('Position')

axis([-1,2,-1,2])

axis square

xlabel('X")

ylabel('Y")

grid on

hold on

orientationLog = zeros(toa(end)*trajectory.SampleRate,1, 'quaternion');
count = 1;
while ~isDone(trajectory)

[currentPosition,orientationLog(count)] = trajectory();

plot(currentPosition(1l),currentPosition(2), 'bo")

1-159

1 Classes

1-160

pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
count = count + 1;

end

hold off

Position
2

15671 _

= 05¢ 1

-1 -0.5 0 0.5 1 1.5 2

The trajectory output now appears circular. This is because the waypointTrajectory System
object™ minimizes the acceleration and angular velocity when interpolating, which results in
smoother, more realistic motions in most scenarios.

Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time. The orientation is also interpolated.

figure(2)
eulerAngles = eulerd([orientation(1l);orientationLog],'ZYX", 'frame');
t = 0:1/trajectory.SampleRate:4;
plot(t,eulerAngles(:,1), 'ko",
t,eulerAngles(:,2),'bd",
t,eulerAngles(:,3),'r.");
title('Orientation Over Time')
legend('Rotation around Z-axis', 'Rotation around Y-axis', 'Rotation around X-axis')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

waypointTrajectory

Orientation Over Time

200 T

150

100

&n
==

Rotation (degrees)
&n
o —

-100

-150

o
¢

Ratation around Z-axis
Ratation around Y-axis
Raotation around X-axis

-2 00 '

1 15 2 25
Time (seconds)

The waypointTrajectory algorithm interpolates the waypoints to create a smooth trajectory. To
return to the square trajectory, provide more waypoints, especially around sharp changes. To track
corresponding times, waypoints, and orientation, specify all the trajectory info in a single matrix.

% Time,
= [0,
0.1,

trajectoryInfo

Waypoint, Orientation

0,0,0, 0,0,0;
0,0.1,0, 0,0,0;
0,0.9,0, 0,0,0;
0,1,0, 45,0,0;
0.1,1,0, 90,0,0;
0.9,1,0, 090,0,0; ...
1,1,0, 135,0,0;
1,0.9,0, 180,0,0;
1,0.1,0, 180,0,0;
1,0,0, 225,0,0;
0.9,0,0, 270,0,0;
0.1,0,0, 270,0,0; ...
0,0,0, 270,0,01; %

. % Initial position

Final position

trajectory = waypointTrajectory(trajectoryInfo(:,2:4),
'TimeOfArrival',trajectoryInfo(:,1), .
'Orientation',quaternion(trajectoryInfo(:,5:end), 'eulerd', 'ZYX"', 'frame'),

‘SampleRate',100);

1-161

1 Classes

1-162

Create a figure and plot the initial position of the platform. In a loop, step through the trajectory to
output the current position and current orientation. Plot the current position and log the orientation.
Use pause to mimic real-time processing.

figure(1)
plot(waypoints(1l,1),waypoints(1,2), 'b*")
title('Position')

axis([-1,2,-1,2])

axis square

xlabel('X")

ylabel('Y")

grid on

hold on

orientationLog = zeros(toa(end)*trajectory.SampleRate,1, 'quaternion');
count = 1;
while ~isDone(trajectory)

[currentPosition,orientationLog(count)] = trajectory();

plot(currentPosition(1l),currentPosition(2), 'bo")

pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
count = count+1;

end

hold off

Position
2 T T T T T

> 05¢ 1

-1 -0.5 0 0.5 1 1.5 2

The trajectory output now appears more square-like, especially around the vertices with waypoints.

waypointTrajectory

Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation

over time.

figure(2)

eulerAngles = eulerd([orientation(1l);orientationLog],'ZYX", 'frame');

t = 0:1/trajectory.SampleRate:4;
eulerAngles = plot(t,eulerAngles(:,1), 'ko",
t,eulerAngles(:,2),'bd",
t,eulerAngles(:,3),'r.");
title('Orientation Over Time')
legend('Rotation around Z-axis',
'Rotation around Y-axis',
'Rotation around X-axis',
'Location', 'SouthWest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

Orientation Over Time

200 T T T T T

150

100

£n
o

Rotation (degrees)
]

-100

O Rotation around Z-axis
-150 £ Rotation around Y-axis
Rotation around X-axis

=200
0 0.5 1 1.5 2 2.5

Time (seconds)

Create Arc Trajectory

This example shows how to create an arc trajectory using the waypointTrajectory System
object™. waypointTrajectory creates a path through specified waypoints that minimizes
acceleration and angular velocity. After creating an arc trajectory, you restrict the trajectory to be

within preset bounds.

1-163

1 Classes

1-164

Create an Arc Trajectory

Define a constraints matrix consisting of waypoints, times of arrival, and orientation for an arc
trajectory. The generated trajectory passes through the waypoints at the specified times with the
specified orientation. The waypointTrajectory System object requires orientation to be specified
using quaternions or rotation matrices. Convert the Euler angles saved in the constraints matrix to
quaternions when specifying the Orientation property.

% Arrival, Waypoints, Orientation

constraints = [0, 20,20,0, 90,0,0;
3, 50,20,0, 90,0,0;
4, 58,15.5,0, 162,0,0;
5.5, 59.5,0,0 180,0,0];

trajectory = waypointTrajectory(constraints(:,2:4),
'TimeOfArrival',constraints(:,1),
'Orientation',quaternion(constraints(:,5:7), 'eulerd', 'ZYX", 'frame'));

Call waypointInfo on trajectory to return a table of your specified constraints. The creation
properties Waypoints, TimeOfArrival, and Orientation are variables of the table. The table is
convenient for indexing while plotting.

tInfo = waypointInfo(trajectory)

tInfo =
4x3 table

TimeOfArrival Waypoints Orientation

0 20 20 0 {1x1 quaternion}
3 50 20 0 {1x1 quaternion}
4 58 15.5 0 {1x1 quaternion}
5.5 59.5 0 0 {1x1 quaternion}

The trajectory object outputs the current position, velocity, acceleration, and angular velocity at each
call. Call trajectory in a loop and plot the position over time. Cache the other outputs.

figure(1)
plot(tInfo.Waypoints(1l,1),tInfo.Waypoints(1,2), 'b*")
title('Position')

axis([20,65,0,25])

xlabel('North"')

ylabel('East"')

grid on

daspect([1 1 1])

hold on

orient = zeros(tInfo.TimeOfArrival(end)*trajectory.SampleRate,1, 'quaternion');
vel = zeros(tInfo.TimeOfArrival(end)*trajectory.SampleRate,3);

acc = vel;

angVel = vel;

count = 1;
while ~isDone(trajectory)

waypointTrajectory

[pos,orient(count),vel(count,:),acc(count,:),angVel(count,:)] = trajectory();
plot(pos(1),pos(2),'bo")
pause(trajectory.SamplesPerFrame/trajectory.SampleRate)

count = count + 1;
end

Position
25 T T T T T T T T

East

65

Morth

Inspect the orientation, velocity, acceleration, and angular velocity over time. The
waypointTrajectory System object™ creates a path through the specified constraints that
minimized acceleration and angular velocity.

figure(2)
timeVector = 0:(1/trajectory.SampleRate):tInfo.TimeOfArrival(end);
eulerAngles = eulerd([tInfo.Orientation{1l};orient], 'ZYX"', 'frame');
plot(timeVector,eulerAngles(:,1),
timeVector,eulerAngles(:,2),
timeVector,eulerAngles(:,3));
title('Orientation Over Time')
legend('Rotation around Z-axis',
'Rotation around Y-axis',
'Rotation around X-axis',
'"Location', 'southwest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)"')
grid on

1-165

1 Classes

figure(3)
plot(timeVector(2:end),vel(:,1),
timeVector(2:end),vel(:,2),
1,3));

title('Velocity Over Time'
legend('North', "East', 'Down")
xlabel('Time (seconds)"')
ylabel('Velocity (m/s)"')

grid on

(
(
timeVector(2:end),vel(
)
n

figure(4)

plot(timeVector(2:end),acc(:,1)
timeVector(2:end),acc(:,2)
timeVector(2:end),acc(:,3)

title('Acceleration Over Time')

legend('North', 'East', 'Down', 'Location', 'southwest')

xlabel('Time (seconds)")

ylabel('Acceleration (m/s"2)"')

grid on

S;...

figure(5)
plot(timeVector(2:end),angVel(:,1)

timeVector(2:end),angVel(:,2)

timeVector(2:end),angVel(:,3)
title('Angular Velocity Over Time
legend('North', "East', 'Down")
xlabel('Time (seconds)')
ylabel('Angular Velocity (rad/s)')
grid on

o
)

1-166

waypointTrajectory

Rotation (degrees)

Orientation Over Time

200

150

100

50

-100

-150

__-—--'”""f

Rotation around Z-axis
Rotation around Y-axis
Rotation around X-axis

-2 00

1 2 3 4

Time (seconds)

1-167

1 Classes

1-168

Velocity (m/'s)

15

10F

Velocity Over Time

Marth
East
Diown

Time (seconds)

waypointTrajectory

Acceleration {mfs‘?]

Acceleration Over Time

Morth
- East
Down

Time (seconds)

1-169

1 Classes

Angular Velocity Over Time

1.4 T

Marth
East | |
Diown

127

0.6 7

Angular Velocity (rad/s)

Time (seconds)

Restrict Arc Trajectory Within Preset Bounds

You can specify additional waypoints to create trajectories within given bounds. Create upper and
lower bounds for the arc trajectory.

figure(1)

xUpperBound = [(20:50)';50+10*sin(0:0.1:pi/2)"';60*0ones(11,1)];
yUpperBound = [20.5.*ones(31,1);10.5+10*cos(0:0.1:pi/2)"';(10:-1:0)"'1;
xLowerBound = [(20:49)"';50+9*sin(0:0.1:pi/2)"';59*0ones(11,1)1;
yLowerBound = [19.5.*ones(30,1);10.5+9*cos(0:0.1:pi/2)"';(10:-1:0)"'1];

plot(xUpperBound, yUpperBound, 'r', 'LineWidth',2);
plot(xLowerBound,yLowerBound, 'r', 'LineWidth',?2)

1-170

waypointTrajectory

Position
25 T T T T T T T T

East

65

Morth

To create a trajectory within the bounds, add additional waypoints. Create a new
waypointTrajectory System object™, and then call it in a loop to plot the generated trajectory.
Cache the orientation, velocity, acceleration, and angular velocity output from the trajectory
object.

% Time, Waypoint, Orientation
constraints = [0, 20,20,0, 90,0,0;
1.5, 35,20,0, 90,0,0;
2.5 45,20,0, 90,0,0;
3, 50,20,0, 90,0,0;
3.3, 53,19.5,0, 108,0,0;
3.6, 55.5,18.25,0, 126,0,0;
3.9, 57.5,16,0, 144,0,0;
4.2, 59,14,0, 162,0,0;
4.5, 59.5,10,0 180,0,0;
5, 59.5,5,0 180,0,0;
5.5, 59.5,0,0 180,0,0];

trajectory = waypointTrajectory(constraints(:,2:4),
'TimeOfArrival',constraints(:,1),
'Orientation',quaternion(constraints(:,5:7), 'eulerd', 'ZYX", 'frame'));
tInfo = waypointInfo(trajectory);

figure(1)
plot(tInfo.Waypoints(1l,1),tInfo.Waypoints(1,2), 'b*")

count = 1;

1-171

1 Classes

while ~isDone(trajectory)
[pos,orient(count),vel(count,:),acc(count,:),angVel(count,:)] = trajectory();

plot(pos(1),pos(2),'gd")
pause(trajectory.SamplesPerFrame/trajectory.SampleRate)

count = count + 1;
end

Position
25 T T T T T T T T

East

65

Morth

The generated trajectory now fits within the specified boundaries. Visualize the orientation, velocity,
acceleration, and angular velocity of the generated trajectory.

figure(2)
timeVector = 0:(1/trajectory.SampleRate):tInfo.TimeOfArrival(end);
eulerAngles = eulerd(orient, 'ZYX', 'frame');
plot(timeVector(2:end),eulerAngles(:,1),
timeVector(2:end),eulerAngles(:,2),
timeVector(2:end),eulerAngles(:,3));
title('Orientation Over Time')
legend('Rotation around Z-axis',
'Rotation around Y-axis',
'Rotation around X-axis',
"Location', 'southwest')
xlabel('Time (seconds)"')
ylabel('Rotation (degrees)')
grid on

figure(3)

1-172

waypointTrajectory

plot(timeVector(2:end),vel(:,1)
timeVector(2:end),vel(:,2)

~ =~ ~

timeVector(2:end),vel(:,3)
title('Velocity Over Time')
legend('North', '"East', 'Down")
xlabel('Time (seconds)')
ylabel('Velocity (m/s)"')
grid on

figure(4)
plot(timeVector(2:end),acc(:

timeVector(2:end),acc(:

timeVector(2:end),acc(:
title('Acceleration Over Tim
legend('North', 'East', 'Down’
xlabel('Time (seconds)')
ylabel('Acceleration (m/s"2)"')
grid on

~ D=~ ~ =~

figure(5)
plot(timeVector(2:end),angVel(:,1)

timeVector(2:end),angVel(:,2)

timeVector(2:end),angVel(:,3)
title('Angular Velocity Over Time
legend('North', 'East', 'Down")
xlabel('Time (seconds)')
ylabel('Angular Velocity (rad/s)')
grid on

o
)

1-173

1 Classes

1-174

Rotation (degrees)

Orientation Over Time

200

150

100

50

-100

-150

Rotation around Z-axis
Rotation around Y-axis
Rotation around X-axis |

-2 00

1 2 3 4 5
Time (seconds)

Velocity Over Time
15 | I | |
Marth
East
10 —r\ el
\
_
g | \ !
= II
E
2 0 o - |
3 <
2 ™,
= .
5 F \\l‘ |
wa
WA
|I B
7l I| P —— J
-
I 1
II |'
-15 | \, |
1] . : : E
Time (seconds)

waypointTrajectory

1-175

1 Classes

Acceleration Over Time

G0 T T T T T

Marth
East

a0 r I‘ Diown
|

[
[
T

Acceleration {mfs‘?
=
|
|
N

R

=]

T
—

Time (seconds)

1-176

waypointTrajectory

Angular Velocity Over Time

1.2 T

Marth
East
Diown

08T T

0.2r T

Angular Velocity (rad/s)
=
S

Time (seconds)

Note that while the generated trajectory now fits within the spatial boundaries, the acceleration and
angular velocity of the trajectory are somewhat erratic. This is due to over-specifying waypoints.

Algorithms

The waypointTrajectory System object defines a trajectory that smoothly passes through
waypoints. The trajectory connects the waypoints through an interpolation that assumes the gravity
direction expressed in the trajectory reference frame is constant. Generally, you can use
waypointTrajectory to model platform or vehicle trajectories within a hundreds of kilometers
distance span.

The planar path of the trajectory (the x-y plane projection) consists of piecewise, clothoid curves. The
curvature of the curve between two consecutive waypoints varies linearly with the curve length
between them. The tangent direction of the path at each waypoint is chosen to minimize
discontinuities in the curvature, unless the course is specified explicitly via the Course property or
implicitly via the Velocities property. Once the path is established, the object uses cubic Hermite
interpolation to compute the location of the vehicle throughout the path as a function of time and the
planar distance traveled.

The normal component (z-component) of the trajectory is subsequently chosen to satisfy a shape-
preserving piecewise spline (PCHIP) unless the climb rate is specified explicitly via the ClimbRate
property or the third column of the Velocities property. Choose the sign of the climb rate based on
the selected ReferenceFrame:

1-177

1 Classes

1-178

* When an 'ENU' reference frame is selected, specifying a positive climb rate results in an
increasing value of z.

* When an 'NED' reference frame is selected, specifying a positive climb rate results in a decreasing
value of z.

You can define the orientation of the vehicle through the path in two primary ways:

+ Ifthe Orientation property is specified, then the object uses a piecewise-cubic, quaternion
spline to compute the orientation along the path as a function of time.

« Ifthe Orientation property is not specified, then the yaw of the vehicle is always aligned with
the path. The roll and pitch are then governed by the AutoBank and AutoPitch property values,
respectively.

AutoBank AutoPitch Description

false false The vehicle is always level
(zero pitch and roll). This is
typically used for large
marine vessels.

false true The vehicle pitch is aligned
with the path, and its roll is
always zero. This is typically
used for ground vehicles.

true false The vehicle pitch and roll are
chosen so that its local z-axis
is aligned with the net
acceleration (including
gravity). This is typically used
for rotary-wing craft.

true true The vehicle roll is chosen so
that its local transverse plane
aligns with the net
acceleration (including
gravity). The vehicle pitch is
aligned with the path. This is
typically used for two-wheeled
vehicles and fixed-wing
aircraft.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object function, waypointInfo, does not support code generation.
Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

waypointTrajectory

See Also

Objects
uavPlatform

Introduced in R2020b

1-179

1 Classes

1-180

pcplayer

Visualize streaming 3-D point cloud data

Description

Visualize 3-D point cloud data streams from devices such as Microsoft®Kinect®.
To improve performance, pcplayer automatically downsamples the rendered point cloud during

interaction with the figure. The downsampling occurs only for rendering the point cloud and does not
affect the saved points.

Creation

Syntax

pcplayer(xlimits,ylimits,zlimits)
pcplayer(xlimits,ylimits,zlimits,Name,Value)

player =
player =

Description

player = pcplayer(xlimits,ylimits,zlimits) returns a player with xlimits,ylimits, and
zlimits set for the axes limits.

player = pcplayer(xlimits,ylimits,zlimits,Name,Value) returns a player with additional
properties specified by one or more Name, Value pair arguments.

Input Arguments

xlimits — Range of x-axis coordinates
1-by-2 vector

Range of x-axis coordinates, specified as a 1-by-2 vector in the format [min max]. pcplayer does not
display data outside these limits.

ylimits — Range of y-axis coordinates
1-by-2 vector

Range of y-axis coordinates, specified as a 1-by-2 vector in the format [min max]. pcplayer does not
display data outside these limits.

zlimits — Range of z-axis coordinates
1-by-2 vector

Range of z-axis coordinates, specified as a 1-by-2 vector in the format [min max].pcplayer does not
display data outside these limits.

pcplayer

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'VerticalAxisDir', 'Up"'.

MarkerSize — Diameter of marker
6 (default) | positive scalar

Diameter of marker, specified as the comma-separated pair consisting of 'MarkerSize' and a positive
scalar. The value specifies the approximate diameter of the point marker. MATLAB graphics defines
the unit as points. A marker size larger than six can reduce the rendering performance.

VerticalAxis — Vertical axis
'Z' (default) | 'X"' | 'Y

Vertical axis, specified as the comma-separated pair consisting of 'VerticalAxis'and 'X', 'Y', or
'Z'. When you reload a saved figure, any action on the figure resets the vertical axis to the z-axis.

VerticalAxisDir — Vertical axis direction
"Up' (default) | 'Down'

Vertical axis direction, specified as the comma-separated pair consisting of 'VerticalAxisDir' and
"Up' or 'Down'. When you reload a saved figure, any action on the figure resets the direction to the
up direction.

Properties

Axes — Player axes handle
axes graphics object

Player axes handle, specified as an axes graphics object.

Usage
Color and Data Point Values in Figure

To view point data or modify color display values, hover over the axes toolbar and select one of the
following options.

1-181

1 Classes

1-182

Feature

Description

Datatip

Click Data Tips to view the data point values for any point in the point
cloud figure. For a normal point cloud, the Data Tips displays the x,y,z
values. Additional data properties for the depth image and lidar are:

Point Cloud Data Data Value Properties

Depth image (RGB-D sensor) Color, row, column

Lidar Intensity, range, azimuth angle,
elevation angle, row, column

Background color

Click Rotate and then right-click in the figure for background options.

Colormap value

Click Rotate and then right-click in the figure for colormap options.
You can modify colormap values for the coordinate and range values
available, depending on the type of point cloud displayed.

View

Click Rotate to change the viewing angle of the point cloud figure to
the XZ, ZX,YZ, ZY, XY, or the YX plane. Click Restore View to reset
the viewing angle.

OpenGL Option

pcplayer supports the 'opengl' option for the Renderer figure property only.

Object Functions

hide Hide player figure

isOpen Visible or hidden status for player

show Show player

view Display point cloud

Examples

Terminate a Point Cloud Processing Loop

Create the player and add data.

player = pcplayer([0 1],[0 1],[0 1]);

Display continuous player figure. Use the isOpen function to check if player figure window is open.

while isOpen(player)

ptCloud = pointCloud(rand(1000,3, 'single'));
view(player,ptCloud);

end

Terminate while-loop by closing pcplayer figure window.

See Also
pointCloud

Introduced in R2020b

hide

hide
Hide player figure

Syntax
hide(player)

Description

hide(player) hides the figure. To redisplay the player, use show(player).

Input Arguments

player — Player
object

Video player, specified as a pcplayer object.

Introduced in R2020b

1-183

1 Classes

isOpen

Visible or hidden status for player

Syntax
isOpen(player)

Description

isOpen(player) returns true or false to indicate whether the player is visible.

Input Arguments

player — Player
object

Video player, specified as a pcplayer object.

Introduced in R2020b

1-184

show

show

Show player

Syntax

show(player)

Description

show(player) makes the player figure visible again after closing or hiding it.

Input Arguments

player — Player
object

Player for visualizing data streams, specified as a pcplayer object. Use this method to view the
figure after you have removed it from display. For example, after you x-out of a figure and you want to
view it again. This is particularly useful to use after a while loop that contains display code ends.

Introduced in R2020b

1-185

1 Classes

view
Display point cloud

Syntax

view
view
view
view

player,ptCloud)
player,xyzPoints)
player,xyzPoints,color)
player,xyzPoints, colorMap)

_— o~~~

Description

view(player,ptCloud) displays a point cloud in the pcplayer figure window, player. The
points, locations, and colors are stored in the ptCloud object.

view(player,xyzPoints) displays the points of a point cloud at the locations specified by the
xyzPoints matrix. The color of each point is determined by the z value.

view(player,xyzPoints, color) displays a point cloud with colors specified by color.

view(player,xyzPoints,colorMap) displays a point cloud with colors specified by colorMap.

Input Arguments

ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. The object contains the locations, intensities, and RGB
colors to render the point cloud.

Point Cloud Property Color Rendering Result

Location only Maps the z-value to a color value in the current
color map.

Location and Intensity Maps the intensity to a color value in the current
color map.

Location and Color Use provided color.

Location, Intensity, and Color Use provided color.

player — Player
pcplayer object

Player for visualizing 3-D point cloud data streams, specified as a pcplayer object.

xyzPoints — Point cloud x, y, and z locations
M-by-3 numeric matrix | M-by-N-by-3 numeric matrix

Point cloud x, y, and z locations, specified as either an M-by-3 or an M-by-N-by-3 numeric matrix. The
M-by-N-by-3 numeric matrix is commonly referred to as an organized point cloud. The xyzPoints

1-186

view

numeric matrix contains M or M-by-N [x,y,z] points. The z values in the numeric matrix, which
generally correspond to depth or elevation, determine the color of each point.

color — Point cloud color

1-by-3 RGB vector | short name of color | long name of color | M-by-3 matrix | M-by-N-by-3 matrix

Point cloud color of points, specified as one of:

* RGB triplet

* A color name or a short name

* M-by-3 matrix
* M-by-N-by-3 matrix

Color Name Short Name RGB Triplet Appearance
'red’ ‘r' [1 0 0] —
'green' ‘g’ [0 1 0]

"blue’ ‘b’ [0 0 1] I
‘cyan' ‘c' [0 1 1]

‘magenta’ 'm' [1 0 1] I
'yellow' 'y'! [110]

'black’ 'k' [0 0 0] I
'white' 'w' [11 1] —

You can specify the same color for all points or a different color for each point. When you set color
to single or double, the RGB values range between [0, 1]. When you set color to uint8, the
values range between [0, 255].

Points Input

Color Selection

Valid Values of C

xyzPoints

Same color for all
points

1-by-3 RGB vector, or the short or long name of a color

Different color for
each point

M-by-3 matrix or M-by-N-by-3 matrix containing RGB values for each
point.

colorMap — Point cloud color map

M-by-1 vector | M-by-N matrix

Point cloud color of points, specified as one of:

* M-by-1 vector
* M-by-N matrix

Points Input

Color Selection

Valid Values of C

xyzPoints

Different color for
each point

Vector or M-by-N matrix. The matrix must contain values that are
linearly mapped to a color in the current colormap.

Introduced in R2020b

1-187

1 Classes

1-188

pointCloud

Object for storing 3-D point cloud

Description

The pointCloud object creates point cloud data from a set of points in 3-D coordinate system. The
point cloud data is stored as an object with the properties listed in “Properties” on page 1-189. Use
“Object Functions” on page 1-190 to retrieve, select, and remove desired points from the point cloud
data.

Creation

Syntax

ptCloud
ptCloud

pointCloud(xyzPoints)
pointCloud(xyzPoints,Name,Value)

Description

ptCloud = pointCloud(xyzPoints) returns a point cloud object with coordinates specified by
xyzPoints.

ptCloud = pointCloud(xyzPoints,Name,Value) creates a pointCloud object with properties
specified as one or more Name, Value pair arguments. For example,

pointCloud(xyzPoints, 'Color',[0 O O]) sets the Color property of the point xyzPoints as
[0 0 O]. Enclose each property name in quotes. Any unspecified properties have default values.

Input Arguments

xyzPoints — 3-D coordinate points
M-by-3 list of points | M-by-N-by-3 array for organized point cloud

3-D coordinate points, specified as an M-by-3 list of points or an M-by-N-by-3 array for an organized
point cloud. The 3-D coordinate points specify the x, y, and z positions of a point in the 3-D coordinate
space. The first two dimensions of an organized point cloud correspond to the scanning order from
sensors such as RGBD or lidar. This argument sets the Location property.

Data Types: single | double
Output Arguments

ptCloud — Point cloud
pointCloud object

Point cloud, returned as a pointCloud object with the properties listed in “Properties” on page 1-
189.

pointCloud

Properties

Location — Position of the points in 3-D coordinate space
M-by-3 array | M-by-N-by-3 array

This property is read-only.

Position of the points in 3-D coordinate space, specified as an M-by-3 or M-by-N-by-3 array. Each
entry specifies the x, y, and z coordinates of a point in the 3-D coordinate space. You cannot set this
property as a name-value pair. Use the xyzPoints input argument.

Data Types: single | double

Color — Point cloud color
[1 (default) | M-by-3 array | M-by-N-by-3 array

Point cloud color, specified as an M-by-3 or M-by-N-by-3 array. Use this property to set the color of
points in point cloud. Each entry specifies the RGB color of a point in the point cloud data. Therefore,
you can specify the same color for all points or a different color for each point.

* The specified RGB values must lie within the range [0, 1], when you specify the data type for
Color as single or double.

* The specified RGB values must lie within the range [0, 255], when you specify the data type for
Color asuints8.

Coordinates Valid assignment of Color
M-by-3 array M-by-3 array containing RGB values for each point
M-by-N-by-3 array M-by-N-by-3 array containing RGB values for each point

Data Types: uint8

Normal — Surface normals
[1 (default) | M-by-3 array | M-by-N-by-3 array

Surface normals, specified as a M-by-3 or M-by-N-by-3 array. Use this property to specify the normal
vector with respect to each point in the point cloud. Each entry in the surface normals specifies the x,
y, and z component of a normal vector.

Coordinates Surface Normals
M-by-3 array M-by-3 array, where each row contains a corresponding normal vector.
M-by-N-by-3 array M-by-N-by-3 array containing a 1-by-1-by-3 normal vector for each point.

Data Types: single | double

Intensity — Grayscale intensities
[1 (default) | M-by-1 vector | M-by-N matrix

Grayscale intensities at each point, specified as a M-by-1 vector or M-by-N matrix. The function maps
each intensity value to a color value in the current colormap.

Coordinates Intensity

M-by-3 array M-by-1 vector, where each row contains a corresponding intensity value.

1-189

1 Classes

1-190

Coordinates

Intensity

M-by-N-by-3 array

M-by-N matrix containing intensity value for each point.

Data Types: single | double | uint8

Count — Number of points

positive integer

This property is read-only.

Number of points in the point cloud, stored as a positive integer.

XLimits — Range of x coordinates

1-by-2 vector

This property is read-only.

Range of coordinates along x-axis, stored as a 1-by-2 vector.

YLimits — Range of y coordinates

1-by-2 vector

This property is read-only.

Range of coordinates along y-axis, stored as a 1-by-2 vector.

ZLimits — Range of z coordinates

1-by-2 vector

This property is read-only.

Range of coordinates along z-axis, stored as a 1-by-2 vector.

Object Functions
findNearestNeighbors
findNeighborsInRadius
findPointsInROI
removelnvalidPoints
select

Copy

Tips

Find nearest neighbors of a point in point cloud

Find neighbors within a radius of a point in the point cloud
Find points within a region of interest in the point cloud
Remove invalid points from point cloud

Select points in point cloud

Copy array of handle objects

The pointCloud object is a handle object. If you want to create a separate copy of a point cloud,
you can use the MATLAB copy method.
ptCloudB = copy(ptCloudA)

If you want to preserve a single copy of a point cloud, which can be modified by point cloud functions,
use the same point cloud variable name for the input and output.
ptCloud = pcFunction(ptCloud)

pointCloud

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
* GPU code generation for variable input sizes is not optimized. Consider using constant size inputs
for an optimized code generation.

* GPU code generation supports the 'Color', 'Normal', and 'Intensity' name-value pairs.

* GPU code generation supports the findNearestNeighbors, findNeighborsInRadius,
findPointsInROI, removeInvalidPoints, and select methods.

» For very large inputs, the memory requirements of the algorithm may exceed the GPU device
limits. In such cases, consider reducing the input size to proceed with code generation.

See Also

Objects
pcplayer

Functions

findNearestNeighbors | findNeighborsInRadius | findPointsInROTI |
removeInvalidPoints | select

Introduced in R2020b

1-191

1 Classes

1-192

findNearestNeighbors

Find nearest neighbors of a point in point cloud

Syntax

[indices,dists]
[indices,dists]

findNearestNeighbors (ptCloud, point,K)
findNearestNeighbors(,Name,Value)

Description

[indices,dists] = findNearestNeighbors(ptCloud,point,K) returns the indices for the
K-nearest neighbors of a query point in the input point cloud. ptCloud can be an unorganized or
organized point cloud. The K-nearest neighbors of the query point are computed by using the Kd-tree
based search algorithm.

[indices,dists] = findNearestNeighbors(,Name, Value) specifies options using one or
more name-value arguments in addition to the input arguments in the preceding syntaxes.

Input Arguments

ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

point — Query point
three-element vector of form [x y Zz]

Query point, specified as a three-element vector of form [x y Zz].

K — Number of nearest neighbors
positive integer

Number of nearest neighbors, specified as a positive integer.
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: findNearestNeighbors(ptCloud,point,k, 'Sort"', true)

Sort — Sort indices
false (default) | true

Sort indices, specified as a comma-separated pair of 'Sort' and a logical scalar. When you set Sort
to true, the returned indices are sorted in the ascending order based on the distance from a query
point. To turn off sorting, set Sort to false.

findNearestNeighbors

MaxLeafChecks — Number of leaf nodes to check
Inf (default) | integer

Number of leaf nodes to check, specified as a comma-separated pair consisting of 'MaxLeafChecks'
and an integer. When you set this value to Inf, the entire tree is searched. When the entire tree is
searched, it produces exact search results. Increasing the number of leaf nodes to check increases
accuracy, but reduces efficiency.

Note The name-value argument 'MaxLeafChecks' is valid only with Kd-tree based search method.

Output Arguments

indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains K linear indices of the
nearest neighbors stored in the point cloud.

dists — Distances to query point
column vector

Distances to query point, returned as a column vector. The vector contains the Euclidean distances
between the query point and its nearest neighbors.

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331-340.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

» For code generation in non-host platforms, the value for 'MaxLeafChecks' must be set to the
default value Inf. If you specify values other than Inf, the function generates a warning and
automatically assigns the default value for 'MaxLeafChecks"'.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

* For GPU code generation, the 'MaxLeafChecks' name-value pair option is ignored.

1-193

1 Classes

See Also

Objects
pointCloud

Functions
findNeighborsInRadius | findPointsInROI | removeInvalidPoints | select

Introduced in R2020b

1-194

findNeighborsinRadius

findNeighborsinRadius

Find neighbors within a radius of a point in the point cloud

Syntax

[indices,dists]
[indices,dists]

findNeighborsInRadius(ptCloud, point, radius)
findNeighborsInRadius(,Name,Value)

Description

[indices,dists] = findNeighborsInRadius(ptCloud,point, radius) returns the indices
of neighbors within a radius of a query point in the input point cloud. ptCloud can be an
unorganized or organized point cloud. The neighbors within a radius of the query point are computed
by using the Kd-tree based search algorithm.

[indices,dists] = findNeighborsInRadius (,Name, Value) specifies options using one
or more name-value pair arguments in addition to the input arguments in the preceding syntaxes.

Input Arguments

ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

point — Query point
three-element vector of form [x y Zz]

Query point, specified as a three-element vector of form [x y Zz].

radius — Search radius
scalar

Search radius, specified as a scalar. The function finds the neighbors within the specified radius
around a query point in the input point cloud.

Name-Value Pair Arguments
Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after

other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: findNeighborsInRadius(ptCloud, point, radius, 'Sort', true)

Sort — Sort indices
false (default) | true

1-195

1 Classes

Sort indices, specified as a comma-separated pair of 'Sort' and a logical scalar. When you set Sort
to true, the returned indices are sorted in the ascending order based on the distance from a query
point. To turn off sorting, set Sort to false.

MaxLeafChecks — Number of leaf nodes
Inf (default) | integer

Number of leaf nodes, specified as a comma-separated pair consisting of 'MaxLeafChecks' and an
integer. When you set this value to Inf, the entire tree is searched. When the entire tree is searched,

it produces exact search results. Increasing the number of leaf nodes to check increases accuracy,
but reduces efficiency.

Output Arguments

indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains the linear indices of the
radial neighbors stored in the point cloud.

dists — Distances to query point
column vector

Distances to query point, returned as a column vector. The vector contains the Euclidean distances
between the query point and its radial neighbors.

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331-340.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

» For code generation in non-host platforms, the value for 'MaxLeafChecks' must be set to the
default value Inf. If you specify values other than Inf, the function generates a warning and
automatically assigns the default value for 'MaxLeafChecks"'.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

* For GPU code generation, the 'MaxLeafChecks' name-value pair option is ignored.

1-196

findNeighborsInRadius

See Also

Objects
pointCloud

Functions
findNearestNeighbors | findPointsInROI | removeInvalidPoints | select

Introduced in R2020b

1-197

1 Classes

findPointsIinROI

Find points within a region of interest in the point cloud

Syntax

indices = findPointsInROI(ptCloud, roi)

Description

indices = findPointsInROI(ptCloud, roi) returns the points within a region of interest (ROI)
in the input point cloud. The points within the specified ROI are obtained using a Kd-tree based
search algorithm.

Input Arguments

ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

roi — Region of interest
six-element vector of form [xmin xmax ymin ymax zmin zmax]

Region of interest, specified as a six-element vector of form [xmin xmax ymin ymax zmin zmax],
where:

* xmin and xmax are the minimum and the maximum limits along the x-axis respectively.
* ymin and ymax are the minimum and the maximum limits along the y-axis respectively.
* zmin and zmax are the minimum and the maximum limits along the 2-axis respectively.

Output Arguments

indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains the linear indices of the
ROI points stored in the point cloud.

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331-340.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1-198

findPointsInROI

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also

Objects
pointCloud

Functions
findNearestNeighbors | findNeighborsInRadius | removeInvalidPoints | select

Introduced in R2020b

1-199

1 Classes

1-200

removelnvalidPoints

Remove invalid points from point cloud

Syntax

[ptCloudOut,indices] = removeInvalidPoints(ptCloud)

Description

[ptCloudOut,indices] = removeInvalidPoints(ptCloud) removes points with Inf or NaN
coordinate values from point cloud and returns the indices of valid points.

Input Arguments

ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

Output Arguments

ptCloudOut — Point cloud with points removed
pointCloud object

Point cloud, returned as a pointCloud object with Inf or NaN coordinates removed.

Note The output is always an unorganized (X-by-3) point cloud. If the input ptCloud is an organized
point cloud (M-by-N-by-3), the function returns the output as an unorganized point cloud.

indices — Indices of valid points
vector

Indices of valid points in the point cloud, specified as a vector.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also

Objects
pointCloud

removelnvalidPoints

Functions
findNearestNeighbors | findNeighborsInRadius | findPointsInROI | select

Introduced in R2020b

1-201

1 Classes

1-202

select

Select points in point cloud

Syntax

ptCloudOut = select(ptCloud,indices)

ptCloudOut = select(ptCloud, row,column)
ptCloudOut = select(,'OutputSize',outputSize)
Description

ptCloudOut = select(ptCloud,indices) returns a pointCloud object containing only the
points that are selected using linear indices.

ptCloudOut = select(ptCloud, row,column) returns a pointCloud object containing only the
points that are selected using row and column subscripts. This syntax applies only if the input is an
organized point cloud data of size M-by-N-by-3.

ptCloudOut = select(,'OutputSize',outputSize) returns the selected points as a
pointCloud object of size specified by outputSize.

Input Arguments

ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

indices — Indices of selected points
vector

Indices of selected points, specified as a vector.

row — Row indices
vector

Row indices, specified as a vector. This argument applies only if the input is an organized point cloud
data of size M-by-N-by-3.

column — Column indices
vector

Column indices, specified as a vector. This argument applies only if the input is an organized point
cloud data of size M-by-N-by-3.

outputSize — Size of output point cloud
'selected' (default) | 'full’

Size of the output point cloud, ptCloudOut, specified as 'selected' or 'full'.

select

+ Ifthe sizeis 'selected’, then the output contains only the selected points from the input point
cloud, ptCloud.

o Ifthesizeis 'full', then the output is same size as the input point cloud ptCloud. Cleared
points are filled with NaN and the coloris setto [0 O O].

Output Arguments

ptCloudOut — Selected point cloud
pointCloud object

Point cloud, returned as a pointCloud object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also

Objects
pointCloud

Functions
findNearestNeighbors | findNeighborsInRadius | findPointsInROT |
removeInvalidPoints

Introduced in R2020b

1-203

Methods

2 Methods

applyTransform

Apply forward transformation to mesh vertices

Syntax

transformedMesh = applyTransform(mesh,T)

Description

transformedMesh = applyTransform(mesh,T) applies the forward transformation matrix T to
the vertices of the object mesh.

Examples

Create and Transform Cuboid Mesh
Create an extendedObjectMesh object and transform the object by using a transformation matrix.

Create a cuboid mesh of unit dimensions.

cuboid = extendedObjectMesh('cuboid');

Create a transformation matrix that is a combination of a translation, a scaling, and a rotation.

tform = makehgtform('translate',[0.2 -0.5 0.5],
'scale',[0.5 0.6 0.71],
'Xrotate',pi/4);

Transform the mesh.

transformedCuboid = applyTransform(cuboid,tform);

Visualize the meshes.

subplot(1,2,1);

show(cuboid);

title('Initial Mesh')

subplot(1,2,2);

show(transformedCuboid);
title('Transformed Mesh')

2-2

applyTransform

Transformed Mesh

Initial Mesh

in

=5
(4]

0.2

Input Arguments

mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

T — Transformation matrix
4-by-4 matrix

Transformation matrix applied on the object mesh, specified as a 4-by-4 matrix. The 3-D coordinates
of each point in the object mesh is transformed according to this formula:

[XT; yT; zT; 11 = T*[x; y; z; 1]
XT, yT, and zT are the transformed 3-D coordinates of the point.

Data Types: single | double

Output Arguments

transformedMesh — Transformed object mesh
extendedObjectMesh object

Transformed object mesh, returned as an extended0bjectMesh object.

2-3

2 Methods

See Also

Objects
extendedObjectMesh

Functions
rotate | translate | scale| join | scaleToFit | show

Introduced in R2020b

2-4

join

join
Join two object meshes

Syntax

joinedMesh = join(meshl,mesh2)

Description

joinedMesh = join(meshl,mesh2) joins the object meshes meshl and mesh?2 and returns
joinedMesh with the combined objects.

Examples

Create and Join Two Object Meshes
Create extendedObjectMesh objects and join them together.

Construct two meshes of unit dimensions.

extendedObjectMesh('sphere');
extendedObjectMesh('cuboid');

sph =
cub =

Join the two meshes.

cub = translate(cub,[0 0 1]);
sphCub = join(sph,cub);

Visualize the final mesh.

show(sphCub) ;

2-5

2 Methods

2-6

Input Arguments

meshl — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

mesh2 — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

Output Arguments

joinedMesh — Joined object mesh
extendedObjectMesh object

Joined object mesh, specified as an extendedObjectMesh object.

See Also

Objects
extendedObjectMesh

join

Functions
rotate | translate | scale | applyTransform| scaleToFit | show

Introduced in R2020b

2-7

2 Methods

rotate

Rotate mesh about coordinate axes

Syntax

rotatedMesh = rotate(mesh,orient)

Description

rotatedMesh = rotate(mesh,orient) rotate the mesh object by an orientation, orient.

Examples

Create and Rotate Cuboid Mesh
Create an extendedObjectMesh object and rotate the object.

Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');
Rotate the mesh by 30 degrees around the z axis.
mesh = rotate(mesh,[30 0 0]);

Visualize the mesh.

ax = show(mesh);

2-8

rotate

Input Arguments

mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh ohject.

orient — Description of rotation
3-by-3 orthonormal matrix | quaternion | 1-by-3 vector

Description of rotation for an object mesh, specified as:

* 3-by-3 orthonormal rotation matrix
* quaternion

* 1-by-3 vector, where the elements are positive rotations in degrees about the z, y, and x axes, in
that order.

Output Arguments

rotatedMesh — Rotated object mesh
extendedObjectMesh object

Rotated object mesh, returned as an extendedObjectMesh object.

2-9

2 Methods

See Also

Objects
extendedObjectMesh

Functions
translate | scale | applyTransform| join | scaleToFit | show

Introduced in R2020b

2-10

scale

scale

Scale mesh in each dimension

Syntax

scaledMesh = scale(mesh,scaleFactor)
scaledMesh = scale(mesh,[sx sy sz])
Description

scaledMesh = scale(mesh,scaleFactor) scales the object mesh by scaleFactor.
scaleFactor can be the same for all dimensions or defined separately as elements of a 1-by-3 vector
in the order x, y, and z.

scaledMesh = scale(mesh, [sx sy sz]) scales the object mesh along the dimensions x, y, and z
by the scaling factors sx, sy, and sz.

Examples

Create and Scale Cuboid Mesh
Create an extendedObjectMesh object and scale the object.

Construct a cuboid mesh of unit dimensions.

cuboid = extendedObjectMesh('cuboid');

Scale the mesh by different factors along each of the three axes.

scaledCuboid = scale(cuboid, [100 30 20]);

Visualize the mesh.

show(scaledCuboid);

2-11

2 Methods

Input Arguments

mesh — Extended object mesh
extendedObjectMesh obhject

Extended object mesh, specified as an extendedObjectMesh object.

scaleFactor — Scaling factor
positive real scalar | 1-by-3 vector

Scaling factor for the object mesh, specified as a positive real scalar or as a 1-by-3 vector in the order
X, y, and z.

Data Types: single | double

sx — Scaling factor for x-axis
positive real scalar

Scaling factor for x-axis, specified as a positive real scalar.

Data Types: single | double

sy — Scaling factor for y-axis
positive real scalar

Scaling factor for y-axis, specified as a positive real scalar.

2-12

scale

Data Types: single | double

sz — Scaling factor for z-axis
positive real scalar

Scaling factor for z-axis, specified as a positive real scalar.

Data Types: single | double

Output Arguments

scaledMesh — Scaled object mesh
extendedObjectMesh object

Scaled object mesh, returned as an extendedObjectMesh object.

See Also

Objects
extendedObjectMesh

Functions
rotate | translate | applyTransform| join | scaleToFit | show

Introduced in R2020b

2-13

2 Methods

scaleToFit

Auto-scale object mesh to match specified cuboid dimensions

Syntax

scaledMesh = scaleToFit(mesh,dims)

Description

scaledMesh = scaleToFit(mesh,dims) auto-scales the object mesh to match the dimensions of
a cuboid specified in the structure dims.

Examples

Create and Auto-Scale Sphere Mesh

Create an extendedObjectMesh object and auto-scale the object to the required dimensions.
Construct a sphere mesh of unit dimensions.

sph = extendedObjectMesh('sphere');

Auto-scale the mesh to the dimensions in dims.

dims = struct('Length',5, 'Width',10, 'Height',3,'0riginOffset',[0 O -3]);
sph = scaleToFit(sph,dims);

Visualize the mesh.

show(sph);

2-14

scaleToFit

Input Arguments

mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

dims — Cuboid dimensions
structure

Dimensions of the cuboid to scale an object mesh, specified as a struct with these fields:

Length - Length of the cuboid

Width - Width of the cuboid

Height - Height of the cuboid

OriginOffset - Origin offset in 3-D coordinates

All the dimensions are in meters.

Data Types: struct

2-15

2 Methods

Output Arguments

scaledMesh — Scaled object mesh
extendedObjectMesh object

Scaled object mesh, returned as an extendedObjectMesh object.

See Also

Objects
extendedObjectMesh

Functions
rotate | translate | scale | applyTransform| join | show

Introduced in R2020b

2-16

show

show

Display the mesh as a patch on the current axes

Syntax

show(mesh)
show(mesh, ax)
ax = show(mesh)

Description

show(mesh) displays the extendedObjectMesh as a patch on the current axes. If there are no
active axes, the function creates new axes.

show(mesh,ax) displays the object mesh as a patch on the axes ax.

ax = show(mesh) optionally outputs the handle to the axes where the mesh was plotted.

Examples

Create and Translate Cuboid Mesh

Create an extendedObjectMesh object and translate the object.
Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Translate the mesh by 5 units along the negative y axis.

mesh = translate(mesh,[0 -5 0]);

Visualize the mesh.

ax = show(mesh);
ax.YLim = [-6 0O];

2-17

2 Methods

2-18

Input Arguments

mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

ax — Current axes
axes object

Current axes, specified as an axes object.

See Also

Objects
extendedObjectMesh

Functions
rotate | translate | scale | applyTransform| join | scaleToFit

Introduced in R2020b

0.5

translate

translate

Translate mesh along coordinate axes

Syntax

translatedMesh = translate(mesh,deltaPos)

Description

translatedMesh = translate(mesh,deltaPos) translates the object mesh by the distances
specified by deltaPos along the coordinate axes.

Examples

Create and Translate Cuboid Mesh

Create an extendedObjectMesh object and translate the object.
Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Translate the mesh by 5 units along the negative y axis.

mesh = translate(mesh,[0 -5 0]);

Visualize the mesh.

ax = show(mesh);
ax.YLim = [-6 0O];

2-19

2 Methods

0.5

Input Arguments

mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

deltaPos — Translation vector
three-element real-valued vector

Translation vector for an object mesh, specified as a three-element real-valued vector. The three
elements in the vector define the translation along the x, y, and z axes.

Data Types: single | double

Output Arguments

translatedMesh — Translated object mesh
extendedObjectMesh object

Translated object mesh, returned as an extendedObjectMesh object.

2-20

translate

See Also

Objects
extendedObjectMesh

Functions
rotate | scale | applyTransform| join | scaleToFit | show

Introduced in R2020b

2-21

2 Methods

2-22

control

Control commands for UAV

Syntax

controlStruct = control(uavGuidanceModel)

Description

controlStruct = control(uavGuidanceModel) returns a structure that captures all the
relevant control commands for the specified UAV guidance model. Use the output of this function to
ensure you have the proper fields for your control. Use the control commands as an input to the
derivative function to get the state time-derivative of the UAV.

Examples

Simulate A Multirotor Control Command

This example shows how to use the multirotor guidance model to simulate the change in state of a
UAV due to a command input.

Create the multirotor guidance model.
model = multirotor;
Create a state structure. Specify the location in world coordinates.

s = state(model);
s(1:3) = [3;2;1];

Specify a control command, u, that specified the roll and thrust of the multirotor.

u = control(model);

u.Roll = pi/12;

u.Thrust = 1;

Create a default environment without wind.

e = environment(model);

Compute the time derivative of the state given the current state, control command, and environment.

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the multirotor UAV states as a
13-by-n matrix.

simOut = oded45(@(~,x)derivative(model,x,u,e), [0 3], s);
size(simOut.y)

ans = 1x2

control

13 3536

Plot the change in roll angle based on the simulation output. The roll angle (the X Euler angle) is the
9th row of the simOut.y output.

plot(simOut.y(9,:))

0.25F 1

0.2 J 4

0.05 7

D i i
0 500 1000 1500 2000 2500 3000 3500 4000

Plot the change in the Y and Z positions. With the specified thrust and roll angle, the multirotor
should fly over and lose some altitude. A positive value for Z is expected as positive Z is down.

figure

plot(simOut.y(2,:));

hold on

plot(simOut.y(3,:));
legend('Y-position','Z-position')
hold off

2-23

2 Methods

2-24

14 T T T T T T T
Y-position

Z-position
12 7 7

101 / 1

0 500 1000 1500 2000 2500 3000 3500 4000

You can also plot the multirotor trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 300th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
multirotor.stl file and the positive Z-direction as "down". The displayed view shows the UAV
translating in the Y-direction and losing altitude.

translations = simOut.y(1:3,1:300:end)'; % xyz position
rotations = eul2quat(simOut.y(7:9,1:300:end)"'); % ZYX Euler
plotTransforms(translations, rotations,...

'MeshFilePath', 'multirotor.stl', 'InertialZDirection', "down")
view([90.00 -0.60])

control

0.8 7

L
|
g
~

A
Y,

Y i

on wry
y /,y‘ Y
-1.4 — ’J ’V f/’/ J

-1.6 —

—

.

-1.8

-2.2 7

-2.4 —

-14 12 -10 -8 % -4 -2 0

Simulate A Fixed-Wing Control Command

This example shows how to use the fixedwing guidance model to simulate the change in state of a
UAV due to a command input.

Create the fixed-wing guidance model.
model = fixedwing;
Set the air speed of the vehicle by modifying the structure from the state function.

s = state(model);
s(4) =5; %5 m/s

Specity a control command, u, that maintains the air speed and gives a roll angle of pi/12.
u = control(model);

u.RollAngle = pi/12;

u.AirSpeed = 5;

Create a default environment without wind.

e = environment (model);

Compute the time derivative of the state given the current state, control command, and environment.

2-25

2 Methods

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the fixed-wing UAV states based
on this simulation.

simOut = oded45(@(~,x)derivative(model,x,u,e), [0 50], s);
size(simOut.y)

ans = 1x2

8 904

Plot the change in roll angle based on the simulation output. The roll angle is the 7th row of the
simOut.y output.

plot(simOut.y(7,:))

D3 T T T T T T T T T

0.25]

0.1]

0.05[]

0 00 200 300 400 500 600 VOO 800 200 1000

You can also plot the fixed-wing trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 30th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
fixedwing.stl file and the positive Z-direction as "down". The displayed view shows the UAV
making a constant turn based on the constant roll angle.

downsample = 1:30:size(simOut.y,2);

translations = simOut.y(1l:3,downsample)'; % xyz-position
rotations = eul2quat([simOut.y(5,downsample)',simOut.y(6,downsample)’',simOut.y(7,downsample)']);

2-26

control

plotTransforms(translations, rotations, ...
'MeshFilePath', 'fixedwing.stl', 'InertialZDirection', "down")
hold on
plot3(simOut.y(1,:),-simOut.y(2,:),simOut.y(3,:),"'--b') % full path
xlim([-10.0 10.0])
ylim([-20.0 5.0])
zlim([-0.5 4.00])
view([-45 90])
hold off

Input Arguments

uavGuidanceModel — UAV guidance model
fixedwing object | multirotor object

UAV guidance model, specified as a fixedwing or multirotor object.

Output Arguments

controlStruct — Control commands for UAV
structure

Control commands for UAV, returned as a structure.

2-27

2 Methods

For multirotor UAVs, the guidance model is approximated as separate PD controllers for each
command. The elements of the structure are control commands:

* Roll - Roll angle in radians.

* Pitch - Pitch angle in radians.

* YawRate - Yaw rate in radians per second. (D = 0. P only controller)

* Thrust - Vertical thrust of the UAV in Newtons. (D = 0. P only controller)

For fixed-wing UAVSs, the model assumes the UAV is flying under the coordinated-turn condition. The
guidance model equations assume zero side-slip. The elements of the structure are:

* Height - Altitude above the ground in meters.
* Airspeed - UAV speed relative to wind in meters per second.

* RollAngle - Roll angle along body forward axis in radians. Because of the coordinated-turn
condition, the heading angular rate is based on the roll angle.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
ode45 | derivative | environment | state | plotTransforms

Objects
fixedwing | multirotor

Blocks
Waypoint Follower | UAV Guidance Model

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

2-28

derivative

derivative

Time derivative of UAV states

Syntax

stateDerivative = derivative(uavGuidanceModel, state,control,environment)

Description

stateDerivative = derivative(uavGuidanceModel, state,control,environment)
determines the time derivative of the state of the UAV guidance model using the current state,
control commands, and environmental inputs. Use the state and time derivative with ode45 to
simulate the UAV.

Examples

Simulate A Multirotor Control Command

This example shows how to use the multirotor guidance model to simulate the change in state of a
UAV due to a command input.

Create the multirotor guidance model.
model = multirotor;
Create a state structure. Specify the location in world coordinates.

s = state(model);
s(1:3) = [3;2;1];

Specify a control command, u, that specified the roll and thrust of the multirotor.

u = control(model);

u.Roll = pi/12;

u.Thrust = 1;

Create a default environment without wind.

e = environment(model);

Compute the time derivative of the state given the current state, control command, and environment.

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the multirotor UAV states as a
13-by-n matrix.

simOut = oded45(@(~,x)derivative(model,x,u,e), [0 3], s);
size(simOut.y)

ans = 1x2

2-29

2 Methods

13 3536

Plot the change in roll angle based on the simulation output. The roll angle (the X Euler angle) is the
9th row of the simOut.y output.

plot(simOut.y(9,:))

025} [1

0.2 ! 7

0.05

D i
0 500 1000 1500 2000 2500 3000 3500 4000

Plot the change in the Y and Z positions. With the specified thrust and roll angle, the multirotor
should fly over and lose some altitude. A positive value for Z is expected as positive Z is down.

figure

plot(simOut.y(2,:));

hold on

plot(simOut.y(3,:));
legend('Y-position','Z-position')
hold off

2-30

derivative

14 T T T T T T T
Y-position

Z-position
12 7 7

101 / 1

0 500 1000 1500 2000 2500 3000 3500 4000

You can also plot the multirotor trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 300th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
multirotor.stl file and the positive Z-direction as "down". The displayed view shows the UAV
translating in the Y-direction and losing altitude.

translations = simOut.y(1:3,1:300:end)'; % xyz position
rotations = eul2quat(simOut.y(7:9,1:300:end)"'); % ZYX Euler
plotTransforms(translations, rotations,...

'MeshFilePath', 'multirotor.stl', 'InertialZDirection', "down")
view([90.00 -0.60])

2-31

2 Methods

0.8 7

L
|
g
~

A
Y,

Y i

on wry
y /,y‘ Y
-1.4 — ’J ’V f/’/ J

-1.6 —

—

.

-1.8

-2.2 7

-2.4 —

-14 12 -10 -8 % -4 -2 0

Simulate A Fixed-Wing Control Command

This example shows how to use the fixedwing guidance model to simulate the change in state of a
UAV due to a command input.

Create the fixed-wing guidance model.
model = fixedwing;
Set the air speed of the vehicle by modifying the structure from the state function.

s = state(model);
s(4) =5; %5 m/s

Specity a control command, u, that maintains the air speed and gives a roll angle of pi/12.
u = control(model);

u.RollAngle = pi/12;

u.AirSpeed = 5;

Create a default environment without wind.

e = environment (model);

Compute the time derivative of the state given the current state, control command, and environment.

2-32

derivative

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the fixed-wing UAV states based
on this simulation.

simOut = oded45(@(~,x)derivative(model,x,u,e), [0 50], s);
size(simOut.y)

ans = 1x2

8 904

Plot the change in roll angle based on the simulation output. The roll angle is the 7th row of the
simOut.y output.

plot(simOut.y(7,:))

D3 T T T T T T T T T

0.25]

0.1]

0.05[]

0 ! ! L ! ! ! ! ! !
0 00 200 300 400 500 600 VOO 800 200 1000

You can also plot the fixed-wing trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 30th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
fixedwing.stl file and the positive Z-direction as "down". The displayed view shows the UAV
making a constant turn based on the constant roll angle.

downsample = 1:30:size(simOut.y,2);

translations = simOut.y(1l:3,downsample)'; % xyz-position
rotations = eul2quat([simOut.y(5,downsample)',simOut.y(6,downsample)’',simOut.y(7,downsample)']);

2-33

2 Methods

plotTransforms(translations, rotations, ...
'MeshFilePath', 'fixedwing.stl', 'InertialZDirection', "down")
hold on
plot3(simOut.y(1,:),-simOut.y(2,:),simOut.y(3,:),"'--b') % full path
xlim([-10.0 10.0])
ylim([-20.0 5.0])
zlim([-0.5 4.00])
view([-45 90])
hold off

Input Arguments

uavGuidanceModel — UAV guidance model
fixedwing object | multirotor object

UAV guidance model, specified as a fixedwing or multirotor object.

state — State vector
eight-element vector | thirteen-element vector

State vector, specified as a eight-element or thirteen-element vector. The vector is always filled with
zeros. Use this function to ensure you have the proper size for your state vector.

For fixed-wing UAVSs, the state is an eight-element vector:

2-34

derivative

* North - Position in north direction in meters.

* East - Position in east direction in meters.

* Height - Height above ground in meters.

* AirSpeed - Speed relative to wind in meters per second.

* HeadingAngle - Angle between ground velocity and north direction in radians.

+ FlightPathAngle - Angle between ground velocity and north-east plane in radians.

* RollAngle - Angle of rotation along body x-axis in radians per second.

* RollAngleRate - Angular velocity of rotation along body x-axis in radians per second.

For multirotor UAVs, the state is a thirteen-element vector in this order:

* World Position - [x y z] in meters.

* World Velocity - [vx vy vz] in meters per second.

* Euler Angles (ZYX) - [psi theta phi] in radians.

* Body Angular Rates - [p g r] in radians per second.
* Thrust - F in Newtons.

environment — Environmental input parameters
structure

Environmental input parameters, returned as a structure. To generate this structure, use
environment.

For fixed-wing UAVSs, the fields of the structure are WindNorth, WindEast,WindDown, and Gravity.
Wind speeds are in meters per second, and negative speeds point in the opposite direction. Gravity is
in meters per second squared (default 9.81).

For multirotor UAVs, the only element of the structure is Gravity (default 9.81) in meters per
second squared.

control — Control commands for UAV
structure

Control commands for UAYV, specified as a structure. To generate this structure, use control.

For multirotor UAVs, the guidance model is approximated as separate PD controllers for each
command. The elements of the structure are control commands:

* Roll - Roll angle in radians.

* Pitch - Pitch angle in radians.

* YawRate - Yaw rate in radians per second. (D = 0. P only controller)

* Thrust - Vertical thrust of the UAV in Newtons. (D = 0. P only controller)

For fixed-wing UAVSs, the model assumes the UAV is flying under the coordinated-turn condition. The
Guidance Model equations assume zero side-slip. The elements of the bus are:

* Height - Altitude above the ground in meters.

* Airspeed - UAV speed relative to wind in meters per second.

* RollAngle - Roll angle along body forward axis in radians. Because of the coordinated-turn
condition, the heading angular rate is based on the roll angle.

2-35

2 Methods

Output Arguments

stateDerivative — Time derivative of state
vector

Time derivative of state, returned as a vector. The time derivative vector has the same length as the
input state.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
ode45 | control | derivative | environment | state | plotTransforms

Objects
fixedwing | multirotor

Blocks
Waypoint Follower | UAV Guidance Model

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

2-36

environment

environment

Environmental inputs for UAV

Syntax

envStruct = environment (uavGuidanceModel)

Description

envStruct = environment(uavGuidanceModel) returns a structure that captures all the
relevant environmental variables for the specified UAV guidance model. Use this function to ensure
you have the proper fields for your environmental parameters. Use the environmental inputs as an
input to the derivative function to get the state time-derivative of the UAV.

Examples

Simulate A Multirotor Control Command

This example shows how to use the multirotor guidance model to simulate the change in state of a
UAV due to a command input.

Create the multirotor guidance model.
model = multirotor;
Create a state structure. Specify the location in world coordinates.

s = state(model);
s(1:3) = [3;2;1];

Specify a control command, u, that specified the roll and thrust of the multirotor.

u = control(model);

u.Roll = pi/12;

u.Thrust = 1;

Create a default environment without wind.

e = environment(model);

Compute the time derivative of the state given the current state, control command, and environment.

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the multirotor UAV states as a
13-by-n matrix.

simOut = oded45(@(~,x)derivative(model,x,u,e), [0 3], s);
size(simQOut.y)

ans = 1x2

2-37

2 Methods

13 3536

Plot the change in roll angle based on the simulation output. The roll angle (the X Euler angle) is the
9th row of the simOut.y output.

plot(simOut.y(9,:))

025} [1

0.2 ! 7

0.05

D i
0 500 1000 1500 2000 2500 3000 3500 4000

Plot the change in the Y and Z positions. With the specified thrust and roll angle, the multirotor
should fly over and lose some altitude. A positive value for Z is expected as positive Z is down.

figure

plot(simOut.y(2,:));

hold on

plot(simOut.y(3,:));
legend('Y-position','Z-position')
hold off

2-38

environment

14 T T T T T T T
Y-position

Z-position
12 7 7

101 / 1

0 500 1000 1500 2000 2500 3000 3500 4000

You can also plot the multirotor trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 300th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
multirotor.stl file and the positive Z-direction as "down". The displayed view shows the UAV
translating in the Y-direction and losing altitude.

translations = simOut.y(1:3,1:300:end)'; % xyz position
rotations = eul2quat(simOut.y(7:9,1:300:end)"'); % ZYX Euler
plotTransforms(translations, rotations,...

'MeshFilePath', 'multirotor.stl', 'InertialZDirection', "down")
view([90.00 -0.60])

2-39

2 Methods

0.8 7

L
|
g
~

A
Y,

Y i

on wry
y /,y‘ Y
-1.4 — ’J ’V f/’/ J

-1.6 —

—

.

-1.8

-2.2 7

-2.4 —

-14 12 -10 -8 % -4 -2 0

Simulate A Fixed-Wing Control Command

This example shows how to use the fixedwing guidance model to simulate the change in state of a
UAV due to a command input.

Create the fixed-wing guidance model.
model = fixedwing;
Set the air speed of the vehicle by modifying the structure from the state function.

s = state(model);
s(4) =5; %5 m/s

Specity a control command, u, that maintains the air speed and gives a roll angle of pi/12.
u = control(model);

u.RollAngle = pi/12;

u.AirSpeed = 5;

Create a default environment without wind.

e = environment (model);

Compute the time derivative of the state given the current state, control command, and environment.

2-40

environment

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the fixed-wing UAV states based
on this simulation.

simOut = oded45(@(~,x)derivative(model,x,u,e), [0 50], s);
size(simOut.y)

ans = 1x2

8 904

Plot the change in roll angle based on the simulation output. The roll angle is the 7th row of the
simOut.y output.

plot(simOut.y(7,:))

D3 T T T T T T T T T

0.25 -

0.1]

0.05[-

0 ! ! L ! ! ! ! ! !
0 00 200 300 400 500 600 VOO 800 200 1000

You can also plot the fixed-wing trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 30th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
fixedwing.stl file and the positive Z-direction as "down". The displayed view shows the UAV
making a constant turn based on the constant roll angle.

downsample = 1:30:size(simOut.y,2);

translations = simOut.y(1l:3,downsample)'; % xyz-position
rotations = eul2quat([simOut.y(5,downsample)',simOut.y(6,downsample)’',simOut.y(7,downsample)']);

2-41

2 Methods

plotTransforms(translations, rotations, ...
'MeshFilePath', 'fixedwing.stl', 'InertialZDirection', "down")
hold on
plot3(simOut.y(1,:),-simOut.y(2,:),simOut.y(3,:),"'--b') % full path
xlim([-10.0 10.0])
ylim([-20.0 5.0])
zlim([-0.5 4.00])
view([-45 90])
hold off

Input Arguments

uavGuidanceModel — UAV guidance model
fixedwing object | multirotor object

UAV guidance model, specified as a fixedwing or multirotor object.

Output Arguments

envStruct — Environmental input parameters
structure

Environmental input parameters, returned as a structure.

2-42

environment

For fixed-wing UAVs, the fields of the structure are WindNorth, WindEast,WindDown, and Gravity.
Wind speeds are in meters per second and negative speeds point in the opposite direction. Gravity
is in meters per second squared (default 9.81).

For multirotor UAVs, the only element of the structure is Gravity (default 9.81) in meters per
second.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
oded45 | control | derivative | state | plotTransforms

Objects
fixedwing | multirotor

Blocks
Waypoint Follower | UAV Guidance Model

Topics
“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

2-43

2 Methods

2-44

state

UAV state vector

Syntax

stateVec = state(uavGuidanceModel)

Description

stateVec = state(uavGuidanceModel) returns a state vector for the specified UAV guidance
model. The vector is always filled with zeros. Use this function to ensure you have the proper size for
your state vector. Use the state vector as an input to the derivative function or when simulating
the UAV using ode45.

Examples

Simulate A Multirotor Control Command

This example shows how to use the multirotor guidance model to simulate the change in state of a
UAV due to a command input.

Create the multirotor guidance model.
model = multirotor;
Create a state structure. Specify the location in world coordinates.

s = state(model);
s(1:3) = [3;2;1];

Specify a control command, u, that specified the roll and thrust of the multirotor.

u = control(model);

u.Roll = pi/12;

u.Thrust = 1;

Create a default environment without wind.

e = environment(model);

Compute the time derivative of the state given the current state, control command, and environment.

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the multirotor UAV states as a
13-by-n matrix.

simOut = oded45(@(~,x)derivative(model,x,u,e), [0 3], s);
size(simQOut.y)

ans = 1x2

state

13 3536

Plot the change in roll angle based on the simulation output. The roll angle (the X Euler angle) is the
9th row of the simOut.y output.

plot(simOut.y(9,:))

0.25F 1

0.2 J 4

0.05 7

D i i
0 500 1000 1500 2000 2500 3000 3500 4000

Plot the change in the Y and Z positions. With the specified thrust and roll angle, the multirotor
should fly over and lose some altitude. A positive value for Z is expected as positive Z is down.

figure

plot(simOut.y(2,:));

hold on

plot(simOut.y(3,:));
legend('Y-position','Z-position')
hold off

2-45

2 Methods

2-46

14 T T T T T T T
Y-position

Z-position
12 7 7

101 / 1

0 500 1000 1500 2000 2500 3000 3500 4000

You can also plot the multirotor trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 300th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
multirotor.stl file and the positive Z-direction as "down". The displayed view shows the UAV
translating in the Y-direction and losing altitude.

translations = simOut.y(1:3,1:300:end)'; % xyz position
rotations = eul2quat(simOut.y(7:9,1:300:end)"'); % ZYX Euler
plotTransforms(translations, rotations,...

'MeshFilePath', 'multirotor.stl', 'InertialZDirection', "down")
view([90.00 -0.60])

state

0.8 7

L
|
g
~

A
Y,

Y i

on wry
y /,y‘ Y
-1.4 — ’J ’V f/’/ J

-1.6 —

—

.

-1.8

-2.2 7

-2.4 —

-14 12 -10 -8 % -4 -2 0

Simulate A Fixed-Wing Control Command

This example shows how to use the fixedwing guidance model to simulate the change in state of a
UAV due to a command input.

Create the fixed-wing guidance model.
model = fixedwing;
Set the air speed of the vehicle by modifying the structure from the state function.

s = state(model);
s(4) =5; %5 m/s

Specity a control command, u, that maintains the air speed and gives a roll angle of pi/12.
u = control(model);

u.RollAngle = pi/12;

u.AirSpeed = 5;

Create a default environment without wind.

e = environment (model);

Compute the time derivative of the state given the current state, control command, and environment.

2-47

2 Methods

sdot = derivative(model,s,u,e);

Simulate the UAV state using ode45 integration. The y field outputs the fixed-wing UAV states based
on this simulation.

simOut = oded45(@(~,x)derivative(model,x,u,e), [0 50], s);
size(simOut.y)

ans = 1x2

8 904

Plot the change in roll angle based on the simulation output. The roll angle is the 7th row of the
simOut.y output.

plot(simOut.y(7,:))

D3 T T T T T T T T T

0.25]

0.1]

0.05[]

0 00 200 300 400 500 600 VOO 800 200 1000

You can also plot the fixed-wing trajectory using plotTransforms. Create the translation and
rotation vectors from the simulated state. Downsample (every 30th element) and transpose the
simOut elements, and convert the Euler angles to quaternions. Specify the mesh as the
fixedwing.stl file and the positive Z-direction as "down". The displayed view shows the UAV
making a constant turn based on the constant roll angle.

downsample = 1:30:size(simOut.y,2);

translations = simOut.y(1l:3,downsample)'; % xyz-position
rotations = eul2quat([simOut.y(5,downsample)',simOut.y(6,downsample)’',simOut.y(7,downsample)']);

2-48

state

plotTransforms(translations, rotations, ...
'MeshFilePath', 'fixedwing.stl', 'InertialZDirection', "down")
hold on
plot3(simOut.y(1,:),-simOut.y(2,:),simOut.y(3,:),"'--b') % full path
xlim([-10.0 10.0])
ylim([-20.0 5.0])
zlim([-0.5 4.00])
view([-45 90])
hold off

Input Arguments

uavGuidanceModel — UAV guidance model
fixedwing object | multirotor object

UAV guidance model, specified as a fixedwing or multirotor object.

Output Arguments

stateVec — State vector
zeros(7,1) | zeros(13,1)

State vector, returned as a seven-element or thirteen-element vector. The vector is always filled with
zeros. Use this function to ensure you have the proper size for your state vector.

2-49

2 Methods

2-50

For fixed-wing UAVs, the state is an eight-element vector:

* North - Position in north direction in meters.

» East - Position in east direction in meters.

* Height - Height above ground in meters.

* AirSpeed - Speed relative to wind in meters per second.

* HeadingAngle - Angle between ground velocity and north direction in radians.

* FlightPathAngle - Angle between ground velocity and north-east plane in radians.

* RollAngle - Angle of rotation along body x-axis in radians.

* RollAngleRate - Angular velocity of rotation along body x-axis in radians per second.

For multirotor UAVs, the state is a thirteen-element vector in this order:

* World Position - [X y z] in meters.

* World Velocity - [vx vy vz] in meters per second.

* FEuler Angles (ZYX) - [psi theta phi] in radians.

* Body Angular Rates - [p g r] in radians per second.
* Thrust - F in Newtons.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
ode45 | control | derivative | environment | state | plotTransforms

Objects
fixedwing | multirotor

Blocks
Waypoint Follower | UAV Guidance Model

Topics

“Approximate High-Fidelity UAV model with UAV Guidance Model block”
“Tuning Waypoint Follower for Fixed-Wing UAV”

Introduced in R2018b

checkSignal

checkSignal

Check mapped signal

Syntax

[summary,errorIndex] = checkSignal(mapper,logData)
[summary,errorIndex] = checkSignal(,Name,Value)
Description

[summary,errorIndex] = checkSignal(mapper,logData) checks mapped signals stored in
mapper using the imported flight log LogData. Import your flight log using mavlinktlog or
ulogreader.

[summary,errorIndex] = checkSignal(,Name, Value) specifies options using one or
more name-value pair arguments in addition to the input arguments in the previous syntax. For
example, 'Preview', "on" shows a preview of the extracted signal.

Examples

Check Mapped Signals Using Flight Log Data

Create a flightLogSignalMapping object for the ULOG file.
mapping = flightLogSignalMapping("ulog");

Load the ULOG file. Specify the relative path of the file.
logData = ulogreader("flight.ulg");

Check all the mapped signals stored in the flightLogSignalMapping object using the imported
flight log.

[summary,errorIndex] = checkSignal(mapping, logData)

SignalName: Accel
Pass

SignalName: Gyro

Pass

SignalName: Mag

Pass

SignalName: Barometer
Pass

SignalName: GPS

Pass

2-51

2 Methods

SignalName: LocalNED

Pass

SignalName: LocalENU

Pass

SignalName: LocalNEDVel

Pass

SignalName: LocalENUVel

Pass

SignalName: LocalNEDTarget

Unable to extract vehicle local position value from log data
SignalName: LocalENUTarget

Unable to extract vehicle local position value from log data
SignalName: LocalNEDVelTarget

Unable to extract vehicle local velocity value from log data
SignalName: LocalENUVelTarget

Unable to extract vehicle local velocity value from log data
SignalName: AttitudeEuler

Pass

SignalName: AttitudeRate

Unable to extract attitude rate value from log data
SignalName: AttitudeTargetEuler

Pass

SignalName: Airspeed

Pass

SignalName: Battery

Pass

summary=1x18 struct array with fields:
SignalName
Result

errorIndex = 1Ix5

10 11 12 13 15

Check specific set of signals.

[summary,errorIndex] = checkSignal(mapping,logData,"Signal",["Accel" "Gyro"]l);

SignalName: Accel
Pass

SignalName: Gyro
Pass

2-52

checkSignal

Input Arguments

mapper — Flight log signal mapping object
flightLogSignalMapping object

Flight log signal mapping object, specified as a flightLogSignalMapping object.

logData — Data from flight log
table | ulogreader object | mavlinktlog object

Data from the flight log, specified as a table, ulogreader object, mavlinktlog object, or other
custom formats.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Preview', "on" shows a preview of the extracted signal.

Signal — Signal names to check
string array | cell array of character vectors

Signal names to check, specified as the comma-separated pair consisting of 'Signal' and a string
array or cell array of character vectors.

Example: ["Accel", "Gyro"]

Data Types: char | string

Preview — Preview of extracted signals in plot
"off" (default) | "on"

Preview of extracted signals in a plot, specified as the comma-separated pair consisting of
'"Preview' and "on" or "off". Specify "on" to display plots of the signals in the order the mapped
signals are stored. Press any key to display the next signal. Press Q to close the figure.

Example: 'Preview', "on

Data Types: char | string

Output Arguments

summary — Summary of signal extraction
structure

Summary of signal extraction, returned as a structure with these fields:

* SignalName -- Name of the mapped signals as a string
* Result -- Status of signal extraction as a character vector

2-53

2 Methods

errorIndex — Indices of unsuccessful signal extraction
vector of positive integers

Indices of unsuccessful signal extraction, returned as a vector of positive integers.

See Also

Objects
flightLogSignalMapping | ulogreader | mavlinktlog

Functions
copy | extract | info | mapSignal | show | updatePlot

Introduced in R2021a

2-54

copy

copy

Create deep copy of flight log signal mapping object

Syntax

mapperCopy = copy(mapper)

Description

mapperCopy = copy(mapper) creates a deep copy of the flightLogSignalMapping object with
the same properties.

Input Arguments

mapper — Flight log signal mapping object
flightLogSignalMapping object

Flight log signal mapping object, specified as a flightLogSignalMapping object.

Output Arguments

mapperCopy — Copy of flight log signal mapping object
flightLogSignalMapping object

Copy of flight log signal mapping object, returned as a flightLogSignalMapping object with the
same properties.

See Also

Objects
flightLogSignalMapping

Functions
checkSignal | extract | info | mapSignal | show | updatePlot

Introduced in R2021a

2-55

2 Methods

2-56

extract

Extract UAV flight log signals as timetables

Syntax

signals = extract(mapper,data,signalNames)

signals = extract(mapper,data,signalNames,timeStart)

signals = extract(mapper,data,signalNames,timeStart, timeEnd)
Description

signals = extract(mapper,data,signalNames) obtains signals with the given names
signalNames as timetables from imported flight log, data. Import your flight log using
mavlinktlog or ulogreader.

signals = extract(mapper,data,signalNames,timeStart) obtains signals with the given
names with time stamps greater than or equal to timeStart.

signals = extract(mapper,data,signalNames,timeStart,timeEnd) obtains signals with
the given names with time stamps within the interval [timeStart timeEnd] inclusive.

Input Arguments

mapper — Flight log signal mapping
flightLogSignalMapping object

Flight log signal mapping object, specified as a flightLogSignalMapping object.

data — Flight log data
table

Flight log data, specified as a table.

signalNames — Signal names to extract from log
string array

Signal names to extract from log, specified as a string array.

timeStart — Initial time stamp for signal
duration object

Initial time stamp for signal to extract, specified as a duration object.

timeEnd — Final time stamp for signal
duration object

Final time stamp for signal to extract, specified as a duration object.

extract

Output Arguments

signals — Extracted signals
cell array

Extracted signals, returned as a cell array. Each signal name maps to an element of the cell array.

See Also
flightLogSignalMapping | mavlinktlog | info | mapSignal | show | updatePlot

Introduced in R2020b

2-57

2 Methods

2-58

info
Signal mapping and plot information for UAV log signal mapping

Syntax

signalTable = info(mapper, "Signal")

signalTable = info(mapper,"Signal", signalNames)
plotTable = info(mapper, "Plot")

signalTable = info(mapper, "Plot",plotNames)

Description

signalTable = info(mapper, "Signal") generates a table of information for the Predefined
Signals on page 2-59 available and the signals mapped in the flight log signal mapping object. The
table contains a list of signal names, field names, units, and whether the signal has a value function
mapped to it (IsMapped column).

signalTable = info(mapper,"Signal",signalNames) generates the signal table for the
specified signal names.

plotTable = info(mapper, "Plot") generates a table of information for the Predefined Plots on
page 2-60 and custom plots available in the flight log signal mapping object. The table contains plots
names, required signals, missing signals, and whether the plot is ready to plot.

signalTable = info(mapper, "Plot",plotNames) generates the plot table for the specified
plot names.

Input Arguments

mapper — Flight log signal mapping
flightLogSignalMapping object

Flight log signal mapping object, specified as a flightLogSignalMapping object.

signalNames — Signal names
string array

Signal names, specified as a string array.

plotNames — Plot names
string array

Plot names, specified as a string array.

Output Arguments

signalTable — Table of available signals
table

info

Table of available signals, returned as a table. This table includes preconfigured signals and any
signals you added to the flight log signal mapping object using mapSignal. The table has these
fields:

* SignalName -- String scalar of the name of the signal.

» IsMapped -- Logical indicating if the signal is properly mapped. To update signal mapping, see
mapSignal.

* SignalFields -- String scalar that lists the fields of the signal.
* FieldUnits -- String scalar that lists the units of each field.

plotTable — Table of available plots
table

Table of available plots, returned as a table. This table includes preconfigured plots and any plots you
added to the flight log signal mapping object using updatePlot. The table has these fields:
* PlotName -- String scalar of the name of the plot.

* ReadyToPlot -- Logical indicating if the plot is configured properly. To update the plot, see
updatePlot.

* MissingSignals -- String scalar that lists the signals that need to be mapped using mapSigna'l.
* RequiredSignals -- String scalar that lists all required signals for a specific plot name.

More About

Predefined Signals

A set of predefined signals and plots are configured in the flightLogSignalMapping object.
Depending on your log file type, you can map specific signals to the provided signal names using
mapSignal. You can also call info to view the table for your log type and see whether you have
already mapped a signal to that plot type.

Specify the SignalName as the input to mapSignal. Signals with the format SignalName# support
mapping multiple signals of the same type. Replace # with incremental integers for each signal name
when calling mapSignal.

The predefined signals have specific names and required fields when mapping the signal.

2-59

2 Methods

2-60

Predefined Signals

IMU sensor

Signal Name Description Fields Uni

Accel# Raw magnetometer reading from [ax ay az] m/s
IMU sensor

Airspeed# Airspeed reading of pressure [PressDiff, AirSpeed, Temp] Pa, :
differential, indicated air speed, and
temperature

AttitudeEuler Attitude of UAV in Euler (ZYX) form |[Roll, Pitch, Yaw] radi

AttitudeRate Angular velocity along each body axis | [xRotRate, yRotRate, zRotRate] rad/

AttitudeTargetEule |Target attitude of UAV in Euler (ZYX) | [TargetRoll, TargetPitch, radi

r form TargetYaw]

Barometer# Barometer readings for absolute [PressAbs, PressAltitude, Temp] Pa, :
pressure, relative pressure, and
temperature

Battery Voltage readings for battery and [Voltl,Volt2, . Voltle, V, %
remaining battery capacity (%) RemainingCapacity

GPS# GPS readings for latitude, longitude, |[lat, long, alt, groundspeed, deg:
altitude, ground speed, course angle, |courseAngle, satellites] deg:
and number of satellites visible

Gyro# Raw body angular velocity readings |[GyroX, GyroY, GyroZ] rad/
from IMU sensor

LocalNED Local NED coordinates estimated by |[XNED, yNED, zNED] met
the UAV

LocalNEDTarget Target location in local NED [xTarget, yTarget, zTarget] met
coordinates

LocalNEDVel Local NED velocity estimated by the |[vx vy vz] m/s
UAV

LocalNEDVelTarget |Target velocity in NED in local NED |[vxTarget, vyTarget, vzTarget] m/s

Mag# Raw magnetometer reading from [x y z] Gs

Predefined Plots

After mapping signals to the list of predefined signals using mapSignal, specific plots are made
available when calling show. To view a list of available plots and their associated signals for your
specific object, call info(mapper, "Plot"). If you want to define custom plots based on signals, use

updatePlot.

Each predefined plot has a set of required signals that must be mapped.

info

Predefined Plots

Attitude Stacked plot of roll, pitch, yaw angles and |AttitudeEuler,
body rotation rates AttitudeRate, Gyro#
Attitude

0.2

Roll gl lL—PLJ——LIMqu—mJA—LwTMLm—aL_ﬁ
02}

i1 ﬂ I .
Pitch g5

2 _ . _rr,_,——J__
vau EH_UI L,.Af_' _,,_JJ"JJ J“Jw“fr
= g™
0.5F — EstimatedBody Rate
RolRale 0 — L
05}
05F — EstimatedBody Rate
PitchRate 0 Cym
-115: ||||||'[|[|||||||||| 1N

YawRate ﬂ-g_ I | - ||JJ-L|ILH | J TI lli*-hl]“lﬂ | |.||'|| —Eymgﬂmmm
-05 | | | | |] | -

200 400 6p0 800 1000 1200 1400 1600

Time Teu:

2-61

2 Methods

Plot Description Signals
AttitudeControl Estimated attitude of UAV and the attitude |AttitudeEuler,
target set point AttitudeTargetEuler
AttitudeControl
1 ——Roll
0.2 h — RollTanget
Rall |
RollTarget ®-1 | JJ_ |
.;}:_H"" -u--a_.._—lllll—--..__--w-._ k T P _J\|:L- = —_—-—'—u—%} it J“u-m——
Pitch
ok T e T e PlichTapget
Pitch l
PitchTarget.p 2 \
||'l'
p4ak
Yaw
2r]] YawTarget
aw
YawTarget
i
i i i i R R LII i i s i i
560 570 580 580 600 610 620 630 &40
Time =80
Battery Battery consumption plot Battery

2-62

info

Compass

| S

=]

0.5f -
Mag'
0s jL Jj nL‘L

1.8p

MagZ
= 161

f

Estimated yaw and magnetometer
readings

Compass
i —
. —

i
= PPy o

AWAL

800 1000 1200 1400 1600
Time =80

AttitudeEuler, Mag#,
GPS#

2-63

2 Methods

2-64

Plot Description Signals
GPS2D Raw Lat-Lon plot for GPS sensor readings. |GPS#
45°46'24 4"N | ' [=
GPS
GPS3
45°46'24 2N g
o A45°4624'N [.
=
=
T
-
45°46'23.8"N 7
d
45°46'23.6"N 7
5m .""‘/
= Esri, HERE, Garmin, INCREMENT P, NG#A,
. UsSGs
15°55'03.5"E 15°65'04"E 15°55'04 .5"E 15°p5'05"E
Longitude

info

Height

GPS&Barometer

FusedHeight

538.2

5381

538

537.9f

49,991

43,98

4887

Stacked plots of barometer reading, GPS
altitude reading, and fused height estimate

Height

Barometer#, GPS#,

LocalNED
GPS
———— Barometgr
-

560

i
570

Time

2-65

2 Methods

Speed

s HL“H&

at

GroundSpeed 3|

2_

1F

Stacked plot of ground velocity and air
speed

Speed

0.5

rHL

GPS#, Airspeed#

Airspeed 0

05

600 800 1000 1200 1400
Time

1640

2-66

info

Trajectory

60 -

40 -

230

20

0 .
400

200

Morth

-2

Trajectory in local coordinates versus
target set points

i
:::::::::i::i:f
400
200
0
-200
D0 400 East

LocalNED,
LocalNEDTarget

600

2-67

2 Methods

TrajectoryTracking Error between desired and actual position [LocalNED,
in NED coordinates LocalNEDia rget
TrajectoryTracking
0.5
XOiff o 'l
-05f

0.5

Yhiff O

0.5

0.6

ZDir 04
0.2

GNL-_'_ : ___I-.. ’ o A I._|_L ._J._‘.“'L__' PP A YT T .

i i i i
200 400 600 800 1000 1200 1400 1600

Time s]e.:

2-68

info

Plot Description Signals
TrajectoryVelTracking Error between desired and actual velocity |[LocalNEDVel,
in NED coordinates LocalNEDVelTarget

TrajectoryVelTracking

0.5
VXDIff Ot Wl b J’J[-L -
05

—_—
=
| 3
]

0.5

VY Diff ©

-0.5

06
04F
vzpiff 2
O
02
200 400 600 B0 10D 12000 1400 1600
Time SC
See Also
Objects

flightLogSignalMapping

Functions
checkSignal | copy | extract | mapSignal | show | updatePlot

Introduced in R2020b

2-69

2 Methods

2-70

mapSignal

Map UAV {light log signal

Syntax

mapSignal(mapper,signalName, timeFunc, valueFunc)
mapSignal(mapper,signalName, timeFunc, valueFunc,varNames)
mapSignal(mapper,signalName, timeFunc,valueFunc,varNames,varUnits)

Description

mapSignal(mapper, signalName, timeFunc, valueFunc) maps the signal with name
signalName to a pair of function handles, timeFunc and valueFunc. These functions define the
time stamps and values of signals from a flight log file, which can be imported using mavlinktlog or
ulogreader. For a list of preconfigured signals and plots, see Predefined Signals on page 2-71 and
Predefined Plots on page 2-72.

mapSignal(mapper, signalName, timeFunc,valueFunc,varNames) maps the signal with name
signalName and specifies the variable names, varName, for the columns of a matrix generated from
valueFunc.

mapSignal (mapper,signalName, timeFunc,valueFunc,varNames,varUnits) maps the signal
with name signalName and specifies the units, varUnits for varName.

Input Arguments

mapper — Flight log signal mapping
flightLogSignalMapping object

Flight log signal mapping object, specified as a flightLogSignalMapping object.

signalName — Signal name to map data
string scalar | character vector

Signal name to map data, specified as a string scalar or character vector.
Example: "Gyro"

Data Types: char | string

timeFunc — Timestamps for signal
function handle

Timestamps for signal values , specified as a function handle. Typically, this function handle extracts
time data from a flight log, which can be imported using mavlinktlog or ulogreader.

Example: @(x)x.Gyro.Time

Data Types: function handle

valueFunc — Values for signal
function handle

mapSignal

Values for signal, specified as a function handle. Typically, this function handle extracts signal data
from a flight log, which can be imported using mavlinktlog or ulogreader.

Example: @(x)x.Gyro.Value
Data Types: function handle

varNames — Variable names for a matrix of values
string array | cell array of character vectors

Variable names for a matrix of values, specified as a string array or cell array of character vectors.
Each element corresponds to a column in the matrix of values generated from valueFunc.

Example: ["xPos" "yPos" "zPos"]

Data Types: char | string

varUnits — Variable units for a matrix of values
string array | cell array of character vectors

Variable units for a matrix of values, specified as a string array or cell array of character vectors.
Each element corresponds to an element in varNames.

Example: ["m" "m" "rad"]

Data Types: char | string

More About

Predefined Signals

A set of predefined signals and plots are configured in the flightLogSignalMapping object.
Depending on your log file type, you can map specific signals to the provided signal names using
mapSignal. You can also call info to view the table for your log type and see whether you have
already mapped a signal to that plot type.

Specify the SignalName as the input to mapSignal. Signals with the format SignalName# support
mapping multiple signals of the same type. Replace # with incremental integers for each signal name
when calling mapSignal.

The predefined signals have specific names and required fields when mapping the signal.

2-71

2 Methods

2-72

Predefined Signals

IMU sensor

Signal Name Description Fields Uni

Accel# Raw magnetometer reading from [ax ay az] m/s
IMU sensor

Airspeed# Airspeed reading of pressure [PressDiff, AirSpeed, Temp] Pa, :
differential, indicated air speed, and
temperature

AttitudeEuler Attitude of UAV in Euler (ZYX) form |[Roll, Pitch, Yaw] radi

AttitudeRate Angular velocity along each body axis | [xRotRate, yRotRate, zRotRate] rad/

AttitudeTargetEule |Target attitude of UAV in Euler (ZYX) | [TargetRoll, TargetPitch, radi

r form TargetYaw]

Barometer# Barometer readings for absolute [PressAbs, PressAltitude, Temp] Pa, :
pressure, relative pressure, and
temperature

Battery Voltage readings for battery and [Voltl,Volt2, . Voltle, V, %
remaining battery capacity (%) RemainingCapacity

GPS# GPS readings for latitude, longitude, |[lat, long, alt, groundspeed, deg:
altitude, ground speed, course angle, |courseAngle, satellites] deg:
and number of satellites visible

Gyro# Raw body angular velocity readings |[GyroX, GyroY, GyroZ] rad/
from IMU sensor

LocalNED Local NED coordinates estimated by |[XNED, yNED, zNED] met
the UAV

LocalNEDTarget Target location in local NED [xTarget, yTarget, zTarget] met
coordinates

LocalNEDVel Local NED velocity estimated by the |[vx vy vz] m/s
UAV

LocalNEDVelTarget |Target velocity in NED in local NED |[vxTarget, vyTarget, vzTarget] m/s

Mag# Raw magnetometer reading from [x y z] Gs

Predefined Plots

After mapping signals to the list of predefined signals using mapSignal, specific plots are made
available when calling show. To view a list of available plots and their associated signals for your
specific object, call info(mapper, "Plot"). If you want to define custom plots based on signals, use

updatePlot.

Each predefined plot has a set of required signals that must be mapped.

mapSignal

Predefined Plots

Attitude Stacked plot of roll, pitch, yaw angles and |AttitudeEuler,
body rotation rates AttitudeRate, Gyro#
Attitude

0.2

Roll gl lL—PLJ——LIMqu—mJA—LwTMLm—aL_ﬁ
02}

i1 ﬂ I .
Pitch g5

2 _ . _rr,_,——J__
vau EH_UI L,.Af_' _,,_JJ"JJ J“Jw“fr
= g™
0.5F — EstimatedBody Rate
RolRale 0 — L
05}
05F — EstimatedBody Rate
PitchRate 0 Cym
-115: ||||||'[|[|||||||||| 1N

YawRate ﬂ-g_ I | - ||JJ-L|ILH | J TI lli*-hl]“lﬂ | |.||'|| —Eymgﬂmmm
-05 | | | | |] | -

200 400 6p0 800 1000 1200 1400 1600

Time Teu:

2-73

2 Methods

Plot Description Signals
AttitudeControl Estimated attitude of UAV and the attitude |AttitudeEuler,
target set point AttitudeTargetEuler
AttitudeControl
1 ——Roll
0.2 h — RollTanget
Rall |
RollTarget ®-1 | JJ_ |
.;}:_H"" -u--a_.._—lllll—--..__--w-._ k T P _J\|:L- = —_—-—'—u—%} it J“u-m——
Pitch
ok T e T e PlichTapget
Pitch l
PitchTarget.p 2 \
||'l'
p4ak
Yaw
2r]] YawTarget
aw
YawTarget
i
i i i i R R LII i i s i i
560 570 580 580 600 610 620 630 &40
Time =80
Battery Battery consumption plot Battery

2-74

mapSignal

Compass

| S

=]

0.5f -
Mag'
0s jL Jj nL‘L

1.8p

MagZ
= 161

f

Estimated yaw and magnetometer
readings

Compass
f“’ﬂf
. —

I
= PPy o

AWAL

800 1000 1200 1400 1600
Time =80

AttitudeEuler, Mag#,
GPS#

2-75

2 Methods

2-76

Plot Description Signals
GPS2D Raw Lat-Lon plot for GPS sensor readings. |GPS#
45°46'24 4"N | ' [=
GPS
GPS3
45°46'24 2N g
o A45°4624'N [.
=
=
T
-
45°46'23.8"N 7
d
45°46'23.6"N 7
5m .""‘/
= Esri, HERE, Garmin, INCREMENT P, NG#A,
. UsSGs
15°55'03.5"E 15°65'04"E 15°55'04 .5"E 15°p5'05"E
Longitude

mapSignal

Height

GPS&Barometer

FusedHeight

538.2

5381

538

537.9f

49,991

43,98

4887

Stacked plots of barometer reading, GPS
altitude reading, and fused height estimate

Height

Barometer#, GPS#,

LocalNED
GPS
———— Barometgr
-

560

i
570

Time

2-77

2 Methods

Speed

s HL“H&

at

GroundSpeed 3|

2_

1F

Stacked plot of ground velocity and air
speed

Speed

0.5

rHL

GPS#, Airspeed#

Airspeed 0

05

600 800 1000 1200 1400
Time

1640

2-78

mapSignal

Trajectory

60 -

40 -

230

20

0 .
400

200

Morth

-2

Trajectory in local coordinates versus
target set points

i
:::::::::i::i:f
400
200
0
-200
D0 400 East

LocalNED,
LocalNEDTarget

600

2-79

2 Methods

TrajectoryTracking Error between desired and actual position [LocalNED,
in NED coordinates LocalNEDia rget
TrajectoryTracking
0.5
XOiff o 'l
-05f

0.5

Yhiff O

0.5

0.6

ZDir 04
0.2

GNL-_'_ : ___I-.. ’ o A I._|_L ._J._‘.“'L__' PP A YT T .

i i i i
200 400 600 800 1000 1200 1400 1600

Time s]e.:

2-80

mapSignal

Plot Description Signals
TrajectoryVelTracking Error between desired and actual velocity |[LocalNEDVel,
in NED coordinates LocalNEDVelTarget

TrajectoryVelTracking

0.5
VXDIff Ot Wl b J’J[-L -
05

—_—
=
| 3
]

0.5

VY Diff ©
-0.5

06
04F
vzpiff 2
O
02
200 400 600 B0 10D 12000 1400 1600
Time SC
See Also

flightLogSignalMapping | mavlinktlog | extract | info | mapSignal | show | updatePlot

Introduced in R2020b

2-81

2 Methods

2-82

show

Display plots for inspection of UAV logs

Syntax

show(mapper,data)
show(mapper,data,timeStart)
show(mapper,data,timeStart, timeEnd)

show(,"PlotsToShow",plotNames)
plotStruct = show()

Description

show(mapper,data) generates all the plots stored in the flight log signal mapping object using the
data from an imported flight log. For a list of preconfigured signals and plots, see Predefined Signals
on page 2-83 and Predefined Plots on page 2-84.

show(mapper,data,timeStart) plots all data starting at the given start time.

show(mapper,data, timeStart, timeEnd) plots all data within the interval [timeStart
timeEnd] inclusive.

show(,"PlotsToShow",plotNames) plots data using any of the previous syntaxes with plot
names specified as a string array. These plot names are listed in mapper.AvailablePlots

plotStruct = show() returns the plots as a structure of plot names and figure handles.

Input Arguments

mapper — Flight log signal mapping
flightLogSignalMapping object

Flight log signal mapping object, specified as a flightLogSignalMapping object.

data — Data from flight log
table | ulogreader object

Data from flight log, specified as a table, ulogreader object, or other custom option. The data is fed
directly into the plot functions specified when you call updatePlot.

timeStart — Initial time stamp for signal
duration object

Initial time stamp for signal to extract, specified as a duration object.

timeEnd — Final time stamp for signal
duration object

Final time stamp for signal to extract, specified as a duration object.

show

Output Arguments

plotStruct — Figures of individual plots
structure

Figured of individual plots, returned as a structure of plot names and associated figure handles.

More About

Predefined Signals

A set of predefined signals and plots are configured in the flightLogSignalMapping object.
Depending on your log file type, you can map specific signals to the provided signal names using
mapSignal. You can also call info to view the table for your log type and see whether you have
already mapped a signal to that plot type.

Specify the SignalName as the input to mapSignal. Signals with the format SignalName# support
mapping multiple signals of the same type. Replace # with incremental integers for each signal name
when calling mapSignal.

The predefined signals have specific names and required fields when mapping the signal.

2-83

2 Methods

2-84

Predefined Signals

IMU sensor

Signal Name Description Fields Uni

Accel# Raw magnetometer reading from [ax ay az] m/s
IMU sensor

Airspeed# Airspeed reading of pressure [PressDiff, AirSpeed, Temp] Pa, :
differential, indicated air speed, and
temperature

AttitudeEuler Attitude of UAV in Euler (ZYX) form |[Roll, Pitch, Yaw] radi

AttitudeRate Angular velocity along each body axis | [xRotRate, yRotRate, zRotRate] rad/

AttitudeTargetEule |Target attitude of UAV in Euler (ZYX) | [TargetRoll, TargetPitch, radi

r form TargetYaw]

Barometer# Barometer readings for absolute [PressAbs, PressAltitude, Temp] Pa, :
pressure, relative pressure, and
temperature

Battery Voltage readings for battery and [Voltl,Volt2, . Voltle, V, %
remaining battery capacity (%) RemainingCapacity

GPS# GPS readings for latitude, longitude, |[lat, long, alt, groundspeed, deg:
altitude, ground speed, course angle, |courseAngle, satellites] deg:
and number of satellites visible

Gyro# Raw body angular velocity readings |[GyroX, GyroY, GyroZ] rad/
from IMU sensor

LocalNED Local NED coordinates estimated by |[XNED, yNED, zNED] met
the UAV

LocalNEDTarget Target location in local NED [xTarget, yTarget, zTarget] met
coordinates

LocalNEDVel Local NED velocity estimated by the |[vx vy vz] m/s
UAV

LocalNEDVelTarget |Target velocity in NED in local NED |[vxTarget, vyTarget, vzTarget] m/s

Mag# Raw magnetometer reading from [x y z] Gs

Predefined Plots

After mapping signals to the list of predefined signals using mapSignal, specific plots are made
available when calling show. To view a list of available plots and their associated signals for your
specific object, call info(mapper, "Plot"). If you want to define custom plots based on signals, use

updatePlot.

Each predefined plot has a set of required signals that must be mapped.

show

Predefined Plots

Attitude Stacked plot of roll, pitch, yaw angles and |AttitudeEuler,
body rotation rates AttitudeRate, Gyro#
Attitude

0.2

Roll gl lL—PLJ——LIMqu—mJA—LwTMLm—aL_ﬁ
02}

i1 ﬂ I .
Pitch g5

2 _ . _rr,_,——J__
vau EH_UI L,.Af_' _,,_JJ"JJ J“Jw“fr
= g™
0.5F — EstimatedBody Rate
RolRale 0 — L
05}
05F — EstimatedBody Rate
PitchRate 0 Cym
-115: ||||||'[|[|||||||||| 1N

YawRate ﬂ-g_ I | - ||JJ-L|ILH | J TI lli*-hl]“lﬂ | |.||'|| —Eymgﬂmmm
-05 | | | | |] | -

200 400 6p0 800 1000 1200 1400 1600

Time Teu:

2-85

2 Methods

Plot Description Signals
AttitudeControl Estimated attitude of UAV and the attitude |AttitudeEuler,
target set point AttitudeTargetEuler
AttitudeControl
1 ——Roll
0.2 h — RollTanget
Rall |
RollTarget ®-1 | JJ_ |
.;}:_H"" -u--a_.._—lllll—--..__--w-._ k T P _J\|:L- = —_—-—'—u—%} it J“u-m——
Pitch
ok T e T e PlichTapget
Pitch l
PitchTarget.p 2 \
||'l'
p4ak
Yaw
2r]] YawTarget
aw
YawTarget
i
i i i i R R LII i i s i i
560 570 580 580 600 610 620 630 &40
Time =80
Battery Battery consumption plot Battery

2-86

show

Compass

| S

=]

0.5f -
Mag'
0s jL Jj nL‘L

1.8p

MagZ
= 161

f

Estimated yaw and magnetometer
readings

Compass
i —
. —

i
= PPy o

AWAL

800 1000 1200 1400 1600
Time =80

AttitudeEuler, Mag#,
GPS#

2-87

2 Methods

2-88

Plot Description Signals
GPS2D Raw Lat-Lon plot for GPS sensor readings. |GPS#
45°46'24 4"N | ' [=
GPS
GPS3
45°46'24 2N g
o A45°4624'N [.
=
=
T
-
45°46'23.8"N 7
d
45°46'23.6"N 7
5m .""‘/
= Esri, HERE, Garmin, INCREMENT P, NG#A,
. UsSGs
15°55'03.5"E 15°65'04"E 15°55'04 .5"E 15°p5'05"E
Longitude

show

Height

GPS&Barometer

FusedHeight

538.2

5381

538

537.9f

49,991

43,98

4887

Stacked plots of barometer reading, GPS
altitude reading, and fused height estimate

Height

Barometer#, GPS#,

LocalNED
GPS
———— Barometgr
-

560

i
570

Time

2-89

2 Methods

Speed

s HL“H&

at

GroundSpeed 3|

2_

1F

Stacked plot of ground velocity and air
speed

Speed

0.5

rHL

GPS#, Airspeed#

Airspeed 0

05

600 800 1000 1200 1400
Time

1640

2-90

show

Trajectory

60 -

40 -

230

20

0 .
400

200

Morth

-2

Trajectory in local coordinates versus
target set points

i
:::::::::i::i:f
400
200
0
-200
D0 400 East

LocalNED,
LocalNEDTarget

600

2-91

2 Methods

TrajectoryTracking Error between desired and actual position [LocalNED,
in NED coordinates LocalNEDia rget
TrajectoryTracking
0.5
XOiff o 'l
-05f

0.5

Yhiff O

0.5

0.6

ZDir 04
0.2

GNL-_'_ : ___I-.. ’ o A I._|_L ._J._‘.“'L__' PP A YT T .

i i i i
200 400 600 800 1000 1200 1400 1600

Time s]e.:

2-92

show

Plot Description Signals
TrajectoryVelTracking Error between desired and actual velocity |[LocalNEDVel,
in NED coordinates LocalNEDVelTarget

TrajectoryVelTracking

0.5
VXDIff Ot Wl b J’J[-L -
05

—_—
=
| 3
]

0.5

VY Diff ©
-0.5

06
04F
vzpiff 2
O
02
200 400 600 B0 10D 12000 1400 1600
Time SC
See Also

flightLogSignalMapping | mavlinktlog | extract | info | mapSignal | show | updatePlot

Introduced in R2020b

2-93

2 Methods

updatePlot

Update UAV flight log plot functions

Syntax

updatePlot (mapper,plotName,plotFunc, requiredSignals)

Description

updatePlot (mapper,plotName,plotFunc, requiredSignals) adds or updates the plot with
name plotName stored in mapper. Specify the plot function as a predefined plot name or function
handle and the required signals for the plot. For a list of preconfigured signals and plots, see
Predefined Signals on page 2-95 and Predefined Plots on page 2-96.

Input Arguments

mapper — Flight log signal mapping
flightLogSignalMapping object

Flight log signal mapping object, specified as a flightLogSignalMapping object.

plotName — Name of plot
string scalar | character vector

Name of plot, specified as a string scalar or character vector. This name is either added or updated in
the AvailablePlots property of mapper.

Example: "IMU"
Data Types: char | string

plotFunc — Function for generating plot
function handle

Function for generating plot, specified as a function handle. The function is of the form:
f = plotFunc(signall, signal2, ...)

The function takes input signals as structures with two fields, "Names" and "Values", and
generates a plot output as a figure handle using those signals.

Example: @(acc, gyro, mag)plotIMU(acc, gyro, mag)
Data Types: function handle

requiredSignals — List of required signal names
string array | cell array of character vectors

List of required signal names, specified as a string array or cell array of character vectors.
Example: ["LocalNED.X" "LocalNED.Y" "LocalNED.Z"]
Data Types: char | string

2-94

updatePlot

More About

Predefined Signals

A set of predefined signals and plots are configured in the flightLogSignalMapping object.
Depending on your log file type, you can map specific signals to the provided signal names using
mapSignal. You can also call info to view the table for your log type and see whether you have
already mapped a signal to that plot type.

Specify the SignalName as the input to mapSignal. Signals with the format SignalName# support
mapping multiple signals of the same type. Replace # with incremental integers for each signal name
when calling mapSignal.

The predefined signals have specific names and required fields when mapping the signal.

Predefined Signals

Signal Name Description Fields Uni

Accel# Raw magnetometer reading from [ax ay az] m/s
IMU sensor

Airspeed# Airspeed reading of pressure [PressDiff, AirSpeed, Temp] Pa, :
differential, indicated air speed, and
temperature

AttitudeEuler Attitude of UAV in Euler (ZYX) form |[Roll, Pitch, Yaw] radi

AttitudeRate Angular velocity along each body axis | [xRotRate, yRotRate, zRotRate] rad/

AttitudeTargetEule |Target attitude of UAV in Euler (ZYX) | [TargetRoll, TargetPitch, radi

r form TargetYaw]

Barometer# Barometer readings for absolute [PressAbs, PressAltitude, Temp] Pa, :
pressure, relative pressure, and
temperature

Battery Voltage readings for battery and [Voltl,Volt2, ... Voltle6, V, %
remaining battery capacity (%) RemainingCapacity

GPS# GPS readings for latitude, longitude, |[lat, long, alt, groundspeed, deg:
altitude, ground speed, course angle, |courseAngle, satellites] deg:
and number of satellites visible

Gyro# Raw body angular velocity readings |[GyroX, GyroY, GyroZ] rad/
from IMU sensor

LocalNED Local NED coordinates estimated by |[XNED, yNED, zNED] met
the UAV

LocalNEDTarget Target location in local NED [xTarget, yTarget, zTarget] met
coordinates

LocalNEDVel Local NED velocity estimated by the |[vx vy vz] m/s
UAV

LocalNEDVelTarget |Target velocity in NED in local NED |[vxTarget, vyTarget, vzTarget] m/s

Mag# Raw magnetometer reading from [x y z] Gs
IMU sensor

2-95

2 Methods

Predefined Plots

After mapping signals to the list of predefined signals using mapSignal, specific plots are made
available when calling show. To view a list of available plots and their associated signals for your
specific object, call info(mapper, "Plot"). If you want to define custom plots based on signals, use
updatePlot.

Each predefined plot has a set of required signals that must be mapped.

2-96

updatePlot

Predefined Plots

Attitude Stacked plot of roll, pitch, yaw angles and |AttitudeEuler,
body rotation rates AttitudeRate, Gyro#
Attitude

0.2

Roll gl lL—PLJ——LIMqu—mJA—LwTMLm—aL_ﬁ
02}

i1 ﬂ I .
Pitch g5

2 _ . _rr,_,——J__
vau EH_UI L,.Af_' _,,_JJ"JJ J“Jw“fr
= g™
0.5F — EstimatedBody Rate
RolRale 0 — L
05}
05F — EstimatedBody Rate
PitchRate 0 Cym
-115: ||||||'[|[|||||||||| 1N

YawRate ﬂ-g_ I | - ||JJ-L|ILH | J TI lli*-hl]“lﬂ | |.||'|| —Eymgﬂmmm
-05 | | | | |] | -

200 400 6p0 800 1000 1200 1400 1600

Time Teu:

2-97

2 Methods

Plot Description Signals
AttitudeControl Estimated attitude of UAV and the attitude |AttitudeEuler,
target set point AttitudeTargetEuler
AttitudeControl
1 ——Roll
0.2 h — RollTanget
Rall |
RollTarget ®-1 | JJ_ |
.;}:_H"" -u--a_.._—lllll—--..__--w-._ k T P _J\|:L- = —_—-—'—u—%} it J“u-m——
Pitch
ok T e T e PlichTapget
Pitch l
PitchTarget.p 2 \
||'l'
p4ak
Yaw
2r]] YawTarget
aw
YawTarget
i
i i i i R R LII i i s i i
560 570 580 580 600 610 620 630 &40
Time =80
Battery Battery consumption plot Battery

2-98

updatePlot

Compass

| S

=]

0.5f -
Mag'
0s jL Jj nL‘L

1.8p

MagZ
= 161

f

Estimated yaw and magnetometer
readings

Compass
i —
. —

i
= PPy o

AWAL

800 1000 1200 1400 1600
Time =80

AttitudeEuler, Mag#,
GPS#

2-99

2 Methods

2-100

Plot Description Signals
GPS2D Raw Lat-Lon plot for GPS sensor readings. |GPS#
45°46'24 4"N | ' [=
GPS
GPS3
45°46'24 2N g
o A45°4624'N [.
=
=
T
-
45°46'23.8"N 7
d
45°46'23.6"N 7
5m .""‘/
= Esri, HERE, Garmin, INCREMENT P, NG#A,
. UsSGs
15°55'03.5"E 15°65'04"E 15°55'04 .5"E 15°p5'05"E
Longitude

updatePlot

Height

GPS&Barometer

FusedHeight

538.2

5381

538

537.9f

49,991

43,98

4887

Stacked plots of barometer reading, GPS
altitude reading, and fused height estimate

Height

Barometer#, GPS#,

LocalNED
GPS
———— Barometgr
-

560

i
570

Time

2-101

2 Methods

Speed

s HL“H&

at

GroundSpeed 3|

2_

1F

Stacked plot of ground velocity and air
speed

Speed

0.5

rHL

GPS#, Airspeed#

Airspeed 0

05

600 800 1000 1200 1400
Time

1640

2-102

updatePlot

Trajectory

60 -

40 -

230

20

0 .
400

200

Morth

Trajectory in local coordinates versus
target set points

R
R:‘::ﬂ“_—“—iﬁ)
400
200
0
-200
=200 400 East

LocalNED,
LocalNEDTarget

600

2-103

2 Methods

TrajectoryTracking Error between desired and actual position [LocalNED,
in NED coordinates LocalNEDia rget
TrajectoryTracking
0.5
XOiff o 'l
-05f

0.5

Yhiff O

0.5

0.6

ZDir 04
0.2

GNL-_'_ : ___I-.. ’ o A I._|_L ._J._‘.“'L__' PP A YT T .

i i i i
200 400 600 800 1000 1200 1400 1600

Time s]e.:

2-104

updatePlot

Plot Description Signals
TrajectoryVelTracking Error between desired and actual velocity |[LocalNEDVel,
in NED coordinates LocalNEDVelTarget

TrajectoryVelTracking

0.5
VXDIff Ot Wl b J’J[-L -
05

—_—
=
| 3
]

0.5

VY Diff ©
-0.5

06
04F
vzpiff 2
O
02
200 400 600 B0 10D 12000 1400 1600
Time SC
See Also

flightLogSignalMapping | mavlinktlog | extract | info | mapSignal | show

Introduced in R2020b

2-105

2 Methods

2-106

createcmd

Create MAVLink command message

Syntax

cmdMsg = createcmd(dialect,cmdSetting, cmdType)

Description

cmdMsg = createcmd(dialect,cmdSetting, cmdType) returns a blank COMMAND INT or
COMMAND LONG message structure based on the command setting and type. The command definitions
are contained in the mavlinkdialect object, dialect.

Examples

Parse and Use MAVLink Dialect

This example shows how to parse a MAVLink XML file and create messages and commands from the
definitions.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

Parse and store the MAVLink dialect XML. Specify the XML path. The default "common.xml" dialect
is provided. This XML file contains all the message and enum definitions.

dialect = mavlinkdialect("common.xml");

Create a MAVLink command from the MAV_CMD enum, which is an enum of MAVLink commands to
send to the UAV. Specify the setting as "int" or "long", and the type as an integer or string.

cmdMsg = createcmd(dialect, "long",22)

cmdMsg = struct with fields:
MsgID: 76
Payload: [1x1 struct]

Verify the command name using num2enum. Command 22 is a take-off command for the UAV. You can
convert back to an ID using enum2num. Your dialect can contain many different enums with different
names and IDs.

cmdName = num2enum(dialect,"MAV CMD",22)

cmdName =
"MAV CMD NAV TAKEOFF"

cmdID = enum2num(dialect, "MAV_CMD", cmdName)

cmdID = 22

Use enuminfo to view the table of the MAV_CMD enum entries.

createcmd

info = enuminfo(dialect, "MAV CMD");
info.Entries{:}

ans=148x3 table

Name Value
"MAV_CMD NAV_WAYPOINT" 16 "Navigate to waypoint."
"MAV_CMD NAV LOITER UNLIM" 17 "Loiter around this waypoint an unlimited
"MAV_CMD NAV LOITER TURNS" 18 "Loiter around this waypoint for X turns”
"MAV_CMD NAV LOITER TIME" 19 "Loiter at the specified latitude, longitu
"MAV_CMD NAV_RETURN_TO_ LAUNCH" 20 "Return to launch location"
"MAV_CMD NAV LAND" 21 "Land at location."
"MAV_CMD NAV_TAKEOFF" 22 "Takeoff from ground / hand. Vehicles that
"MAV_CMD NAV_LAND LOCAL" 23 "Land at local position (local frame only)
"MAV_CMD NAV_TAKEOFF LOCAL" 24 "Takeoff from local position (local frame
"MAV_CMD NAV_FOLLOW" 25 "Vehicle following, i.e. this waypoint rep
"MAV_CMD NAV_CONTINUE_AND CHANGE ALT" 30 "Continue on the current course and climb/
“"MAV_CMD NAV LOITER TO ALT" 31 "Begin loiter at the specified Latitude an
"MAV_CMD DO FOLLOW" 32 "Begin following a target”
"MAV_CMD DO FOLLOW REPOSITION" 33 "Reposition the MAV after a follow target
"MAV_CMD DO ORBIT" 34 "Start orbiting on the circumference of a

"MAV_CMD NAV ROI" 80 "Sets the region of interest (ROI) for a s

Query the dialect for a specific message ID. Create a blank MAVLink message using the message ID.
info = msginfo(dialect, "HEARTBEAT")

info=1x4 table
MessageID MessageName

0 "HEARTBEAT" "The heartbeat message shows that a system or component is prese

msg = createmsg(dialect,info.MessagelD);

Input Arguments

dialect — MAVLink dialect
mavlinkdialect object

MAVLink dialect, specified as a mavlinkdialect object. The dialect specifies the message structure
for the MAVLink protocol.

cmdSetting — Command setting
Ilintll | II'LongII

Command setting, specified as either "int" or "long" for either a COMMAND INT or COMMAND LONG
command.

cmdType — Command type
positive integer | string

2-107

2 Methods

Command type, specified as either a positive integer or string. If specified as an integer, the
command definition with the matching ID from the MAV_CMD enum in dialect is returned. If
specified as a string, the command with the matching name is returned.

To get the command types for the MAV_CMD enum, use enuminfo:

enumTable = enuminfo(dialect, "MAV_CMD")
enumTable.Entries{1}

Output Arguments

cmdMsg — MAVLink command message
structure

MAVLink command message, returned as a structure with the fields:

* MsgID: Positive integer for message ID.
* Payload: Structure containing fields for the specific message definition.

See Also

Functions
createmsg | msginfo | enuminfo | enum2num | num2enum

Objects
mavlinkdialect | mavlinkio | mavlinkclient | mavlinksub

Introduced in R2019a

2-108

createmsg

createmsg

Create MAVLink message

Syntax

msg = createmsg(dialect,msglID)

Description

msg = createmsg(dialect,msgID) returns a blank message structure based on the message
definitions specified in the mavlinkdialect object, dialect, and the input message ID, msgID.

Examples

Parse and Use MAVLink Dialect

This example shows how to parse a MAVLink XML file and create messages and commands from the
definitions.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

Parse and store the MAVLink dialect XML. Specify the XML path. The default "common.xml" dialect
is provided. This XML file contains all the message and enum definitions.

dialect = mavlinkdialect("common.xml");

Create a MAVLink command from the MAV_CMD enum, which is an enum of MAVLink commands to
send to the UAV. Specify the setting as "int" or "long", and the type as an integer or string.

cmdMsg = createcmd(dialect, "long",22)
cmdMsg = struct with fields:

MsgID: 76
Payload: [1x1 struct]

Verify the command name using hum2enum. Command 22 is a take-off command for the UAV. You can
convert back to an ID using enum2num. Your dialect can contain many different enums with different
names and IDs.

cmdName = num2enum(dialect, "MAV CMD",22)

cmdName =
"MAV CMD NAV TAKEOFF"

cmdID = enum2num(dialect, "MAV CMD", cmdName)

cmdID = 22

Use enuminfo to view the table of the MAV_CMD enum entries.

2-109

2 Methods

2-110

info
info

ans=

= enuminfo(dialect, "MAV CMD");
.Entries{:}

148x3 table

Name Value

“MAV_CMD NAV_WAYPOINT" 16 "Navigate to waypoint."

“MAV_CMD NAV LOITER UNLIM" 17 "Loiter around this waypoint an unlimited

“MAV_CMD NAV LOITER TURNS" 18 "Loiter around this waypoint for X turns"

“MAV_CMD NAV LOITER TIME" 19 "Loiter at the specified latitude, longitu

"MAV_CMD NAV RETURN TO LAUNCH" 20 "Return to launch location"”

"MAV_CMD NAV LAND" 21 "Land at location."

“MAV_CMD NAV_ TAKEOFF" 22 "Takeoff from ground / hand. Vehicles that

"MAV_CMD NAV LAND LOCAL" 23 "Land at local position (local frame only)

“MAV_CMD NAV TAKEOFF LOCAL" 24 "Takeoff from local position (local frame

“MAV_CMD NAV_FOLLOW" 25 "Vehicle following, i.e. this waypoint rep

"MAV_CMD NAV_ CONTINUE AND CHANGE ALT" 30 "Continue on the current course and climb/

“MAV_CMD NAV LOITER TO ALT" 31 "Begin loiter at the specified Latitude ant

“MAV_CMD DO FOLLOW" 32 "Begin following a target"

“MAV_CMD DO FOLLOW REPOSITION" 33 "Reposition the MAV after a follow target

“MAV_CMD DO ORBIT" 34 "Start orbiting on the circumference of a «
80 "Sets the region of interest (ROI) for a st

"MAV_CMD NAV ROI"

Query the dialect for a specific message ID. Create a blank MAVLink message using the message ID.

info

info

msg

Inp

= msginfo(dialect, "HEARTBEAT")

=1x4 table

MessageID MessageName

0 "HEARTBEAT"

= createmsg(dialect,info.MessagelD);

ut Arguments

dialect — MAVLink dialect
mavlinkdialect object

"The heartbeat message shows that a system or component is presel

MAVLink dialect, specified as a mavlinkdialect object. The dialect specifies the message structure
for the MAVLink protocol.

msgID — Message ID
positive integer | string

Message ID, specified as either a positive integer or string. If specified as an integer, the message
definition with the matching ID from the dialect is returned. If specified as a string, the message

with

the matching name is returned.

createmsg

Output Arguments

msg — MAVLink message
structure

MAVLink message, returned as a structure with the fields:

* MsgID: Positive integer for message ID.

* Payload: Structure containing fields for the specific message definition.

See Also

Functions
createcmd | msginfo | enuminfo | enum2num | num2enum

Objects
mavlinkdialect | mavlinkio | mavlinkclient | mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

Introduced in R2019a

2-111

2 Methods

2-112

enum2num

Enum value for given entry

Syntax

enumValue = enum2num(dialect,enum,entry)

Description

enumValue = enum2num(dialect, enum,entry) returns the value for the given entry in the
enum.

Examples

Parse and Use MAVLink Dialect

This example shows how to parse a MAVLink XML file and create messages and commands from the
definitions.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

Parse and store the MAVLink dialect XML. Specify the XML path. The default "common.xml" dialect
is provided. This XML file contains all the message and enum definitions.

dialect = mavlinkdialect("common.xml");

Create a MAVLink command from the MAV_CMD enum, which is an enum of MAVLink commands to
send to the UAV. Specify the setting as "int" or "long", and the type as an integer or string.

cmdMsg = createcmd(dialect, "long",22)
cmdMsg = struct with fields:

MsgID: 76
Payload: [1x1 struct]

Verify the command name using hum2enum. Command 22 is a take-off command for the UAV. You can
convert back to an ID using enum2num. Your dialect can contain many different enums with different
names and IDs.

cmdName = num2enum(dialect, "MAV CMD",22)

cmdName =
"MAV CMD NAV TAKEOFF"

cmdID = enum2num(dialect, "MAV CMD", cmdName)

cmdID = 22

Use enuminfo to view the table of the MAV_CMD enum entries.

enum2num

info = enuminfo(dialect, "MAV CMD");
info.Entries{:}

ans=148x3 table

Name Value

"MAV_CMD NAV_ WAYPOINT" 16 "Navigate to waypoint."

"MAV_CMD NAV LOITER UNLIM" 17 "Loiter around this waypoint an unlimited

"MAV_CMD NAV LOITER TURNS" 18 "Loiter around this waypoint for X turns"

"MAV_CMD NAV LOITER TIME" 19 "Loiter at the specified latitude, longitu

"MAV_CMD NAV RETURN TO LAUNCH" 20 "Return to launch location"

"MAV_CMD NAV_LAND" 21 "Land at location."

"MAV_CMD NAV TAKEOFF" 22 "Takeoff from ground / hand. Vehicles that

"MAV_CMD NAV LAND LOCAL" 23 "Land at local position (local frame only)

“"MAV_CMD NAV TAKEOFF LOCAL" 24 "Takeoff from local position (local frame

"MAV_CMD NAV_ FOLLOW" 25 "Vehicle following, i.e. this waypoint rep

"MAV_CMD NAV CONTINUE AND CHANGE ALT" 30 "Continue on the current course and climb/

"MAV_CMD NAV LOITER TO ALT" 31 "Begin loiter at the specified Latitude an

"MAV_CMD DO FOLLOW" 32 "Begin following a target"

"MAV_CMD DO FOLLOW REPOSITION" 33 "Reposition the MAV after a follow target

"MAV_CMD DO ORBIT" 34 "Start orbiting on the circumference of a «
80 "Sets the region of interest (ROI) for a s

"MAV_CMD NAV ROI"

Query the dialect for a specific message ID. Create a blank MAVLink message using the message ID.

info = msginfo(dialect, "HEARTBEAT")

info=1x4 table

MessagelID MessageName

0 "HEARTBEAT"
msg = createmsg(dialect,info.MessagelD);

Input Arguments

dialect — MAVLink dialect
mavlinkdialect object

"The heartbeat message shows that a system or component is presel

MAVLink dialect, specified as a mavlinkdialect object, which contains a parsed dialect XML for

MAVLink message definitions.

enum — MAVLink enum name
string

MAVLink enum name, specified as a string.

entry — MAVLink enum entry name
string

MAVLink enum entry name, specified as a string.

2-113

2 Methods

Output Arguments

enumValue — Enum value
integer

Enum value, returned as an integer.

See Also
num2enum | enuminfo | msginfo | mavlinkdialect | mavlinkio | mavlinkclient | mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

2-114

https://mavlink.io

enuminfo

enuminfo

Enum definition for enum ID

Syntax

enumTable = enuminfo(dialect,enumID)

Description

enumTable = enuminfo(dialect,enumID) returns a table detailing the enumeration definition
based on the given enumID.

Examples

Parse and Use MAVLink Dialect

This example shows how to parse a MAVLink XML file and create messages and commands from the
definitions.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

Parse and store the MAVLink dialect XML. Specify the XML path. The default "common.xml" dialect
is provided. This XML file contains all the message and enum definitions.

dialect = mavlinkdialect("common.xml");

Create a MAVLink command from the MAV_CMD enum, which is an enum of MAVLink commands to
send to the UAV. Specify the setting as "int" or "long", and the type as an integer or string.

cmdMsg = createcmd(dialect, "long",22)
cmdMsg = struct with fields:

MsgID: 76
Payload: [1x1 struct]

Verify the command name using nhum2enum. Command 22 is a take-off command for the UAV. You can
convert back to an ID using enum2num. Your dialect can contain many different enums with different
names and IDs.

cmdName = num2enum(dialect, "MAV CMD",22)

cmdName =
"MAV CMD NAV TAKEOFF"

cmdID = enum2num(dialect, "MAV CMD", cmdName)

cmdID = 22

Use enuminfo to view the table of the MAV_CMD enum entries.

2-115

2 Methods

2-116

info
info

= enuminfo(dialect, "MAV CMD");
.Entries{:}

ans=148x3 table

Name Value

"MAV_CMD NAV_ WAYPOINT" 16 "Navigate to waypoint."

"MAV_CMD NAV LOITER UNLIM" 17 "Loiter around this waypoint an unlimited

"MAV_CMD NAV LOITER TURNS" 18 "Loiter around this waypoint for X turns”

"MAV_CMD NAV LOITER TIME" 19 "Loiter at the specified latitude, longitut

"MAV_CMD NAV _RETURN_TO LAUNCH" 20 "Return to launch location"

"MAV_CMD NAV LAND" 21 "Land at location."

"MAV_CMD NAV_ TAKEOFF" 22 "Takeoff from ground / hand. Vehicles that

"MAV_CMD NAV LAND LOCAL" 23 "Land at local position (local frame only)

"MAV_CMD NAV_ TAKEOFF LOCAL" 24 "Takeoff from local position (local frame

"MAV_CMD NAV_FOLLOW" 25 "Vehicle following, i.e. this waypoint rep

"MAV_CMD NAV_ CONTINUE AND CHANGE ALT" 30 "Continue on the current course and climb/

"MAV_CMD NAV LOITER TO ALT" 31 "Begin loiter at the specified Latitude ant

"MAV_CMD DO FOLLOW" 32 "Begin following a target"

"MAV_CMD DO FOLLOW REPOSITION" 33 "Reposition the MAV after a follow target

"MAV_CMD DO ORBIT" 34 "Start orbiting on the circumference of a ¢
80 "Sets the region of interest (ROI) for a st

"MAV_CMD NAV ROI"

Query the dialect for a specific message ID. Create a blank MAVLink message using the message ID.

info

= msginfo(dialect, "HEARTBEAT")

info=1x4 table

MessageID

MessageName

msg = createmsg(dialect,info.MessagelD);

0 "HEARTBEAT"

Input Arguments

dialect — MAVLink dialect
mavlinkdialect object

"The heartbeat message shows that a system or component is presel

MAVLink dialect, specified as a mavlinkdialect object, which contains a parsed dialect XML for
MAVLink message definitions.

enumID — MAVLink enum ID
string

MAVLink enum ID, specified as a string.

Output Arguments

enumTable — Enum definition

table

enuminfo

Enum definition, returned as a table containing the message ID, name, description, and entries. The
entries are given as another table with their own information listed. All this information is defined by
dialect XML file.

See Also
msginfo | mavlinkdialect | mavlinkio | mavlinkclient | mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

2-117

https://mavlink.io

2 Methods

2-118

msginfo

Message definition for message ID

Syntax

msgTable = msginfo(dialect,messagelD)

Description

msgTable = msginfo(dialect,messagelD) returns a table detailing the message definition
based on the given messagelID.

Examples

Parse and Use MAVLink Dialect

This example shows how to parse a MAVLink XML file and create messages and commands from the
definitions.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

Parse and store the MAVLink dialect XML. Specify the XML path. The default "common.xml" dialect
is provided. This XML file contains all the message and enum definitions.

dialect = mavlinkdialect("common.xml");

Create a MAVLink command from the MAV_CMD enum, which is an enum of MAVLink commands to
send to the UAV. Specify the setting as "int" or "long", and the type as an integer or string.

cmdMsg = createcmd(dialect, "long",22)
cmdMsg = struct with fields:

MsgID: 76
Payload: [1x1 struct]

Verify the command name using nhum2enum. Command 22 is a take-off command for the UAV. You can
convert back to an ID using enum2num. Your dialect can contain many different enums with different
names and IDs.

cmdName = num2enum(dialect, "MAV CMD",22)

cmdName =
"MAV CMD NAV TAKEOFF"

cmdID = enum2num(dialect, "MAV CMD", cmdName)

cmdID = 22

Use enuminfo to view the table of the MAV_CMD enum entries.

msginfo

info = enuminfo(dialect, "MAV CMD");
info.Entries{:}

ans=148x3 table

Name Value
"MAV_CMD NAV_ WAYPOINT" 16 "Navigate to waypoint."
"MAV_CMD NAV LOITER UNLIM" 17 "Loiter around this waypoint an unlimited
"MAV_CMD NAV LOITER TURNS" 18 "Loiter around this waypoint for X turns”
"MAV_CMD NAV LOITER TIME" 19 "Loiter at the specified latitude, longitut
"MAV_CMD NAV _RETURN_TO LAUNCH" 20 "Return to launch location"
"MAV_CMD NAV LAND" 21 "Land at location."
"MAV_CMD NAV_ TAKEOFF" 22 "Takeoff from ground / hand. Vehicles that
"MAV_CMD NAV LAND LOCAL" 23 "Land at local position (local frame only)
"MAV_CMD NAV_ TAKEOFF LOCAL" 24 "Takeoff from local position (local frame
"MAV_CMD NAV_FOLLOW" 25 "Vehicle following, i.e. this waypoint rep
"MAV_CMD NAV_ CONTINUE AND CHANGE ALT" 30 "Continue on the current course and climb/
"MAV_CMD NAV LOITER TO ALT" 31 "Begin loiter at the specified Latitude ant
"MAV_CMD DO FOLLOW" 32 "Begin following a target"
"MAV_CMD DO FOLLOW REPOSITION" 33 "Reposition the MAV after a follow target
"MAV_CMD DO ORBIT" 34 "Start orbiting on the circumference of a ¢

"MAV_CMD NAV ROI" 80 "Sets the region of interest (ROI) for a s

Query the dialect for a specific message ID. Create a blank MAVLink message using the message ID.
info = msginfo(dialect, "HEARTBEAT")

info=1x4 table
MessageID MessageName

0 "HEARTBEAT" "The heartbeat message shows that a system or component is prese

msg = createmsg(dialect,info.MessagelD);

Input Arguments

dialect — MAVLink dialect
mavlinkdialect object

MAVLink dialect, specified as a mavlinkdialect object, which contains a parsed dialect XML for
MAVLink message definitions.

messageID — MAVLink message ID or name
integer | string

MAVLink message ID or name, specified as an integer or string.

Output Arguments

msgTable — Message definition
table

2-119

2 Methods

Message definition, returned as a table containing the message ID, name, description, and fields. The
fields are given as another table with their own information. All this information is defined by dialect
XML file.

See Also
createmsg | enuminfo | mavlinkdialect | mavlinkio | mavlinkclient | mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

2-120

https://mavlink.io

connect

connect

Connect to MAVLink clients through UDP port

Syntax

connectionName = connect(mavlink, "UDP")

connectionName = connect(,Name, Value)

Description

connectionName = connect(mavlink, "UDP") connects to the mavlinkio client through a UDP
port.

connectionName = connect(,Name, Value) additionally specifies arguments using name-
value pairs.

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the

argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Examples

Store MAVLink Client Information

Connect to a MAVLink client.

mavlink = mavlinkio("common.xml");
connect(mavlink, "UDP");

Create the object for storing the client information. Specify the system and component ID.
client = mavlinkclient(mavlink,1,1)

client =
mavlinkclient with properties:

SystemID: 1
ComponentID: 1

ComponentType: "Unknown"
AutopilotType: "Unknown"

Disconnect from client.

disconnect (mavlink)

2-121

2 Methods

Work with MAVLink Connection

This example shows how to connect to MAVLink clients, inspect the list of topics, connections, and
clients, and send messages through UDP ports using the MAVLink communication protocol.

Connect to a MAVLink client using the "common.xml" dialect. This local client communicates with
any other clients through a UDP port.

dialect mavlinkdialect("common.xml");
mavlink mavlinkio(dialect);
connect (mavlink, "UDP")

ans =
"Connectionl"

You can list all the active clients, connections, and topics for the MAVLink connection. Currently,
there is only one client connection and no topics have received messages.

listClients(mavlink)

ans=1x4 table
SystemID ComponentID ComponentType AutopilotType

255 1 "MAV_TYPE GCS" “MAV_AUTOPILOT INVALID"

listConnections (mavlink)

ans=1x2 table

ConnectionName ConnectionInfo
"Connectionl" "UDP@0.0.0.0:64030"
listTopics(mavlink)

ans =
0x5 empty table

Create a subscriber for receiving messages on the client. This subscriber listens for the
"HEARTBEAT" message topic with ID equal to 0.

sub = mavlinksub(mavlink,0);

Create a "HEARTBEAT" message using the mavlinkdialect object. Specify payload information and
send the message over the MAVLink client.

msg = createmsg(dialect, "HEARTBEAT");

msg.Payload.type(:) = enum2num(dialect, 'MAV TYPE', "MAV_TYPE QUADROTOR');
sendmsg(mavlink,msg)

Disconnect from the client.

disconnect (mavlink)

2-122

connect

Input Arguments

mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LocalPort', 12345

ConnectionName — Identifying connection name
"Connection#" (default) | string scalar

Identifying connection name, specified as the comma-separated pair consisting of
"ConnectionName' and a string scalar. The default connection name is "Connection#".

Data Types: string

LocalPort — Local port for UDP connection
0 (default) | numeric scalar

Local port for UDP connection, specified as a numeric scalar. A value of 0@ binds to a random open
port.

Data Types: double

Output Arguments

connectionName — Identifying connection name
"Connection#" (default) | string scalar

Identifying connection name, specified as a string scalar. The default connection name is
"Connection#", where # is an integer starting at 1 and increases with each new connection
created.

Data Types: string

See Also
disconnect | mavlinkdialect | mavlinkclient | mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

External Websites
MAVLink Developer Guide

Introduced in R2019a

2-123

https://mavlink.io

2 Methods

disconnect

Disconnect from MAVLink clients

Syntax

disconnect(mavlink)
disconnect(mavlink, connection)

Description

disconnect(mavlink) disconnects from all MAVLink clients connected through the mavlinkio
client.

disconnect(mavlink, connection) disconnects from the specific client connection name.

Examples

Store MAVLink Client Information

Connect to a MAVLink client.

mavlink = mavlinkio("common.xml");
connect(mavlink, "UDP");

Create the object for storing the client information. Specify the system and component ID.
client = mavlinkclient(mavlink,1,1)

client =
mavlinkclient with properties:

SystemID: 1

ComponentID: 1
ComponentType: "Unknown"
AutopilotType: "Unknown"

Disconnect from client.

disconnect(mavlink)

Work with MAVLink Connection

This example shows how to connect to MAVLink clients, inspect the list of topics, connections, and
clients, and send messages through UDP ports using the MAVLink communication protocol.

Connect to a MAVLink client using the "common.xml" dialect. This local client communicates with
any other clients through a UDP port.

2-124

disconnect

dialect = mavlinkdialect("common.xml");
mavlink = mavlinkio(dialect);
connect(mavlink, "UDP")

ans =
"Connectionl"

You can list all the active clients, connections, and topics for the MAVLink connection. Currently,
there is only one client connection and no topics have received messages.

listClients(mavlink)

ans=1x4 table
SystemID ComponentID ComponentType AutopilotType

255 1 "MAV_TYPE GCS" “MAV_AUTOPILOT INVALID"

listConnections (mavlink)

ans=1x2 table

ConnectionName ConnectionInfo
"Connectionl" "UDP@0.0.0.0:64030"
listTopics(mavlink)

ans =
0x5 empty table

Create a subscriber for receiving messages on the client. This subscriber listens for the
"HEARTBEAT" message topic with ID equal to 0.

sub = mavlinksub(mavlink,0);

Create a "HEARTBEAT" message using the mavlinkdialect object. Specify payload information and
send the message over the MAVLink client.

msg = createmsg(dialect, "HEARTBEAT");

msg.Payload.type(:) = enum2num(dialect, '"MAV TYPE', 'MAV_TYPE QUADROTOR');
sendmsg(mavlink,msg)

Disconnect from the client.

disconnect (mavlink)

Input Arguments

mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

2-125

2 Methods

connection — Connection name
string scalar

Connection name, specified as a string scalar.
See Also
connect | mavlinkio | mavlinkdialect | mavlinkclient | mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

External Websites
MAVLink Developer Guide

Introduced in R2019a

2-126

https://mavlink.io

listClients

listClients

List all connected MAVLink clients

Syntax

clientTable = listClients(mavlink)

Description

clientTable = listClients(mavlink) lists all active connections for the mavlinkio client
connection.

Examples

Work with MAVLink Connection

This example shows how to connect to MAVLink clients, inspect the list of topics, connections, and
clients, and send messages through UDP ports using the MAVLink communication protocol.

Connect to a MAVLink client using the "common.xml" dialect. This local client communicates with
any other clients through a UDP port.

dialect = mavlinkdialect("common.xml");
mavlink = mavlinkio(dialect);
connect(mavlink, "UDP")

ans =
"Connectionl"

You can list all the active clients, connections, and topics for the MAVLink connection. Currently,
there is only one client connection and no topics have received messages.

listClients(mavlink)

ans=1x4 table
SystemID ComponentID ComponentType AutopilotType

255 1 "MAV_TYPE_GCS" "MAV_AUTOPILOT INVALID"

listConnections (mavlink)

ans=1x2 table
ConnectionName ConnectionInfo

"Connectionl" "UDP@0.0.0.0:64030"

listTopics(mavlink)

2-127

2 Methods

ans =
0x5 empty table

Create a subscriber for receiving messages on the client. This subscriber listens for the
"HEARTBEAT" message topic with ID equal to 0.

sub = mavlinksub(mavlink,0);

Create a "HEARTBEAT" message using the mavlinkdialect object. Specify payload information and
send the message over the MAVLink client.

msg = createmsg(dialect, "HEARTBEAT");
msg.Payload.type(:) = enum2num(dialect, 'MAV TYPE', '"MAV TYPE QUADROTOR');
sendmsg(mavlink,msg)

Disconnect from the client.

disconnect (mavlink)

Input Arguments

mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

Output Arguments

clientTable — Active client info
table

Active connection info, returned as a table with SystemID, ComponentID, ConnectionType, and
AutopilotType fields for each active client.

See Also

connect | listConnections | ListTopics | mavlinkio | mavlinkdialect | mavlinkclient |
mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

2-128

https://mavlink.io

listConnections

listConnections

List all active MAVLink connections

Syntax

connectionTable = listConnections(mavlink)

Description

connectionTable = listConnections(mavlink) lists all active connections for the mavlinkio

client connection.

Examples

Work with MAVLink Connection

This example shows how to connect to MAVLink clients, inspect the list of topics, connections, and
clients, and send messages through UDP ports using the MAVLink communication protocol.

Connect to a MAVLink client using the "common.xml" dialect. This local client communicates with
any other clients through a UDP port.

dialect = mavlinkdialect("common.xml");
mavlink = mavlinkio(dialect);
connect (mavlink, "UDP")

ans =
"Connectionl"

You can list all the active clients, connections, and topics for the MAVLink connection. Currently,
there is only one client connection and no topics have received messages.

listClients(mavlink)

ans=1x4 table
SystemID ComponentID ComponentType AutopilotType

255 1 "MAV_TYPE_ GCS" "MAV_AUTOPILOT INVALID"

listConnections (mavlink)

ans=1x2 table

ConnectionName ConnectionInfo
"Connectionl" "UDP@0.0.0.0:64030"
listTopics(mavlink)

2-129

2 Methods

ans =
0x5 empty table

Create a subscriber for receiving messages on the client. This subscriber listens for the
"HEARTBEAT" message topic with ID equal to 0.

sub = mavlinksub(mavlink,0);

Create a "HEARTBEAT" message using the mavlinkdialect object. Specify payload information and
send the message over the MAVLink client.

msg = createmsg(dialect, "HEARTBEAT");
msg.Payload.type(:) = enum2num(dialect, 'MAV TYPE', '"MAV TYPE QUADROTOR');
sendmsg(mavlink,msg)

Disconnect from the client.

disconnect (mavlink)

Input Arguments

mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

Output Arguments

connectionTable — Active connection info
table

Active connection info, returned as a table with ConnectionName and ConnectionInfo fields for
each active connection.

See Also

connect | listClients | listTopics | mavlinkio | mavlinkdialect | mavlinkclient |
mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

2-130

https://mavlink.io

listTopics

listTopics

List all topics received by MAVLink client

Syntax

topicTable = listTopics(mavlink)

Description

topicTable = listTopics(mavlink) returns a table of topics received on the connected
mavlinkio client with information on the message frequency.

Examples

Work with MAVLink Connection

This example shows how to connect to MAVLink clients, inspect the list of topics, connections, and
clients, and send messages through UDP ports using the MAVLink communication protocol.

Connect to a MAVLink client using the "common.xml" dialect. This local client communicates with
any other clients through a UDP port.

dialect = mavlinkdialect("common.xml");
mavlink = mavlinkio(dialect);
connect (mavlink, "UDP")

ans =
"Connectionl"

You can list all the active clients, connections, and topics for the MAVLink connection. Currently,
there is only one client connection and no topics have received messages.

listClients(mavlink)

ans=1x4 table
SystemID ComponentID ComponentType AutopilotType

255 1 "MAV_TYPE_GCS" "MAV_AUTOPILOT INVALID"

listConnections (mavlink)

ans=1x2 table

ConnectionName ConnectionInfo
"Connectionl" "UDP@0.0.0.0:64030"
listTopics(mavlink)

2-131

2 Methods

ans =
0x5 empty table

Create a subscriber for receiving messages on the client. This subscriber listens for the
"HEARTBEAT" message topic with ID equal to 0.

sub = mavlinksub(mavlink,0);

Create a "HEARTBEAT" message using the mavlinkdialect object. Specify payload information and
send the message over the MAVLink client.

msg = createmsg(dialect, "HEARTBEAT");
msg.Payload.type(:) = enum2num(dialect, 'MAV TYPE', '"MAV TYPE QUADROTOR');
sendmsg(mavlink,msg)

Disconnect from the client.

disconnect (mavlink)

Input Arguments

mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

Output Arguments

topicTable — Topic info
table

Topic info, returned as a table with SystemID, ComponentID, MessagelID, MessageName, and
MessageFrequency fields for each topic receiving messages on the client.

See Also

connect | listConnections | listClients | mavlinkio | mavlinkdialect | mavlinkclient |
mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

2-132

https://mavlink.io

sendmsg

sendmsg

Send MAVLink message

Syntax

sendmsg(mavlink,msg)
sendmsg(mavlink,msg,client)

Description

sendmsg(mavlink,msg) sends a message to all connected MAVLink clients in the mavlinkio
object.

sendmsg(mavlink,msg, client) sends a message to the MAVLink client specified as a
mavlinkclient object. If the client is not connected, no message is sent.

Examples

Work with MAVLink Connection

This example shows how to connect to MAVLink clients, inspect the list of topics, connections, and
clients, and send messages through UDP ports using the MAVLink communication protocol.

Connect to a MAVLink client using the "common.xml" dialect. This local client communicates with
any other clients through a UDP port.

dialect = mavlinkdialect("common.xml");
mavlink = mavlinkio(dialect);
connect (mavlink, "UDP")

ans =
"Connectionl"

You can list all the active clients, connections, and topics for the MAVLink connection. Currently,
there is only one client connection and no topics have received messages.

listClients(mavlink)
ans=1x4 table
SystemID ComponentID ComponentType AutopilotType
255 1 "MAV_TYPE_ GCS" "MAV_AUTOPILOT INVALID"

listConnections (mavlink)

ans=1x2 table
ConnectionName ConnectionInfo

2-133

2 Methods

2-134

"Connectionl" "UDP@0.0.0.0:64030"

listTopics(mavlink)
ans =
0x5 empty table

Create a subscriber for receiving messages on the client. This subscriber listens for the
"HEARTBEAT" message topic with ID equal to 0.

sub = mavlinksub(mavlink,0);

Create a "HEARTBEAT" message using the mavlinkdialect object. Specify payload information and
send the message over the MAVLink client.

msg = createmsg(dialect, "HEARTBEAT");

msg.Payload.type(:) = enum2num(dialect, '"MAV TYPE', 'MAV_TYPE QUADROTOR');
sendmsg(mavlink,msg)

Disconnect from the client.

disconnect (mavlink)

Input Arguments

mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

msg — MAVLink message
structure

MAVLink message, specified as a structure with the fields:

* MsgID: Positive integer for message ID.
* Payload: Structure containing fields for the specific message definition.

To create a blank message, use the createmsg with a mavlinkdialect object.

client — MAVLink client information
mavlinkclient object

MAVLink client information, specified as a mavlinkclient object.
See Also

connect | listConnections | listClients | mavlinkio | mavlinkdialect | mavlinkclient |
mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

sendmsg

External Websites
MAVLink Developer Guide

Introduced in R2019a

2-135

https://mavlink.io

2 Methods

serializemsg

Serialize MAVLink message to binary buffer

Syntax

buffer = serializemsg(mavlink,msg)

Description
buffer = serializemsg(mavlink,msg) serializes a MAVLink message structure to a binary

buffer for transmission. This buffer is for manual transmission using your own communication
channel. To send over UDP, see sendmsg.

Input Arguments

mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

msg — MAVLink message
structure

MAVLink message, specified as a structure with the fields:

* MsgID: Positive integer for message ID.
* Payload: Structure containing fields for the specific message definition.

To create a blank message, use the createmsg with a mavlinkdialect object.

Output Arguments

buffer — Serialized message
vector of uint8 integers

Serialized messaged, returned as vector of uint8 integers.

Data Types: uint8

See Also
sendmsg | connect | ListConnections | listClients | mavlinkio | mavlinkdialect |
mavlinkclient | mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

2-136

https://mavlink.io

sendudpmsg

sendudpmsg

Send MAVLink message to UDP port

Syntax

sendudpmsg(mavlink,msg, remoteHost, remotePort)

Description

sendudpmsg(mavlink,msg, remoteHost, remotePort) sends the message, msg, to the remote
UDP port specified by the host name, remoteHost, and port number, remotePort.

Input Arguments

mavlink — MAVLink client connection
mavlinkio object

MAVLink client connection, specified as a mavlinkio object.

msg — MAVLink message
structure

MAVLink message, specified as a structure with the fields:

* MsgID: Positive integer for message ID.
* Payload: Structure containing fields for the specific message definition.

To create a blank message, use the createmsg with a mavlinkdialect object.

remoteHost — Remote host IP address
string

Remote host IP address, specified as a string.
Example: "192.168.1.10"

remotePort — Remote host port
five-digit numeric scalar

Remote host IP address, specified as a five-digit numeric scalar.
Example: 14550

See Also
sendmsg | connect | ListConnections | ListClients | mavlinkio | mavlinkdialect |
mavlinkclient | mavlinksub

Topics
“Tune UAV Parameters Using MAVLink Parameter Protocol”

2-137

2 Methods

External Websites
MAVLink Developer Guide

Introduced in R2019a

2-138

https://mavlink.io

latestmsgs

latestmsgs

Received messages from MAVLink subscriber

Syntax

msgs = latestmsgs(sub,count)

Description

msgs = latestmsgs(sub, count) returns the latest received messages for the mavlinksub
object. The messages are in a structure array in reverse-chronological order with the most recent
being first. If count is larger than the number of stored messages, the structure array contains only
the number of stored messages.

Examples

Subscribe to MAVLink Topic
Connect to a MAVLink client.

mavlink = mavlinkio("common.xml")

mavlink =
mavlinkio with properties:

Dialect: [1x1 mavlinkdialect]
LocalClient: [1x1 struct]

connect (mavlink, "UDP")

ans =
"Connectionl"

Get the client information.

client = mavlinkclient(mavlink,1,1);

Subscribe to the "HEARTBEAT" topic.

heartbeat = mavlinksub(mavlink,client, 'HEARTBEAT');

Get the latest message. You must wait for a message to be received. Currently, no heartbeat message
has been received on the mavlink object.

latestmsgs (heartbeat, 1)

ans =
1x0 empty struct array with fields:

MsgID

2-139

2 Methods

2-140

SystemID
ComponentID
Payload
Seq

Disconnect from client.

disconnect (mavlink)

Input Arguments

sub — MAVLink subscriber
mavlinksub object

MAVLink subscriber, specified as a mavlinksub object.

count — Number of messages
positive integer

Number of messages, specified as a positive integer. If count is larger than the number of stored
messages, the structure array is padded with empty structs.

Output Arguments

msgs — Recently received messages
structure array

Recently received messages, returned as a structure array. Each structure has the fields:

* MsgID

* SystemID

* ComponentID
+ Payload

The Payload is a structure defined by the message definition for the MAVLink dialect.

If count is larger than the number of stored messages, the structure array contains only the number
of stored messages..

See Also
mavlinksub | mavlinkclient | mavlinkio | mavlinkdialect

Introduced in R2019a

num2enum

num2enum

Enum entry for given value

Syntax

entry = num2enum(dialect,enum,enumValue)

Description

entry = num2enum(dialect,enum,enumValue) returns the value for the given entry in the
enum.

Examples

Parse and Use MAVLink Dialect

This example shows how to parse a MAVLink XML file and create messages and commands from the
definitions.

NOTE: This example requires you to install the UAV Library for Robotics System Toolbox®. Call
roboticsAddons to open the Add-ons Explorer and install the library.

Parse and store the MAVLink dialect XML. Specify the XML path. The default "common.xml" dialect
is provided. This XML file contains all the message and enum definitions.

dialect = mavlinkdialect("common.xml");

Create a MAVLink command from the MAV_CMD enum, which is an enum of MAVLink commands to
send to the UAV. Specify the setting as "int" or "long", and the type as an integer or string.

cmdMsg = createcmd(dialect, "long",22)
cmdMsg = struct with fields:

MsgID: 76
Payload: [1x1 struct]

Verify the command name using nhum2enum. Command 22 is a take-off command for the UAV. You can
convert back to an ID using enum2num. Your dialect can contain many different enums with different
names and IDs.

cmdName = num2enum(dialect, "MAV CMD",22)

cmdName =
"MAV CMD NAV TAKEOFF"

cmdID = enum2num(dialect, "MAV CMD", cmdName)

cmdID = 22

Use enuminfo to view the table of the MAV_CMD enum entries.

2-141

2 Methods

2-142

info
info

ans=

= enuminfo(dialect, "MAV CMD");
.Entries{:}

148x3 table

Name Value

"MAV_CMD NAV_ WAYPOINT" 16 "Navigate to waypoint."

"MAV_CMD NAV LOITER UNLIM" 17 "Loiter around this waypoint an unlimited

"MAV_CMD NAV LOITER TURNS" 18 "Loiter around this waypoint for X turns"

"MAV_CMD NAV LOITER TIME" 19 "Loiter at the specified latitude, longitu

"MAV_CMD NAV RETURN TO LAUNCH" 20 "Return to launch location"

"MAV_CMD NAV_LAND" 21 "Land at location."

"MAV_CMD NAV TAKEOFF" 22 "Takeoff from ground / hand. Vehicles that

"MAV_CMD NAV LAND LOCAL" 23 "Land at local position (local frame only)

“"MAV_CMD NAV TAKEOFF LOCAL" 24 "Takeoff from local position (local frame

"MAV_CMD NAV_ FOLLOW" 25 "Vehicle following, i.e. this waypoint rep

"MAV_CMD NAV CONTINUE AND CHANGE ALT" 30 "Continue on the current course and climb/

"MAV_CMD NAV LOITER TO ALT" 31 "Begin loiter at the specified Latitude an

"MAV_CMD DO FOLLOW" 32 "Begin following a target"

"MAV_CMD DO FOLLOW REPOSITION" 33 "Reposition the MAV after a follow target

"MAV_CMD DO ORBIT" 34 "Start orbiting on the circumference of a
80 "Sets the region of interest (ROI) for a s

"MAV_CMD NAV ROI"

Query the dialect for a specific message ID. Create a blank MAVLink message using the message ID.

info

info

msg = createmsg(dialect,info.MessagelD);

Inp

= msginfo(dialect, "HEARTBEAT")
=1x4 table
MessagelID MessageName
0 "HEARTBEAT" "The heartbeat message shows that a system or component is prese

ut Arguments

dialect — MAVLink dialect
mavlinkdialect object

MAVLink dialect, specified as a mavlinkdialect object, which contains a parsed dialect XML for
MAVLink message definitions.

enum — MAVLink enum name

strin

g

MAVLink enum name, specified as a string.

enumValue — Enum value
integer

Enum value, specified as an integer.

num2enum

Output Arguments

entry — MAVLink enum entry name
string

MAVLink enum entry name, returned as a string.

See Also
enum2num | enuminfo | msginfo | mavlinkdialect | mavlinkio | mavlinkclient | mavlinksub

External Websites
MAVLink Developer Guide

Introduced in R2019a

2-143

https://mavlink.io

2 Methods

readmsg

Read specific messages from TLOG file

Syntax

msgTable = readmsg(tlogReader)

msgTable = readmsg(tlogReader,Name,Value)
Description

msgTable = readmsg(tlogReader) reads all message data from the specified mavlinkdialect
object and returns a table, msgTab'le, that contains all the messages separated by message type,
system ID, and component ID.

msgTable = readmsg(tlogReader,Name,Value) reads specific messages based on the specified

name-value pairs for filtering specific properties of the messages. You can filter by message name,
system 1D, component ID, and time.

Examples

Read Messages from MAVLink TLOG File
This example shows how to load a MAVLink TLOG file and select a specific message type.

Load the TLOG file. Specify the relative path of the file name.

tlogReader = mavlinktlog('flight.tlog');

Read the 'REQUEST DATA STREAM' messages from the file.

msgData = readmsg(result, 'MessageName', 'REQUEST DATA STREAM');

Input Arguments

tlogReader — MAVLink TLOG reader
mavlinktlog object

MAVLink TLOG reader, specified as a mavlinktlog object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after

other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'MessagelD', 22

2-144

readmsg

MessageName — Name of message in tlog
string scalar | character vector

Name of message in TLOG, specified as string scalar or character vector.

Data Types: char | string

SystemID — MAVLink system ID
positive integer from 1 through 255

MAVLink system ID, specified as a positive integer from 1 through 255. MAVLink protocol only
supports up to 255 systems. Usually, each UAV has its own system ID, but multiple UAVs could be
considered one system.

ComponentID — MAVLink component ID
positive integer from 1 through 255

MAVLink system ID, specified as a positive integer from 1 through 255.

Time — Time interval
two-element vector

Time interval between which to select messages, specified as a two-element vector in seconds.

Output Arguments

msgTable — Table of messages
table

Table of messages with columns:

* MessagelD

* MessageName
e ComponentID
* SystemID

* Messages

Each row of Messages is a timetable containing the message Payload and the associated
timestamp.

See Also
mavlinktlog | mavlinkdialect | mavlinkclient | mavlinkio

Topics
“Visualize and Playback MAVLink Flight Log”

Introduced in R2019a

2-145

2 Methods

2-146

deserializemsg

Deserialize MAVLink message from binary buffer

Syntax

msg = deserializemsg(dialect,buffer)

Description
msg = deserializemsg(dialect,buffer) deserializes binary buffer data specified in buffer

based on the specified MAVLink dialect. If a message is received as multiple buffers, you can combine
them by concatenating the vectors in the proper order to get a valid message.

Input Arguments

dialect — MAVLink dialect
mavlinkdialect object

MAVLink dialect, specified as a mavlinkdialect object, which contains a parsed dialect XML for
MAVLink message definitions.

buffer — Serialized message
vector of uint8 integers

Serialized messaged, specified as vector of uint8 integers.

Data Types: uint8

Output Arguments

msg — MAVLink message
structure

MAVLink message, returned as a structure with the fields:

* MsgID: Positive integer for message ID.
* Payload: Structure containing fields for the specific message definition.
See Also

Functions
createmsg | createcmd | msginfo | enuminfo | enum2num | num2enum

Objects
mavlinkdialect | mavlinkio | mavlinkclient | mavlinksub

Introduced in R2019a

angvel

angvel

Angular velocity from quaternion array

Syntax

AV = angvel(Q,dt, 'frame')
AV angvel(Q,dt, 'point"')
[AV,qf] = angvel(Q,dt, fp,qi)

Description

AV = angvel(Q,dt, 'frame') returns the angular velocity array from an array of quaternions, Q.
The quaternions in Q correspond to frame rotation. The initial quaternion is assumed to represent

zero rotation.

AV = angvel(Q,dt, 'point') returns the angular velocity array from an array of quaternions, Q.
The quaternions in Q correspond to point rotation. The initial quaternion is assumed to represent zero

rotation.

[AV,qf] = angvel(Q,dt,fp,qi) allows you to specify the initial quaternion, qi, and the type of

rotation, fp. It also returns the final quaternion, qf.

Examples

Generate Angular Velocity From Quaternion Array

Create an array of quaternions.

eulerAngles = [(0:10:90).',zeros(numel(0:10:90),2)1;
g = quaternion(eulerAngles, 'eulerd', 'ZYX', 'frame');

Specify the time step and generate the angular velocity array.

dt = 1;

av = angvel(q,dt, 'frame') % units in rad/s

av = 10x3
0 0 0
0 0 0.1743
0 0 0.1743
0 0 0.1743
0 0 0.1743
0 0 0.1743
0 0 0.1743
0 0 0.1743
0 0 0.1743
0 0 0.1743

2-147

2 Methods

Input Arguments

Q — Quaternions
N-by-1 vector of quaternions

Quaternions, specified as an N-by-1 vector of quaternions.

Data Types: quaternion

dt — Time step
nonnegative scalar

Time step, specified as a nonnegative scalar.

Data Types: single | double

fp — Type of rotation
"frame' | 'point'’

Type of rotation, specified as ' frame' or 'point"’.

qi — Initial quaternion
quaternion

Initial quaternion, specified as a quaternion.

Data Types: quaternion

Output Arguments

AV — Angular velocity
N-by-3 real matrix

Angular velocity, returned as an N-by-3 real matrix. N is the number of quaternions given in the input
Q. Each row of the matrix corresponds to an angular velocity vector.

gf — Final quaternion
quaternion

Final quaternion, returned as a quaternion. qf is the same as the last quaternion in the Q input.

Data Types: quaternion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion

Introduced in R2020b

2-148

classUnderlying

classUnderlying

Class of parts within quaternion

Syntax

underlyingClass = classUnderlying(quat)

Description

underlyingClass = classUnderlying(quat) returns the name of the class of the parts of the

quaternion quat.

Examples

Get Underlying Class of Quaternion

A quaternion is a four-part hyper-complex number used in three-dimensional representations. The
four parts of the quaternion are of data type single or double.

Create two quaternions, one with an underlying data type of single, and one with an underlying
data type of double. Verify the underlying data types by calling classUnderlying on the
quaternions.

gSingle = quaternion(single([1,2,3,4]))
gSingle = quaternion

1+ 2i+ 3j + 4k
classUnderlying(qgSingle)

ans =
'single’

gDouble = quaternion([1,2,3,4])
gDouble = quaternion

1 +2i+ 3] + 4k
classUnderlying(gDouble)

ans =
"double’

You can separate quaternions into their parts using the parts function. Verify the parts of each
quaternion are the correct data type. Recall that double is the default MATLAB® type.

[aS,bS,cS,dS] = parts(qgSingle)

aS = single
1

2-149

2 Methods

2-150

bS = single
2

cS = single
3

dS = single
4

[aD,bD,cD,dD] = parts(gDouble)

ab =1
bD = 2
cb =3
dD = 4

Quaternions follow the same implicit casting rules as other data types in MATLAB. That is, a
quaternion with underlying data type single that is combined with a quaternion with underlying
data type double results in a quaternion with underlying data type single. Multiply gDouble and
gSingle and verify the resulting underlying data type is single.

g = gDouble*gSingle;
classUnderlying(q)

ans =
'single’
Input Arguments

quat — Quaternion to investigate
scalar | vector | matrix | multi-dimensional array

Quaternion to investigate, specified as a quaternion or array of quaternions.
Data Types: quaternion
Output Arguments

underlyingClass — Underlying class of quaternion object
‘single' | "double’

Underlying class of quaternion, returned as the character vector 'single’ or 'double’.
Data Types: char
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

classUnderlying

See Also

Functions
compact | parts

Objects
quaternion

Introduced in R2020b

2-151

2 Methods

compact

Convert quaternion array to N-by-4 matrix

Syntax

matrix = compact(quat)

Description

matrix = compact(quat) converts the quaternion array, quat, to an N-by-4 matrix. The columns
are made from the four quaternion parts. The it row of the matrix corresponds to quat (i).

Examples

Convert Quaternion Array to Compact Representation of Parts
Create a scalar quaternion with random parts. Convert the parts to a 1-by-4 vector using compact.

randomParts randn(1,4)

randomParts 1x4

0.5377 1.8339 -2.2588 0.8622

quat = quaternion(randomParts)
quat = quaternion
0.53767 + 1.8339i - 2.2588j + 0.86217k
quatParts = compact(quat)
quatParts = 1Ix4

0.5377 1.8339 -2.2588 0.8622

Create a 2-by-2 array of quaternions, then convert the representation to a matrix of quaternion parts.
The output rows correspond to the linear indices of the quaternion array.

quatArray = [quaternion([1:4;5:8]),quaternion([9:12;13:16])]

quatArray = 2x2 quaternion array

1+ 2i+ 3j+ 4k 9 + 10i + 11 + 12k
5+ 61+ 7j + 8k 13 + 14i + 15j + 16k
quatArrayParts = compact(quatArray)

quatArrayParts 4x4

2-152

compact

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Input Arguments

quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of quaternions.

Data Types: quaternion

Output Arguments

matrix — Quaternion in matrix form
N-by-4 matrix

Quaternion in matrix form, returned as an N-by-4 matrix, where N = numel(quat).
Data Types: single | double
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
parts | classUnderlying

Objects
quaternion

Introduced in R2020b

2-153

2 Methods

conj

Complex conjugate of quaternion

Syntax

quatConjugate = conj(quat)

Description

quatConjugate = conj(quat) returns the complex conjugate of the quaternion, quat.

If g = a + bi + cj + dk, the complex conjugate of q is ¢* = a — bi — cj — dk. Considered as a rotation
operator, the conjugate performs the opposite rotation. For example,

g = quaternion(deg2rad([16 45 30]), 'rotvec');
a = g*conj(q);
rotatepoint(a,[0,1,0])

ans =
Examples

Complex Conjugate of Quaternion

Create a quaternion scalar and get the complex conjugate.

g = normalize(quaternion([0.9 0.3 0.3 0.25]))
= quaternion

0.87727 + 0.29242i + 0.29242j + 0.24369k
qConj = conj(q)

gConj = quaternion

0.87727 - 0.29242i - 0.29242j - 0.24369k
Verify that a quaternion multiplied by its conjugate returns a quaternion one.
g*qConj

ans = quaternion
1 +0i+ 0] + 0k

2-154

conj

Input Arguments

quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to conjugate, specified as a scalar, vector, matrix, or array of quaternions.

Data Types: quaternion

Output Arguments

quatConjugate — Quaternion conjugate
scalar | vector | matrix | multidimensional array

Quaternion conjugate, returned as a quaternion or array of quaternions the same size as quat.
Data Types: quaternion
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
norm| .*,times

Objects
guaternion

Introduced in R2020b

2-155

2 Methods

2-156

ctranspose, '

Complex conjugate transpose of quaternion array

Syntax

quatTransposed = quat'

Description

quatTransposed = quat' returns the complex conjugate transpose of the quaternion, quat.
Examples

Vector Complex Conjugate Transpose

Create a vector of quaternions and compute its complex conjugate transpose.

quat = quaternion(randn(4,4))
quat = 4x1 quaternion array
0.53767 + 0.31877i + 3.5784j + 0.7254k
1.8339 - 1.30771i + 2.7694j] - 0.063055k
-2.2588 - 0.43359i - 1.3499) + 0.71474k
0.86217 + 0.34262i + 3.0349j - 0.20497k
quatTransposed = quat'
quatTransposed = 1x4 quaternion array
0.53767 - 0.318771 - 3.57845 - 0.7254k 1.8339 + 1.3077i - 2.7694j + 0.06305

Matrix Complex Conjugate Transpose

Create a matrix of quaternions and compute its complex conjugate transpose.
quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat = 2x2 quaternion array

0.53767 - 2.25881 + 0.31877] - 0.43359k 3.5784 - 1.34991i + 0.7254) + 0.7147.
1.8339 + 0.86217i - 1.3077j + 0.34262k 2.7694 + 3.0349i - 0.063055j - 0.2049°
quatTransposed = quat'
quatTransposed = 2x2 quaternion array
0.53767 + 2.2588i - 0.31877j + 0.43359k 1.8339 - 0.86217i + 1.3077) - 0.3426
3.5784 + 1.34991 - 0.72547 - 0.71474k 2.7694 - 3.03491 + 0.063055] + 0.2049

ctranspose, '

Input Arguments

quat — Quaternion to transpose
scalar | vector | matrix

Quaternion to transpose, specified as a vector or matrix or quaternions. The complex conjugate
transpose is defined for 1-D and 2-D arrays.

Data Types: quaternion

Output Arguments

quatTransposed — Conjugate transposed quaternion
scalar | vector | matrix

Conjugate transposed quaternion, returned as an N-by-M array, where quat was specified as an M-
by-N array.

Data Types: quaternion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
transpose, '

Objects
guaternion

Introduced in R2020b

2-157

2 Methods

2-158

dist
Angular distance in radians

Syntax

distance = dist(quatA,quatB)

Description

distance = dist(quatA, quatB) returns the angular distance in radians between two
quaternions, quatA and quatB.

Examples

Calculate Quaternion Distance

Calculate the quaternion distance between a single quaternion and each element of a vector of
quaternions. Define the quaternions using Euler angles.

g = quaternion([0,0,0], 'eulerd', 'zyx", 'frame")
q = quaternion
1+ 01+ 0j + 0k

gArray = quaternion([0,45,0;0,90,0;0,180,0;0,-90,0;0,-45,0], 'eulerd’, 'zyx"', 'frame")
gArray = 5x1 quaternion array

0.92388 + 0i + 0.38268j + 0k

0.70711 + 0i + 0.70711j + 0k

6.1232e-17 + 0i + 1 + 0k
0.70711 + 0i - 0.70711j + 0k
0.92388 + 0i - 0.38268j + 0k

quaternionDistance = rad2deg(dist(q,qgArray))

quaternionDistance 5x1
45.0000
90.0000
180.0000
90.0000
45.0000

If both arguments to dist are vectors, the quaternion distance is calculated between corresponding
elements. Calculate the quaternion distance between two quaternion vectors.

anglesl = [30,0,15;
30,5,15;

dist

30,10,15;
30,15,15];
angles2 = [30,6,15;
31,11,15;
30,16,14; ...
30.5,21,15.5];

gVectorl
gVector2

quaternion(anglesl, 'eulerd', 'zyx"', 'frame');
quaternion(angles2, 'eulerd', 'zyx"', 'frame');

rad2deg(dist(gVectorl,gVector2))
ans = 4x1

6.0000

6.0827

6.0827
6.0287

Note that a quaternion represents the same rotation as its negative. Calculate a quaternion and its
negative.

gPositive

quaternion([30,45,-60], 'eulerd', 'zyx", 'frame")

gPositive = quaternion
0.72332 - 0.53198i + 0.20056j + 0.3919k

gNegative -gPositive

gNegative = quaternion
-0.72332 + 0.53198i - 0.20056j - 0.3919k
Find the distance between the quaternion and its negative.
dist(gPositive,gNegative)
ans = 0

The components of a quaternion may look different from the components of its negative, but both
expressions represent the same rotation.

Input Arguments

quatA, quatB — Quaternions to calculate distance between
scalar | vector | matrix | multidimensional array

Quaternions to calculate distance between, specified as comma-separated quaternions or arrays of
quaternions. quatA and quatB must have compatible sizes:

*+ size(quatA) == size(quatB), or
* numel(quatA) == 1,or
* numel(quatB) == 1, or

2-159

2 Methods

o if [Adiml,..,AdimN] = size(quatA) and [Bdiml,..,BdimN] = size(quatB), thenfori =
1:N, either Adimi==Bdimi or Adim==1 or Bdim==1.

If one of the quaternion arguments contains only one quaternion, then this function returns the
distances between that quaternion and every quaternion in the other argument.

Data Types: quaternion

Output Arguments

distance — Angular distance (radians)
scalar | vector | matrix | multidimensional array

Angular distance in radians, returned as an array. The dimensions are the maximum of the union of
size(quatA) and size(quatB).

Data Types: single | double
Algorithms
The dist function returns the angular distance between two quaternions.

A quaternion may be defined by an axis (up,u.,ug) and angle of rotation 6,:
q= cos(eq/z) + sin(eq/z)(ubi + ugj + ugk).

(up,ucug)

L J
=

Given a quaternion in the form, g = a + bi + cj + dk, where a is the real part, you can solve for the
angle of q as 6, = 2cos ™ L(a).

Consider two quaternions, p and g, and the product z = p*conjugate(q). As p approaches ¢, the angle
of z goes to 0, and z approaches the unit quaternion.

The angular distance between two quaternions can be expressed as 6, = 2cos™ ! (real(2)).

Using the quaternion data type syntax, the angular distance is calculated as:

angularDistance = 2*acos(abs(parts(p*conj(q))));

2-160

dist

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
parts | conj

Objects
quaternion

Introduced in R2020b

2-161

2 Methods

2-162

euler

Convert quaternion to Euler angles (radians)

Syntax

eulerAngles = euler(quat,rotationSequence, rotationType)

Description

eulerAngles = euler(quat,rotationSequence, rotationType) converts the quaternion,
quat, to an N-by-3 matrix of Euler angles.

Examples

Convert Quaternion to Euler Angles in Radians

Convert a quaternion frame rotation to Euler angles in radians using the 'ZYX' rotation sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesRandians = euler(quat, 'ZYX', 'frame')

eulerAnglesRandians = 1Ix3

0 0 1.5708

Input Arguments

quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array

Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.

Data Types: quaternion

rotationSequence — Rotation sequence
PZYX' | TZYZ' | UZXY' | TZXZY | TYXZ' | YXY! | TYZXY | CXYZ' | UXYX | TXZY | XX

Rotation sequence of Euler representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you specify a
rotation sequence of 'YZX"':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string

euler

rotationType — Type of rotation
‘point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point is static and
the frame moves. Point rotation and frame rotation define equivalent angular displacements but in
opposite directions.

Point Rotation »

.Lf"'.d -3 Kk y

Frame Rotation

Data Types: char | string

Output Arguments

eulerAngles — Euler angle representation (radians)
N-by-3 matrix

Euler angle representation in radians, returned as a N-by-3 matrix. N is the number of quaternions in
the quat argument.

For each row of eulerAngles, the first element corresponds to the first axis in the rotation
sequence, the second element corresponds to the second axis in the rotation sequence, and the third
element corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type of quat.

Data Types: single | double

2-163

2 Methods

2-164

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
eulerd | rotateframe | rotatepoint

Objects
quaternion

Introduced in R2020b

eulerd

eulerd

Convert quaternion to Euler angles (degrees)

Syntax

eulerAngles = eulerd(quat, rotationSequence, rotationType)

Description

eulerAngles = eulerd(quat, rotationSequence, rotationType) converts the quaternion,
quat, to an N-by-3 matrix of Euler angles in degrees.

Examples

Convert Quaternion to Euler Angles in Degrees

Convert a quaternion frame rotation to Euler angles in degrees using the 'ZYX' rotation sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesDegrees = eulerd(quat, 'ZYX', 'frame')

eulerAnglesDegrees Ix3

0 0 90.0000

Input Arguments

quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array

Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.

Data Types: quaternion

rotationSequence — Rotation sequence
PZYX' | TZYZ' | UZXY' | TZXZY | YXZ' | YXY! | TYZXY | UXYZ' | UXYX | TXZY | XX

Rotation sequence of Euler angle representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you specify a
rotation sequence of 'YZX"':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string

2-165

2 Methods

rotationType — Type of rotation
‘point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point is static and
the frame moves. Point rotation and frame rotation define equivalent angular displacements but in
opposite directions.

Point Rotation »

k’ — 3 k- y

Frame Rotation

Data Types: char | string

Output Arguments

eulerAngles — Euler angle representation (degrees)
N-by-3 matrix

Euler angle representation in degrees, returned as a N-by-3 matrix. N is the number of quaternions in
the quat argument.

For each row of eulerAngles, the first column corresponds to the first axis in the rotation sequence,
the second column corresponds to the second axis in the rotation sequence, and the third column
corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type of quat.

Data Types: single | double

2-166

eulerd

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
euler | rotateframe | rotatepoint

Objects
quaternion

Introduced in R2020b

2-167

2 Methods

exp

Exponential of quaternion array

Syntax

B = exp(A)

Description

B = exp(A) computes the exponential of the elements of the quaternion array A.

Examples

Exponential of Quaternion Array

Create a 4-by-1 quaternion array A.
A = quaternion(magic(4))

A = 4x1 quaternion array
16 + 2i + 3j + 13k
5+ 11i + 10j + 8k
9+ 7i+ 6j + 12k
4 + 141 + 155 + 1k

Compute the exponential of A.
B = exp(A)

B = 4x1 quaternion array

5.3525e+06 + 1.0516e+061i + 1.5774e+06j + 6.8352e+06k
-57.359 - 89.189i - 81.081j - 64.865k
-6799.1 + 2039.11i + 1747.8j + 3495.6k
-6.66 + 36.9311i + 39.569j + 2.6379k

Input Arguments

A — Input quaternion
scalar | vector | matrix | multidimensional array

Input quaternion, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: quaternion

Output Arguments

B — Result
scalar | vector | matrix | multidimensional array

2-168

exp

Result of quaternion exponential, returned as a scalar, vector, matrix, or multidimensional array.

Data Types: quaternion

Algorithms

Given a quaternion A = a + bi + c¢j + dk = a + v, the exponential is computed by

_ vV .=
exp(A) = e%cos|v] + Wsmllvll

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
.”~,power | log

Objects
quaternion

Introduced in R2020b

2-169

2 Methods

Idivide, .\

Element-wise quaternion left division

Syntax

C =A.\B

Description

C = A.\B performs quaternion element-wise division by dividing each element of quaternion B by
the corresponding element of quaternion A.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A = 2x1 quaternion array
1+ 21+ 3] + 4k
5+ 61+ 7j + 8k

B =2;

C =A.\B

C = 2x1 quaternion array

0.066667 - 0.133331 - 0.2j - 0.26667k
0.057471 - 0.0689661i - 0.08046j - 0.091954k

Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion
array.

gl = quaternion([1:4;2:5;4:7;5:8]);
A = reshape(ql,2,2)

A = 2x2 quaternion array

1+ 2i+ 3j + 4k 4 +5i +6j + 7k
2 + 31 + 47 + 5k 5+ 61+ 7] + 8k

g2 = quaternion(magic(4));
B = reshape(qg2,2,2)

2-170

Idivide, .\

B = 2x2 quaternion array
16 + 2i + 3j + 13k 9+ 7i+ 6] + 12k
5+ 111 + 10j + 8k 4 + 14i + 155 + 1k
C =A.\B
C = 2x2 quaternion array
2.7 - 1.91i - 0.9 - 1.7k 1.5159 - 0.37302i - 0.15079j - 0.0238
2.2778 + 0.462961 - 0.57407j + 0.092593k 1.2471 + 0.91379i - 0.33908j - 0.109

Input Arguments

A — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.

Data Types: quaternion | single | double

B — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a

scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.

Data Types: quaternion | single | double

Output Arguments

C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms

Quaternion Division

Given a quaternion A = a; + ayi + a3j + a4k and a real scalar p,

ap.

a a. daa
C=p\M=—+2i+25+ 2k
pM=rpit iy

2-171

2 Methods

Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes, then

conj(A)

C=A\B=A"' *B= ;
norm(A)

.*B

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
¥, times | conj | norm| ./, ldivide

Objects
quaternion

Introduced in R2020b

2-172

log

Natural logarithm of quaternion array

Syntax

B = log(A)

Description

B = log(A) computes the natural logarithm of the elements of the quaternion array A.

Examples

Logarithmic Values of Quaternion Array

Create a 3-by-1 quaternion array A.

A

quaternion(randn(3,4))

A

3x1 quaternion array

0.53767 + 0.86217i - 0.43359j + 2.7694k
1.8339 + 0.318771 + 0.34262] 1.3499k
-2.2588 - 1.3077i + 3.5784j + 3.0349k

Compute the logarithmic values of A.

B = log(A)

B = 3x1 quaternion array
1.0925 + 0.408481 - 0.20543j + 1.3121k
0.8436 + 0.14767i + 0.15872j - 0.62533k
1.6807 - 0.538291 + 1.473j + 1.2493k

Input Arguments

A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: quaternion

Output Arguments

B — Logarithm values
scalar | vector | matrix | multidimensional array

2-173

2 Methods

Quaternion natural logarithm values, returned as a scalar, vector, matrix, or multidimensional array.

Data Types: quaternion

Algorithms

Given a quaternion A = a + v = a + bi + ¢j + dk, the logarithm is computed by

a
I

log(A) = log|A +Larccos—

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
exp|.”,power

Objects
quaternion

Introduced in R2020b

2-174

meanrot

meanrot

Quaternion mean rotation

Syntax

quatAverage = meanrot(quat)
quatAverage = meanrot(quat,dim)
quatAverage = meanrot(,nanflag)
Description

quatAverage = meanrot(quat) returns the average rotation of the elements of quat along the
first array dimension whose size not does equal 1.

+ If quatis avector, meanrot(quat) returns the average rotation of the elements.

* If quat is a matrix, meanrot(quat) returns a row vector containing the average rotation of each
column.

* If quat is a multidimensional array, then mearot (quat) operates along the first array dimension
whose size does not equal 1, treating the elements as vectors. This dimension becomes 1 while the
sizes of all other dimensions remain the same.

The meanrot function normalizes the input quaternions, quat, before calculating the mean.

quatAverage = meanrot(quat,dim) return the average rotation along dimension dim. For
example, if quat is a matrix, then meanrot (quat, 2) is a column vector containing the mean of each
TOW.

quatAverage = meanrot(,nanflag) specifies whether to include or omit NaN values from
the calculation for any of the previous syntaxes. meanrot(quat, 'includenan') includes all NaN
values in the calculation while mean(quat, 'omitnan') ignores them.

Examples

Quaternion Mean Rotation

Create a matrix of quaternions corresponding to three sets of Euler angles.
eulerAngles = [40 20 10;

50 10 5;

45 70 11;

quat = quaternion(eulerAngles, 'eulerd', 'ZYX", 'frame');

Determine the average rotation represented by the quaternions. Convert the average rotation to
Euler angles in degrees for readability.

gquatAverage = meanrot(quat)

2-175

2 Methods

2-176

quatAverage = quaternion
0.88863 - 0.0625981i + 0.27822) + 0.35918k

eulerAverage = eulerd(quatAverage, 'ZYX', 'frame")

eulerAverage = 1Ix3

45.7876 32.6452 6.0407

Average Out Rotational Noise
Use meanrot over a sequence of quaternions to average out additive noise.

Create a vector of 1e6 quaternions whose distance, as defined by the dist function, from
quaternion(1,0,0,0) is normally distributed. Plot the Euler angles corresponding to the noisy
quaternion vector.

nrows = 1leb6;

ax = 2*rand(nrows,3) - 1;

ax = ax./sqrt(sum(ax.”2,2));
ang = 0.5*randn(size(ax,1),1);

g = quaternion(ax.*ang ,'rotvec');
noisyEulerAngles = eulerd(q, 'ZYX', 'frame');
figure(1l)

subplot(3,1,1)
plot(noisyEulerAngles(:,1))
title('Z-Axis')
ylabel('Rotation (degrees)"')
hold on

subplot(3,1,2)
plot(noisyEulerAngles(:,2))
title('Y-Axis')
ylabel('Rotation (degrees)"')
hold on

subplot(3,1,3)
plot(noisyEulerAngles(:,3))
title('X-Axis')
ylabel('Rotation (degrees)"')
hold on

meanrot

=
=

Rotation (degrees}
=

200
(] 1 2 3 4 5 [7 B 9 10
=10°
v
§ 100
)
i}
2 3
cC
.E
2 -100
il
=10°
w
p
v
)
i)
=
cC
.E
I
=]
o

= 10°

Use meanrot to determine the average quaternion given the vector of quaternions. Convert to Euler
angles and plot the results.

gAverage = meanrot(q);

gAverageInEulerAngles = eulerd(qAverage, 'ZYX', 'frame');
figure(1l)

subplot(3,1,1)
plot(ones(nrows,1l)*gAverageInEulerAngles(:,1))
title('Z-Axis")

subplot(3,1,2)
plot(ones(nrows,1l)*gAverageInEulerAngles(:,2))
title('Y-Axis')

subplot(3,1,3)

plot(ones(nrows,1l)*gAverageInEulerAngles(:,3))
title('X-Axis")

2-177

2 Methods

=
=

=)

:

10
=10°

Rotation (degrees}
=
ra
L
=y
Ln
o
=
o
w

—=
=]
=]

=]

Rotation (degrees)}

=10°

Rotation (degrees)}

= 10°

The meanrot Algorithm and Limitations
The meanrot Algorithm

The meanrot function outputs a quaternion that minimizes the squared Frobenius norm of the
difference between rotation matrices. Consider two quaternions:

* (0 represents no rotation.
* (90 represents a 90 degree rotation about the x-axis.

g0 = quaternion([®@ @ O], 'eulerd','ZYX", 'frame');
q90 = quaternion([0 0 90], 'eulerd','ZYX", 'frame');

Create a quaternion sweep, qSweep, that represents rotations from 0 to 180 degrees about the x-axis.

eulerSweep = (0:1:180)"';
gSweep = quaternion([zeros(numel(eulerSweep),2),eulerSweep],
'eulerd', 'ZYX', 'frame');

Convert g0, q90, and gSweep to rotation matrices. In a loop, calculate the metric to minimize for
each member of the quaternion sweep. Plot the results and return the value of the Euler sweep that
corresponds to the minimum of the metric.

ro
roo

rotmat(q0, 'frame');
rotmat(q90, 'frame');

2-178

meanrot

rSweep = rotmat(qSweep, 'frame');

metricToMinimize = zeros(size(rSweep,3),1);
for i = 1l:numel(gSweep)
metricToMinimize(i) = norm((rSweep(:,:,i) - r@),'fro').”2 + ...
norm((rSweep(:,:,1i) - r9e), 'fro').”2;
end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize'")

12 T T T T T T T T

Metric to Minimize
-]

2 i i i i i i i i
0 20 40 60 80 100 120 140 160 180

Euler Sweep (degrees)

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 45

The minimum of the metric corresponds to the Euler angle sweep at 45 degrees. That is, meanrot
defines the average between quaterion([0 0 0], 'ZYX', 'frame') and quaternion([0 O
901, 'ZYX','frame') as quaternion([0 0 45],'ZYX', 'frame'). Call meanrot with g0 and
q90 to verify the same result.

eulerd(meanrot([q0,q90]), " 'ZYX", 'frame")

ans = 1x3

2-179

2 Methods

0 0 45.0000

Limitations

The metric that meanrot uses to determine the mean rotation is not unique for quaternions
significantly far apart. Repeat the experiment above for quaternions that are separated by 180

degrees.
gl80 = quaternion([0®@ @ 180], 'eulerd','ZYX', 'frame');
r180 = rotmat(ql80, 'frame');
for i = l:numel(qgSweep)
metricToMinimize(i) = norm((rSweep(:,:,i) - r@),'fro').”2 + ...
norm((rSweep(:,:,i) - rl80),'fro')."2;

end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

8.0000000000:01 T T T T T T T T

8.0000000000008

800000000000 06

8.00000000000 04

8.0000000000002

£.99999999999 58

Metric to Minimize
[w-s]

7.99999999099996

7.9999999999904

7.9999999909092

7.999999999999

[~,eulerIndex] =

e

0 20 40 60 80 100 120
Euler Sweep (degrees)

min(metricToMinimize);

eulerSweep(eulerIndex)

ans = 159

2-180

140

160

180

meanrot

Quaternion means are usually calculated for rotations that are close to each other, which makes the
edge case shown in this example unlikely in real-world applications. To average two quaternions that
are significantly far apart, use the slerp function. Repeat the experiment using slerp and verify
that the quaternion mean returned is more intuitive for large distances.

gMean = slerp(q0,ql80,0.5);
g0 180 = eulerd(gMean, 'ZYX', 'frame')

q0 ql180 = 1x3

0 0 90.0000

Input Arguments

quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the mean, specified as a scalar, vector, matrix, or multidimensional
array of quaternions.

Data Types: quaternion

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified, then the
default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(quatAverage,dim) is
1, while the sizes of all other dimensions remain the same.

Data Types: double | single

nanflag — NaN condition
"includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

* ‘'includenan' -- Include NaN values when computing the mean rotation, resulting in NaN.
* ‘'omitnan' -- Ignore all NaN values in the input.

Data Types: char | string

Output Arguments

quatAverage — Quaternion average rotation
scalar | vector | matrix | multidimensional array

Quaternion average rotation, returned as a scalar, vector, matrix, or multidimensional array.

Data Types: single | double

2-181

2 Methods

Algorithms

meanrot determines a quaternion mean, ¢, according to [1]. q is the quaternion that minimizes the
squared Frobenius norm of the difference between rotation matrices:

q=arg

E lA() - Ala)IF

es3

References

[1] Markley, E Landis, Yang Chen, John Lucas Crassidis, and Yaakov Oshman. "Average Quaternions."
Journal of Guidance, Control, and Dynamics. Vol. 30, Issue 4, 2007, pp. 1193-1197.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
dist|slerp

Objects
quaternion

Introduced in R2020b

2-182

minus, -

minus, -

Quaternion subtraction

Syntax

Description

C = A - B subtracts quaternion B from quaternion A using quaternion subtraction. Either A or B
may be a real number, in which case subtraction is performed with the real part of the quaternion
argument.

Examples

Subtract a Quaternion from a Quaternion

Quaternion subtraction is defined as the subtraction of the corresponding parts of each quaternion.
Create two quaternions and perform subtraction.

Q1
Q2

quaternion([1,0,-2,71);
quaternion([1,2,3,4]1);

QlminusQ2 = Q1 - Q2

QlminusQ2 = quaternion
0 - 21 - 5] + 3k

Subtract a Real Number from a Quaternion

Addition and subtraction of real numbers is defined for quaternions as acting on the real part of the
quaternion. Create a quaternion and then subtract 1 from the real part.

Q
Q

quaternion([1,1,1,1])

quaternion
1+ 11+ 17 + 1k

Qminusl =Q - 1

Qminusl = quaternion
0+ 1i + 1j + 1k

2-183

2 Methods

Input Arguments

A — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real numbers.

Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real numbers.

Data Types: quaternion | single | double

Output Arguments

C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion subtraction, returned as a scalar, vector, matrix, or multidimensional array of
quaternions.

Data Types: quaternion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
-,uminus | .*,times | *,mtimes

Objects
quaternion

Introduced in R2020b

2-184

mtimes, *

mtimes, *

Quaternion multiplication

Syntax

quatC = A*B

Description

quatC = A*B implements quaternion multiplication if either A or B is a quaternion. Either A or B
must be a scalar.

You can use quaternion multiplication to compose rotation operators:

» To compose a sequence of frame rotations, multiply the quaternions in the order of the desired
sequence of rotations. For example, to apply a p quaternion followed by a q quaternion, multiply in

the order pq. The rotation operator becomes (pq)“v(pq), where v represents the object to rotate
specified in quaternion form. * represents conjugation.

* To compose a sequence of point rotations, multiply the quaternions in the reverse order of the
desired sequence of rotations. For example, to apply a p quaternion followed by a g quaternion,

multiply in the reverse order, gp. The rotation operator becomes (gp)v(gp)”.

Examples

Multiply Quaternion Scalar and Quaternion Vector
Create a 4-by-1 column vector, A, and a scalar, b. Multiply A times b.
A = quaternion(randn(4,4))

A = 4x1 quaternion array

0.53767 + 0.318771 + 3.5784j + 0.7254k
1.8339 - 1.30771 + 2.7694j - 0.063055k
-2.2588 - 0.433591 - 1.3499j) + 0.71474k
0.86217 + 0.342621 + 3.0349) - 0.20497k

b = quaternion(randn(1,4))
b = quaternion

-0.12414 + 1.48971i + 1.409j + 1.4172k
C = A*b

C = 4x1 quaternion array

-6.6117 + 4.81051 + 0.94224j - 4.2097k
-2.0925 + 6.90791i + 3.9995j - 3.3614k
1.8155 - 6.23131 - 1.336j - 1.89k
-4.6033 + 5.8317i + 0.047161j - 2.791k

2-185

2 Methods

Input Arguments

A — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of real scalars.

If B is nonscalar, then A must be scalar.

Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of real scalars.

If A is nonscalar, then B must be scalar.

Data Types: quaternion | single | double

Output Arguments

quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a quaternion or array of quaternions.

Data Types: quaternion

Algorithms
Quaternion Multiplication by a Real Scalar
Given a quaternion
q = aq + byi + cqj + dgk,
the product of q and a real scalar 8 is
Ba = Baq + Bbqi + Bcgj + Bdgk
Quaternion Multiplication by a Quaternion Scalar

The definition of the basis elements for quaternions,

?=i?=k=ik= -1,

1 i i k
1 1 i] k
i i —dl k .

2-186

mtimes, *

i] —k -1 i
Kk k] —i -1

When reading the table, the rows are read first, for example: ij = k and ji = —k.

Given two quaternions, q = aq + bgi + ¢4j + dgk, and p = ap, + byi + ¢pj + dpk, the multiplication can be
expanded as:

z=pq = (ap + bpi + cpj + dpk)(aq + bl + cj + dgk)
= apaq + apbgl + apCqj + apdgk
+bpagi + bybgi + bycii + bydqik
+Cpdqj + Cpbgji + cpcqj2 + cpdgik
+dpagk + dybgki + dpcgkj + dpdgk?
You can simplify the equation using the quaternion multiplication table:
Z = pq = apaq + dpbgi + apcqj + apdgk
+bpaqi — bpbg + bpcgk — bpdyj
+Cpdqj — Cpbgk — cpcq + Cpdqi
+dpagk + dpbgj — dpcqi — dpdg

References

[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,
Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
¥, times

Objects
quaternion

Introduced in R2020b

2-187

2 Methods

norm

Quaternion norm

Syntax

N = norm(quat)

Description
N = norm(quat) returns the norm of the quaternion, quat.

Given a quaternion of the form Q = a + bi + cj + dk, the norm of the quaternion is defined as
norm(Q) = \/02 +b%+c?+d%

Examples

Calculate Quaternion Norm

Create a scalar quaternion and calculate its norm.

quat = quaternion(1,2,3,4);
norm(quat)

ans = 5.4772

The quaternion norm is defined as the square root of the sum of the quaternion parts squared.
Calculate the quaternion norm explicitly to verify the result of the norm function.

[a,b,c,d] = parts(quat);
sqrt(a™2+b"2+c"2+d"2)

ans = 5.4772

Input Arguments

quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the norm, specified as a scalar, vector, matrix, or multidimensional
array of quaternions.

Data Types: quaternion

Output Arguments

N — Quaternion norm
scalar | vector | matrix | multidimensional array

2-188

norm

Quaternion norm. If the input quat is an array, the output is returned as an array the same size as
quat. Elements of the array are real numbers with the same data type as the underlying data type of
the quaternion, quat.

Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
normalize | parts | conj

Objects
quaternion

Introduced in R2020b

2-189

2 Methods

normalize

Quaternion normalization

Syntax

quatNormalized = normalize(quat)

Description
quatNormalized = normalize(quat) normalizes the quaternion.

Given a quaternion of the form Q = a + bi + cj + dk, the normalized quaternion is defined as
QIa? +b* + c? + d%

Examples

Normalize Elements of Quaternion Vector

Quaternions can represent rotations when normalized. You can use normalize to normalize a scalar,
elements of a matrix, or elements of a multi-dimensional array of quaternions. Create a column vector
of quaternions, then normalize them.

quatArray = quaternion([1,2,3,4;
2,3,4,1;
3,4,1,21);
quatArrayNormalized = normalize(quatArray)

quatArrayNormalized = 3x1 quaternion array
0.18257 + 0.365151 + 0.54772j + 0.7303k

0.36515 + 0.547721i + 0.7303j + 0.18257k
0.54772 + 0.73031i + 0.18257j + 0.36515k

Input Arguments

quat — Quaternion to normalize
scalar | vector | matrix | multidimensional array

Quaternion to normalize, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.

Data Types: quaternion

Output Arguments

quatNormalized — Normalized quaternion
scalar | vector | matrix | multidimensional array

2-190

normalize

Normalized quaternion, returned as a quaternion or array of quaternions the same size as quat.
Data Types: quaternion
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
norm| .*,times | conj

Objects
quaternion

Introduced in R2020b

2-191

2 Methods

ones

Create quaternion array with real parts set to one and imaginary parts set to zero

Syntax

quatOnes = ones
quatOnes = ones
quatOnes = ones
quatOnes = ones

"quaternion')

n, 'quaternion')

sz, 'quaternion')
sz1l,...,szN, 'quaternion')

—_— o~~~

quatOnes = ones(__ ,'like',prototype, 'quaternion')

Description

quatOnes = ones('quaternion') returns a scalar quaternion with the real part set to 1 and the
imaginary parts set to 0.

Given a quaternion of the form Q = a + bi + cj + dk, a quaternion one is defined as
Q=1+0i+0j+0k.

quatOnes = ones(n, 'quaternion') returns an n-by-n quaternion matrix with the real parts set
to 1 and the imaginary parts set to 0.

quatOnes = ones(sz, 'quaternion') returns an array of quaternion ones where the size vector,
sz, defines size(qOnes).

Example: ones([1,4,2], 'quaternion') returns a 1-by-4-by-2 array of quaternions with the real
parts set to 1 and the imaginary parts set to 0.

quatOnes = ones(szl,...,szN, 'quaternion') returns a sz1-by-...-by-szN array of ones where
sz1,..,szN indicates the size of each dimension

quatOnes = ones(__ ,'like',prototype, 'quaternion') specifies the underlying class of
the returned quaternion array to be the same as the underlying class of the quaternion prototype.

Examples

Quaternion Scalar One

Create a quaternion scalar one.
quatOnes = ones('quaternion')

quatOnes = quaternion
1+ 01+ 0j + 0k

2-192

ones

Square Matrix of Quaternion Ones

Create an n-by-n matrix of quaternion ones.

n = 3;

quatOnes = ones(n, 'quaternion')

quatOnes = 3x3 quaternion array

1+0i+0j + 0k 1+0i+0j + 0k 1+0i+0j + 0k
1+0i+0j + 0k 1+0i+0j + 0k 1+0i+0j + 0k
1+0i+0j + 0k 1+0i+0j + 0k 1+0i+0j + 0k

Multidimensional Array of Quaternion Ones

Create a multidimensional array of quaternion ones by defining array dimensions in order. In this
example, you create a 3-by-1-by-2 array. You can specify dimensions using a row vector or comma-
separated integers. Specify the dimensions using a row vector and display the results:

dims = [3,1,2];
quatOnesSyntaxl

ones(dims, 'quaternion')

quatOnesSyntaxl = 3xIx2 quaternion array
quatOnesSyntax1l(:,:,1) =

i+ 0j + 0k
i + 0k
i+ 0] + 0k

==
+ + +
[cNoNo)
-
+
@
—
+

quatOnesSyntax1(:,:,2) =

i+ 0j + 0k
i + 0k
i+ 0] + 0k

== e
+ + +
[cNoNo)
-
+
o]
—
+

Specify the dimensions using comma-separated integers, and then verify the equivalency of the two
syntaxes:

quatOnesSyntax2 = ones(3,1,2, 'quaternion');
isequal(quatOnesSyntaxl,quatOnesSyntax2)

ans = logical
1

Underlying Class of Quaternion Ones
A quaternion is a four-part hyper-complex number used in three-dimensional rotations and

orientations. You can specify the underlying data type of the parts as single or double. The default
is double.

2-193

2 Methods

2-194

Create a quaternion array of ones with the underlying data type set to single.
quatOnes = ones(2, 'like',single(1l), 'quaternion')

quatOnes = 2x2 quaternion array
1+0i+0j + 0k 1+0i+0j + 0k
1 +0i+0j + 0k 1 +0i+0j + 0k

Verify the underlying class using the classUnderlying function.
classUnderlying(quatOnes)

ans =
'single’

Input Arguments

n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value.

If n is zero or negative, then quatOnes is returned as an empty matrix.

Example: ones (4, 'quaternion') returns a 4-by-4 matrix of quaternions with the real parts set to
1 and the imaginary parts set to 0.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the size of the
corresponding dimension in quatOnes. If the size of any dimension is 0 or negative, then quatOnes
is returned as an empty array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.

Example: ones (2, 'like',quat, 'quaternion') returns a 2-by-2 matrix of quaternions with the
same underlying class as the prototype quaternion, quat.

Data Types: quaternion

szl,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers. If the size of any dimension is © or
negative, then quatOnes is returned as an empty array.

Example: ones (2,3, 'quaternion’) returns a 2-by-3 matrix of quaternions with the real parts set
to 1 and the imaginary parts set to 0.

ones

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

Output Arguments

quatOnes — Quaternion ones
scalar | vector | matrix | multidimensional array

Quaternion ones, returned as a scalar, vector, matrix, or multidimensional array of quaternions.

Given a quaternion of the form Q = a + bi + cj + dk, a quaternion one is defined as
Q=1+0i+0j+0k.

Data Types: quaternion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
Zeros

Objects
quaternion

Introduced in R2020b

2-195

2 Methods

2-196

parts

Extract quaternion parts

Syntax

[a,b,c,d] = parts(quat)

Description

[a,b,c,d] = parts(quat) returns the parts of the quaternion array as arrays, each the same size
as quat.

Examples
Convert Quaternion to Matrix of Quaternion Parts

Convert a quaternion representation to parts using the parts function.

Create a two-element column vector of quaternions by specifying the parts.

quat = quaternion([1:4;5:8])
quat = 2x1 quaternion array
1+ 2i+ 3j + 4k
5+ 61+ 7] + 8k

Recover the parts from the quaternion matrix using the parts function. The parts are returned as
separate output arguments, each the same size as the input 2-by-1 column vector of quaternions.

[gA,qB,qC,gD] = parts(quat)
gA = 2x1

qC = 2x1

w

gb = 2x1

parts

o« &~

Input Arguments

quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as a quaternion or array of quaternions.

Data Types: quaternion

Output Arguments

[a,b,c,d] — Quaternion parts
scalar | vector | matrix | multidimensional array

Quaternion parts, returned as four arrays: a, b, ¢, and d. Each part is the same size as quat.
Data Types: single | double
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
classUnderlying | compact

Objects
quaternion

Introduced in R2020b

2-197

2 Methods

power, .

Element-wise quaternion power

Syntax
C=A."b

Description

C = A.”braises each element of A to the corresponding power in b.

Examples

Raise a Quaternion to a Real Scalar Power

Create a quaternion and raise it to a real scalar power.

A = quaternion(1,2,3,4)
A = quaternion

1+ 21+ 3] + 4k
b =3;
C=A."b
C = quaternion

-86 - 52i - 78j - 104k

Raise a Quaternion Array to Powers from a Multidimensional Array

Create a 2-by-1 quaternion array and raise it to powers from a 2-D array.

A = quaternion([1:4;5:8])
A = 2x1 quaternion array
1+ 2i+ 3j + 4k
5+ 61+ 7] + 8k
b=1[102; 321]
b = 2x3
1 0 2
3 2 1
C=A."b

2-198

power, .™

C = 2x3 quaternion array
1+ 21 + 3j + 4k 1+ 0i + 0j + 0k -28 + 4i + 6j +
-2110 - 4441 - 518j - 592k -124 + 601 + 70j + 80k 5 + 61 + 7] +

Input Arguments

A — Base
scalar | vector | matrix | multidimensional array

Base, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: quaternion | single | double

b — Exponent
scalar | vector | matrix | multidimensional array

Exponent, specified as a real scalar, vector, matrix, or multidimensional array.

Data Types: single | double

Output Arguments

C — Result
scalar | vector | matrix | multidimensional array

Each element of quaternion A raised to the corresponding power in b, returned as a scalar, vector,
matrix, or multidimensional array.

Data Types: quaternion

Algorithms

The polar representation of a quaternion A = a + bi + c¢j + dk is given by
A = ||All(cos6 + u'sinb)

where 0 is the angle of rotation, and i is the unit quaternion.

Quaternion A raised by a real exponent b is given by

P =A.~b = |AlI’(cos(b6) + Tsin(bd))

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
log | exp

2-199

2 Methods

Objects
quaternion

Introduced in R2020b

2-200

prod

prod

Product of a quaternion array

Syntax

quatProd prod(quat)
quatProd = prod(quat,dim)

Description

quatProd

quatProd

Examples

Product of Quaternions in Each Column

Create a 3-by-3 array whose elements correspond to their linear indices.

A = reshape(quaternion(randn(9,4)),3,3)

A = 3x3 quaternion array
0.53767 + 2.7694i + 1.409j - 0.30344k
1.8339 - 1.34991i + 1.4172j + 0.29387k
-2.2588 + 3.0349i + 0.6715j - 0.78728k

prod(quat) returns the quaternion product of the elements of the array.

prod(quat,dim) calculates the quaternion product along dimension dim.

0.86217 + 0.7254i -

0.31877 - 0.0630551 +

-1.3077 + 0.714741i +

1.2075j +

0.71724j -

1.6302j -

Find the product of the quaternions in each column. The length of the first dimension is 1, and the

length of the second dimension matches size(A,2).

B = prod(A)

B

Ix3 quaternion array
-19.837 - 9.1521i + 15.813j - 19.918k

Product of Specified Dimension of Quaternion Array

-5.4708 - 0.285351 +

You can specify which dimension of a quaternion array to take the product of.

Create a 2-by-2-by-2 quaternion array.

A = reshape(quaternion(randn(8,4)),2,2,2);

3.077j

1.2295k

Find the product of the elements in each page of the array. The length of the first dimension matches

size(A, 1), the length of the second dimension matches size(A,2), and the length of the third

dimension is 1.

2-201

0.888:
1.147
1.068¢

2 Methods

2-202

dim = 3;
B = prod(A,dim)

B = 2x2 quaternion array

-2.4847 + 1.16591 - 0.37547j + 2.8068k 0.28786 - 0.29876i - 0.51231j - 4.2972k
0.38986 - 3.66061 - 2.0474j - 6.047k -1.741 - 0.267821i + 5.4346j + 4.1452k

Input Arguments

quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as scalar, vector, matrix, or multidimensional array of quaternions.

Example: qProd = prod(quat) calculates the quaternion product along the first non-singleton
dimension of quat.

Data Types: quaternion

dim — Dimension
first non-singleton dimension (default) | positive integer

Dimension along which to calculate the quaternion product, specified as a positive integer. If dim is
not specified, prod operates along the first non-singleton dimension of quat.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

Output Arguments

quatProd — Quaternion product
positive integer

Quaternion product, returned as quaternion array with one less non-singleton dimension than quat.
For example, if quat is a 2-by-2-by-5 array,

* prod(quat,l) returns a 1-by-2-by-5 array.
* prod(quat,2) returns a 2-by-1-by-5 array.
* prod(quat,3) returns a 2-by-2 array.

Data Types: quaternion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
mtimes | .*,times

prod

Objects
quaternion

Introduced in R2020b

2-203

2 Methods

rdivide, ./

Element-wise quaternion right division

Syntax

C=A./B

Description

C = A./B performs quaternion element-wise division by dividing each element of quaternion A by
the corresponding element of quaternion B.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A = 2x1 quaternion array
1+ 21+ 3] + 4k
5+ 61+ 7j + 8k

B =2;

C=A./B

C = 2x1 quaternion array

0.5 + 1i + 1.5 + 2k
2.5+ 31+ 3.5j + 4k

Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion
array.

gl = quaternion(magic(4));
A = reshape(ql,2,2)

A = 2x2 quaternion array

16 + 2i + 3j + 13k 9 + 7i+ 6j + 12k
5+ 11i + 10j + 8k 4 + 14i + 15 + 1k

g2 = quaternion([1:4;3:6;2:5;4:71);
B = reshape(qg2,2,2)

2-204

rdivide, ./

B = 2x2 quaternion array
1+ 2i+ 3j + 4k 2 + 31 + 4j + 5k
3+ 41+ 5j + 6k 4 +5i +6j + 7k
C=A./B

C = 2x2 quaternion array
2.7 - 0.1i - 2.1j
1.8256 - 0.081395i + 0.45349j

1.7k 2.2778 + 0.0925931 - 0.46296j) - 0.5740
0.24419k 1.4524 - 0.51 + 1.0238j - 0.261

Input Arguments

A — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.

Data Types: quaternion | single | double

B — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.
A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a

scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.

Data Types: quaternion | single | double

Output Arguments

C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms

Quaternion Division

Given a quaternion A = a; + ayi + a3j + a4k and a real scalar p,

a a;, az, a
C=A.lp=-2+2i+3j+ 2k
P=5 5t pi+

2-205

2 Methods

2-206

Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes,

C=A_/B=A.*B‘1=A_*(conj(B).

norm(B)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
conj | ./,ldivide | norm| .*, times

Objects
quaternion

Introduced in R2020b

randrot

randrot

Uniformly distributed random rotations

Syntax

R = randrot

R = randrot(m)

R = randrot(ml,...,mN)

R = randrot([ml,...,mN])
Description

R = randrot returns a unit quaternion drawn from a uniform distribution of random rotations.

R = randrot(m) returns an m-by-m matrix of unit quaternions drawn from a uniform distribution of
random rotations.

R = randrot(ml,...,mN) returns an ml-by-...-by-mN array of random unit quaternions, where m1,
..., MN indicate the size of each dimension. For example, randrot (3,4) returns a 3-by-4 matrix of
random unit quaternions.

R = randrot([ml,...,mN]) returns an ml-by-...-by-mN array of random unit quaternions, where

ml,..., mN indicate the size of each dimension. For example, randrot([3,4]) returns a 3-by-4 matrix
of random unit quaternions.

Examples

Matrix of Random Rotations

Generate a 3-by-3 matrix of uniformly distributed random rotations.

r = randrot(3)

r = 3x3 quaternion array
0.17446 + 0.59506i - 0.73295j + 0.27976k 0.69704 - 0.0605891i + 0.68679] -
0.21908 - 0.89875i - 0.298] + 0.23548k -0.049744 + 0.59691i + 0.56459j +
0.6375 + 0.49338i - 0.24049) + 0.54068k 0.2979 - 0.53568i + 0.31819j +

Create Uniform Distribution of Random Rotations

Create a vector of 500 random quaternions. Use rotatepoint to visualize the distribution of the
random rotations applied to point (1, 0, 0).

g = randrot(500,1);

pt = rotatepoint(q, [1 0 0]);

2-207

0.1969:
0.5678
0.7232.

2 Methods

2-208

figure
scatter3(pt(:,1), pt(:,2), pt(:,3))
axis equal

Input Arguments

m — Size of square matrix
integer

Size of square quaternion matrix, specified as an integer value. If m is 0 or negative, then R is
returned as an empty matrix.
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ml,...,mN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values. If the size of any dimension is 0 or
negative, then R is returned as an empty array.

Example: randrot (2, 3) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

[ml,...,mN] — Vector of size of each dimension
row vector of integer values

randrot

Vector of size of each dimension, specified as a row vector of two or more integer values. If the size of
any dimension is 0 or negative, then R is returned as an empty array.

Example: randrot([2,3]) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64
Output Arguments

R — Random quaternions
scalar | vector | matrix | multidimensional array

Random quaternions, returned as a quaternion or array of quaternions.

Data Types: quaternion

References

[1] Shoemake, K. "Uniform Random Rotations." Graphics Gems III (K. David, ed.). New York:
Academic Press, 1992.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
guaternion

Introduced in R2020b

2-209

2 Methods

rotateframe

Quaternion frame rotation

Syntax

rotationResult = rotateframe(quat,cartesianPoints)

Description

rotationResult = rotateframe(quat,cartesianPoints) rotates the frame of reference for
the Cartesian points using the quaternion, quat. The elements of the quaternion are normalized
before use in the rotation.

Examples

Rotate Frame Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in the order x, y,
and z. For convenient visualization, define the point on the x-y plane.

X 0.5;

y 0.5;

z 0;

plot(x,y, 'ko")
hold on

axis([-1 1 -1 11])

2-210

rotateframe

-1 48 06 04 02 0 0.2 0.4 0.6 0.8 1

Create a quaternion vector specifying two separate rotations, one to rotate the frame 45 degrees and
another to rotate the point -90 degrees about the z-axis. Use rotateframe to perform the rotations.

quat = quaternion([0,0,pi/4;
0,0,-pi/2], 'euler','XYZ', 'frame');

rereferencedPoint = rotateframe(quat, [x,y,z])

rereferencedPoint = 2x3
0.7071 -0.0000 0
-0.5000 0.5000 0

Plot the rereferenced points.

plot(rereferencedPoint(1,1),rereferencedPoint(

1,2)
plot(rereferencedPoint(2,1),rereferencedPoint (2,2

)

bo')
go')

1
’

1
’

2-211

2 Methods

2-212

-1 48 06 04 02 0 0.2 0.4 0.6 0.8 1

Rereference Group of Points using Quaternion

Define two points in three-dimensional space. Define a quaternion to rereference the points by first
rotating the reference frame about the z-axis 30 degrees and then about the new y-axis 45 degrees.
1 0] ;

quaternion([30,45,0], 'eulerd', 'ZYX"', 'point');

Use rotateframe to reference both points using the quaternion rotation operator. Display the result.
rP = rotateframe(quat,[a;b])
= 2x3

0.6124 -0.3536 0.7071
0.5000 0.8660 -0.0000

Visualize the original orientation and the rotated orientation of the points. Draw lines from the origin
to each of the points for visualization purposes.

plot3(a(l),a(2),a(3),'bo');

hold on

rotateframe

grid on

axis([-1 1 -1 1 -1 117)
xlabel('x")

ylabel('y")

zlabel('z")
plot3(b(1),b(2),b(3),'ro");

plot3(rP(1,1),rP(1,2),rP(1,3),"'bd")
plot3(rP(2,1),rP(2,2),rP(2,3),'rd")

plot3([0;rP(1,1)1,[0;rP(1,2)1,[0;rP(1,3)
plot3([0;rP(2,1)1,[0;rP(2,2)1,[0;rP(2,3)
plot3([0;a(1)],[0;a(2)]1,[0;a(3)], k")
plot3([0;b(1)],[0;b(2)]1,[0;b(3)], " 'k")

0.5

-

0.5

1"
1

)
)

Input Arguments

quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion or vector of quaternions.

Data Types: quaternion

cartesianPoints — Three-dimensional Cartesian points

1-by-3 vector | N-by-3 matrix

2-213

2 Methods

2-214

Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.

Data Types: single | double

Output Arguments

rotationResult — Re-referenced Cartesian points
vector | matrix

Cartesian points defined in reference to rotated reference frame, returned as a vector or matrix the
same size as cartesianPoints.

The data type of the re-referenced Cartesian points is the same as the underlying data type of quat.

Data Types: single | double

Algorithms

Quaternion frame rotation re-references a point specified in R? by rotating the original frame of
reference according to a specified quaternion:

Lq(u) = q*uq

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified as a
quaternion.

For convenience, the rotateframe function takes a point in R3 and returns a point in R3. Given a
function call with some arbitrary quaternion, ¢ = a + bi + ¢j + dk, and arbitrary coordinate, [x,y,z],

point = [x,y,z];
rereferencedPoint = rotateframe(q,point)

the rotateframe function performs the following operations:

1 Converts point [x,y,z] to a quaternion:
ug=0+xi+yj+zk

2 Normalizes the quaternion, q:

— q
Ja? + b% + ¢ + d*
3 Applies the rotation:

qn

Vg = q*Ugq
4 Converts the quaternion output, v,, back to R3
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

rotateframe

See Also

Functions
rotatepoint

Objects
quaternion

Introduced in R2020b

2-215

2 Methods

2-216

rotatepoint

Quaternion point rotation

Syntax

rotationResult = rotatepoint(quat,cartesianPoints)

Description

rotationResult = rotatepoint(quat,cartesianPoints) rotates the Cartesian points using
the quaternion, quat. The elements of the quaternion are normalized before use in the rotation.

Examples

Rotate Point Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in order X, y, z. For
convenient visualization, define the point on the x-y plane.

X = 0.5;
y = 0.5;
z = 0;

plot(x,y, 'ko")
hold on
axis([-1 1 -1 1])

rotatepoint

-1 48 06 04 02 0 0.2 0.4 0.6 0.8 1

Create a quaternion vector specifying two separate rotations, one to rotate the point 45 and another
to rotate the point -90 degrees about the z-axis. Use rotatepoint to perform the rotation.

quat = quaternion([0,0,pi/4;
0,0,-pi/2], 'euler’, 'XYZ"', 'point");

rotatedPoint = rotatepoint(quat,[x,y,z])

rotatedPoint 2x3

-0.0000 0.7071
0.5000 -0.5000

[oNo]

Plot the rotated points.

plot(rotatedPoint(1,1),rotatedPoint(1,2), 'bo")
plot(rotatedPoint(2,1),rotatedPoint(2,2),'go")

2-217

2 Methods

2-218

-1 48 06 04 02 0 0.2 0.4 0.6 0.8 1

Rotate Group of Points Using Quaternion

Define two points in three-dimensional space. Define a quaternion to rotate the point by first rotating
about the z-axis 30 degrees and then about the new y-axis 45 degrees.

éug’]cérnlon([30,45,0], 'eulerd', 'ZYX", 'point"');
Use rotatepoint to rotate both points using the quaternion rotation operator. Display the result.
rP = rotatepoint(quat,[a;b])

= 2x3

0.6124 0.5000 -0.6124
-0.3536 0.8660 0.3536

Visualize the original orientation and the rotated orientation of the points. Draw lines from the origin
to each of the points for visualization purposes.

plot3(a(l),a(2),a(3),'bo');

hold on

rotatepoint

grid on

axis([-1 1 -1 1 -1 117)
xLlabel('x")

ylabel('y")

zlabel('z")
plot3(b(1),b(2),b(3),'ro");

plot3(rP(1,1),rP(1,2),rP(1,3),"'bd")
plot3(rP(2,1),rP(2,2),rP(2,3),'rd")

plot3([0;rP(1,1)1,[0;rP(1,2)1,[0;rP(1,3)
plot3([0;rP(2,1)1,[0;rP(2,2)1,[0;rP(2,3)
plot3([0;a(1)],[0;a(2)]1,[0;a(3)], k")
plot3([0;b(1)],[0;b(2)]1,[0;b(3)], " 'k")

0.5 4

1"
1

)
)

Input Arguments

quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion, row vector of quaternions, or

column vector of quaternions.

Data Types: quaternion

2-219

2 Methods

2-220

cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix

Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.

Data Types: single | double

Output Arguments

rotationResult — Repositioned Cartesian points
vector | matrix

Rotated Cartesian points defined using the quaternion rotation, returned as a vector or matrix the
same size as cartesianPoints.

Data Types: single | double

Algorithms
Quaternion point rotation rotates a point specified in R3 according to a specified quaternion:
Lq(u) = quq*

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified as a
quaternion.

For convenience, the rotatepoint function takes in a point in R3 and returns a point in R3. Given a
function call with some arbitrary quaternion, q = a + bi + ¢j + dk, and arbitrary coordinate, [x,y,2],
for example,

rereferencedPoint = rotatepoint(q, [Xx,y,z])

the rotatepoint function performs the following operations:

1 Converts point [x,y,z] to a quaternion:
Ug=0+xi+yj+zk

2 Normalizes the quaternion, g:

— q
Ja? + b% + c? +d?
3 Applies the rotation:

qn

Vq = quqq*
4 Converts the quaternion output, v,, back to R3
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

rotatepoint

See Also

Functions
rotateframe

Objects
quaternion

Introduced in R2020b

2-221

2 Methods

rotmat

Convert quaternion to rotation matrix

Syntax

rotationMatrix = rotmat(quat,rotationType)

Description

rotationMatrix = rotmat(quat, rotationType) converts the quaternion, quat, to an
equivalent rotation matrix representation.

Examples

Convert Quaternion to Rotation Matrix for Point Rotation

Define a quaternion for use in point rotation.

theta 45;
gamma 30;
quat = quaternion([0@,theta,gamma], 'eulerd’, 'ZYX", 'point")

quat = quaternion
0.8924 + 0.23912i + 0.36964) + 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix

rotmat(quat, 'point"')

rotationMatrix = 3x3

0.7071 -0.0000 0.7071
0.3536 0.8660 -0.3536
-0.6124 0.5000 0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the rotations
about the y- and x-axes. Multiply the rotation matrices and compare to the output of rotmat.

theta = 45;

gamma = 30;

ry = [cosd(theta) 0 sind(theta) ;
0 1 0 ;
-sind(theta) 0 cosd(theta)];

rx = [1 0 0 ;
0 cosd(gamma) -sind(gamma) ;
0 sind(gamma) cosd(gamma)]l;

rotationMatrixVerification = rx*ry

2-222

rotmat

rotationMatrixVerification = 3x3

0.7071 0 0.7071
0.3536 0.8660 -0.3536
-0.6124 0.5000 0.6124

Convert Quaternion to Rotation Matrix for Frame Rotation

Define a quaternion for use in frame rotation.

theta = 45;
gamma 30;
quat = quaternion([0@,theta,gamma], 'eulerd’, 'ZYX", 'frame")

quat = quaternion
0.8924 + 0.23912i + 0.36964] - 0.099046k

Convert the quaternion to a rotation matrix.
rotationMatrix = rotmat(quat, 'frame')
rotationMatrix = 3x3

0.7071 -0.0000 -0.7071

0.3536 0.8660 0.3536
0.6124 -0.5000 0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the rotations
about the y- and x-axes. Multiply the rotation matrices and compare to the output of rotmat.

theta = 45;

gamma = 30;

ry = [cosd(theta) 0 -sind(theta) ;
0 1 0 ;
sind(theta) 0 cosd(theta)];

rx = [1 0 0 ;
0 cosd(gamma) sind(gamma) ;
0 -sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry
rotationMatrixVerification = 3x3
0.7071 0 -0.7071

0.3536 0.8660 0.3536
0.6124 -0.5000 0.6124

2-223

2 Methods

2-224

Convert Quaternion Vector to Rotation Matrices

Create a 3-by-1 normalized quaternion vector.

qVec = normalize(quaternion(randn(3,4)));

Convert the quaternion array to rotation matrices. The pages of rotmatArray correspond to the
linear index of gVec.

rotmatA